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Abstract—Optimal methods are constructed for recovering functions and their derivatives in a
Sobolev class of functions on the line from exactly or approximately defined Fourier transforms
of these functions on an arbitrary measurable set. The methods are exact on certain subspaces
of entire functions. Optimal recovery methods are also constructed for wider function classes
obtained as the sum of the original Sobolev class and a subspace of entire functions.
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1. INTRODUCTION

The question that was originally addressed by the authors is as follows. Given a class of smooth
functions on the line for each of which its Fourier transform on some set is known (in general,
approximately), is it possible to construct a method for recovering these functions and/or their
derivatives that would be exact on a given subspace and would be the best in a sense?

This question arose as follows. An important characteristic of any quadrature formula is the
maximum dimension of the subspace of algebraic or trigonometric polynomials on which this formula
is exact. In this sense, optimal formulas are given by Gaussian quadratures (see, e.g., [1]). In the
1950s, there appeared studies devoted to the problem of finding the best quadrature formulas on
function classes (Kolmogorov–Nikol’skii quadrature formulas, see [2]). The problem goes back to
Kolmogorov’s research on finding optimal methods for approximating function classes (see [3]);
in [2], Nikol’skii wrote about this even more definitely: “In this section, we give a solution to one of
the problems set up by A.N. Kolmogorov.”

The problem of Kolmogorov–Nikol’skii quadratures served as a starting point for the general
problem of finding optimal methods for recovering linear functionals and operators on classes of
elements from inaccurate information on the elements themselves. There is a rather extensive
literature devoted to this subject. We point out only the publications [4–12], which can be considered
as source publications in this field.

It turns out that among optimal methods for recovering functions and their derivatives on a
Sobolev class on the line, there are methods that are exact on some subspaces of entire functions of
exponential type. Moreover, these methods are also optimal on a wider class than the original one.
Namely, they are optimal on the class obtained as the sum of the original class and the subspace
on which these methods are exact.

In this connection, there arises a general problem of constructing methods that are exact on
a given subspace of entire functions and are optimal on the sum of the Sobolev class with this

a Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia.
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol’shoi
Karetnyi per. 19, str. 1, Moscow, 127051 Russia.

c Peoples’ Friendship University of Russia, ul. Miklukho-Maklaya 6, Moscow, 117198 Russia.
d Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia.

E-mail addresses: magaril@mech.math.msu.su (G.G. Magaril-Il’yaev), kosipenko@yahoo.com (K.Yu. Osipenko).

194



EXACTNESS AND OPTIMALITY OF METHODS FOR RECOVERING 195

subspace. In the present study, we solve this problem and, as a corollary, find methods for recovering
functions and their derivatives that are optimal on the Sobolev class and are exact on a maximally
wide subspace of entire functions. In other words, we try to combine two approaches: the one going
back to Gauss, which is based on constructing methods exact on subspaces, and the one going back
to Kolmogorov, which is based on the constructing methods optimal on a given class.

Note also that similar problems were studied in the authors’ earlier publications [13–15].

2. STATEMENTS OF PROBLEMS AND FORMULATIONS OF RESULTS

Let F be the Fourier transform in L2(R). If x(·) ∈ L2(R), then it is convenient to assume that
the function Fx(·) is defined on R with the Lebesgue measure divided by 2π. Denote the norm of a
function y(·) in the space of square integrable functions on R with such a measure by ‖y(·)‖

̂L2(R)
, i.e.,

‖y(·)‖
̂L2(R)

=

⎛
⎝ 1

2π

∫
R

|y(ξ)|2 dξ

⎞
⎠1/2

.

Let n be a positive integer and Wn
2 (R) be the Sobolev space of functions x(·) ∈ L2(R) such that

their (n− 1)th derivative is locally absolutely continuous and x(n)(·) ∈ L2(R).
Let, next, W be a subset (class) of functions in Wn

2 (R) and A be a measurable subset of the
real line. Assume that for every function x(·) ∈ W , its Fourier transform on A is known either
exactly or approximately, i.e., a function y(·) ∈ L̂2(R) is known such that ‖Fx(·) − y(·)‖

̂L2(R)
≤ δ

for some δ > 0.
Given this information, we want to recover (in the best possible way) the functions x(·) ∈ W

and their derivatives up to order n− 1 inclusive in the L2(R) metric.
Prior to formulating the problem exactly, we introduce some notation. Let IA : Wn

2 (R) → L̂2(A)
be the mapping whose value on a function x(·) ∈ Wn

2 (R) is the restriction Fx(·)|A of the function
Fx(·) to A, and let IδA : Wn

2 (R) → L̂2(A) be the multivalued mapping defined as

IδAx(·) =
{
y(·) ∈ L̂2(A) : ‖IAx(·)− y(·)‖

̂L2(A)
≤ δ

}
.

If we formally set δ = 0 here, then we get I0A = IA; thus, available information on the function
x(·) ∈ W (depending on whether its Fourier transform is known exactly or approximately) is
described by a function y(·) ∈ IδAx(·), where δ ≥ 0.

It is clear that any recovery method for the kth (0 ≤ k ≤ n − 1) derivative of a function of
class W in the L2(R) metric from the above information is a mapping ϕ : L̂2(A) → L2(R). By
definition, the error of this method is the quantity

e(Dk,W, IδA, ϕ) = sup
x(·)∈W, y(·)∈IδAx(·)

∥∥x(k)(·)− ϕ(y(·))(·)
∥∥
L2(R)

,

where Dk denotes the operator of k-fold differentiation (D0 is the identity operator).
By the problem of optimal recovery of the kth (0 ≤ k ≤ n− 1) derivative of a function of class W

in the metric of L2(R) from the above information we mean the problem of finding the quantity

E(Dk,W, IδA) = inf
ϕ : ̂L2(A)→L2(R)

e(Dk,W, IδA, ϕ),

which is called the error of optimal recovery, and methods ϕ̂ for which the lower bound is attained,
i.e., for which

E(Dk,W, IδA) = e(Dk,W, IδA, ϕ̂).

Below these methods are called optimal recovery methods.
For short, we will refer to the problem formulated as the (Dk,W, IδA)-problem.
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Along with optimal recovery methods, we will study exact methods. A method ϕ : L̂2(A)→L2(R)
is said to be exact on a set L ⊂ Wn

2 (R) if x(k)(·) = ϕ(IAx(·))(·) for all x(·) ∈ L. The following
proposition shows that the optimality and exactness of a method are not independent concepts.

Proposition 1. If ϕ̂ is an optimal linear method in the (Dk,W, IδA)-problem that is exact on
a set L ⊂ Wn

2 (R) containing zero, then it is also optimal in the (Dk,W + L, IδA)-problem and, in
addition, E(Dk,W, IδA) = E(Dk,W + L, IδA).

If ϕ̂ is a linear method with finite error in the (Dk,W + L, IδA)-problem, where L is a subspace
in Wn

2 (R), then it is exact on L.
Proof. Let x(·) ∈ W + L and x(·) = x1(·) + x2(·), where x1(·) ∈ W and x2(·) ∈ L, and let

y(·) ∈ L2(A) be such that ‖IAx(·) − y(·)‖L2(A) ≤ δ. Set y1(·) = y(·) − IAx2(·). It is clear that
y1(·) ∈ L2(A), and

‖IAx1(·)− y1(·)‖L2(A) ≤ δ (2.1)

since IAx1(·)− y1(·) = IAx(·)− y(·). The linearity and exactness of ϕ̂ on L imply the equality∥∥x(k)(·) − ϕ̂(y(·))(·)
∥∥
L2(R)

=
∥∥x(k)1 (·)− ϕ̂(y1(·))(·)

∥∥
L2(R)

. (2.2)

In view of (2.1), the expression on the right-hand side of (2.2) is not greater than e(Dk,W, IδA, ϕ̂),
which is equal to E(Dk,W, IδA) because the method ϕ̂ is optimal. Therefore, taking the supremum
over all x(·) and y(·) on the left-hand side of (2.2), we obtain

e(Dk,W + L, IδA, ϕ̂) ≤ E(Dk,W, IδA).

Hence we have (because W ⊂ W + L)

E(Dk,W, IδA) ≤ E(Dk,W + L, IδA) ≤ e(Dk,W + L, IδA, ϕ̂) ≤ E(Dk,W, IδA).

Consequently, ϕ̂ is an optimal method in the (Dk,W + L, Iδσ)-problem, and we have the equality
E(Dk,W, IδA) = E(Dk,W + L, IδA).

Now, let ϕ̂ be a linear method with finite error in the (Dk,W + L, IδA)-problem, where L is a
subspace of Wn

2 (R). Suppose that there exists an element x0(·) ∈ L such that∥∥x(k)0 (·)− ϕ̂(IAx0(·))(·)
∥∥
L2(R)

= c > 0.

Then λx0(·) ∈ L for any λ > 0. Hence,

e(Dk,W + L, IδA, ϕ̂) ≥ λc,

which contradicts the fact that the error of the method ϕ̂ is finite. �
It follows from this proposition that if one seeks methods with simple structure (for example,

linear) that are exact on some subspaces and, in addition, possess some optimality properties, then
it is quite natural to set up the problem of finding optimal methods on classes of the form W + L.

We implement this in the case when W is a Sobolev class of functions, i.e.,

W n
2 (R) =

{
x(·) ∈ Wn

2 (R) : ‖x(n)(·)‖L2(R) ≤ 1
}
,

and L = Bσ,2(R) is the space of entire functions of exponential type σ.
Recall that if σ > 0, then Bσ,2(R) is the subspace in L2(R) formed by the restrictions of entire

functions of exponential type σ to R. As is well known, x(·) ∈ Bσ,2(R) if and only if the support of
Fx(·) belongs to the interval Δσ = [−σ, σ]. By definition, B0,2(R) = {0}.

If x(·) ∈ Bσ,2(R), then x(m)(·) ∈ Bσ,2(R) for all m ∈ N (by Bernstein’s inequality for entire
functions of exponential type); therefore, in particular, Bσ,2(R) ⊂ Wn

2 (R).
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Prior to formulating a theorem, we introduce some notations. For a measurable set A on the
real line, let

γA = sup
{
a ≥ 0: mes(A ∩ [−a, a]) = 2a

}
.

Let 1 ≤ k ≤ n− 1 and δ > 0. Introduce the notations

γ̂ =
(n
k

)1/(2(n−k))
δ−1/n, σ̂ =

(
n− k

n

)1/(2k)

δ−1/n

and consider the following four domains in the plane R
2:

Σ1 =

{
(x, y) ∈ R

2 : 0 <
σ̂

γ̂
x ≤ y ≤ x

}
, Σ2 =

{
(x, y) ∈ R

2 : 0 ≤ y ≤ σ̂

γ̂
x, 0 < x ≤ γ̂

}
,

Σ3 =
{
(x, y) ∈ R

2 : x ≥ γ̂, 0 ≤ y ≤ σ̂
}
, Σ4 =

{
(x, y) ∈ R

2 : σ̂ ≤ y ≤ σ̂

γ̂
x

}
.

These domains are shown in Fig. 1.
Next, for every set A and number σ ≥ 0, we define a pair of numbers λ1 = λ1(A, σ) and

λ2 = λ2(A, σ) by the rule

(λ1, λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
σ2k, γ

−2(n−k)
A

)
, (γA, σ) ∈ Σ1,((

σ̂

γ̂
γA

)2k

, γ
−2(n−k)
A

)
, (γA, σ) ∈ Σ2,

(
σ̂ 2k, γ̂ −2(n−k)

)
, (γA, σ) ∈ Σ3,(

σ2k,

(
γ̂

σ̂
σ

)−2(n−k))
, (γA, σ) ∈ Σ4,

(2.3)

as well as a set Ξ(A, σ) of measurable functions θ(·) on A \ Δσ such that |θ(ξ)| ≤ 1 for a.e.
ξ ∈ A \Δσ.

Theorem 1. Let 0 ≤ k ≤ n − 1, A be a measurable subset of R, δ ≥ 0, and σ ≥ 0. In
this case,

(1) if σ > γA or σ = γA = 0, then

E
(
Dk,W n

2 (R) + Bσ,2(R), I
δ
A

)
= +∞; (2.4)
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(2) if k ≥ 1, δ > 0, γA > 0, and σ ≤ γA, then

E
(
Dk,W n

2 (R) + Bσ,2(R), I
δ
A

)
=

√
λ1δ2 + λ2

and, for every function θ(·) ∈ Ξ(A, σ), the method

ϕ̂θ(y(·))(t) =
1

2π

σ∫
−σ

(iξ)ky(ξ)eiξt dt+
1

2π

∫
A\Δσ

(iξ)kaθ(ξ)y(ξ)e
iξt dt, (2.5)

where

aθ(ξ) =
λ1 + θ(ξ)|ξ|n−k

√
λ1λ2

√
λ1 + λ2ξ2n − ξ2k

λ1 + λ2ξ2n
, (2.6)

is optimal ;
(3) if k ≥ 1, δ = 0, γA > 0, and σ ≤ γA, then

E
(
Dk,W n

2 (R) + Bσ,2(R), I
0
A

)
= γ

−(n−k)
A

and, for every function θ(·) ∈ Ξ(A, σ), the method

ϕ̂θ(y(·))(t) =
1

2π

σ∫
−σ

(iξ)kFx(ξ)eiξt dt+
1

2π

∫
A\Δσ

(iξ)k
(
1 + θ(ξ)

∣∣∣∣ ξ

γA

∣∣∣∣n−k)
Fx(ξ)eiξt dt

is optimal ;
(4) if k = 0, γA > 0, and σ ≤ γA, then

E
(
D0,W n

2 (R) + Bσ,2(R), I
δ
A

)
=

√
δ2 + γ−2n

A

and, for every function θ(·) ∈ Ξ(A, σ), the method

ϕ̂θ(y(·))(t) =
1

2π

σ∫
−σ

y(ξ)eiξt dt+
1

2π

∫
A\Δσ

γ2nA + θ(ξ)ξ2n

γ2nA + ξ2n
y(ξ)eiξt dt

is optimal.

Before proving this theorem, we make a number of remarks.
The set A on which information on the approximate Fourier transform is defined may be “large

enough,” and among the optimal methods (2.5) there may be those that do not employ all the
available information. Naturally, the question arises as to whether there are optimal methods that
use less information. More precisely, how much can one reduce the set A without increasing the
error of optimal recovery? In terms of the function aθ(·) (which we consider as a smoothing factor),
this means that we are interested in the sets where one can set aθ(·) = 0.

We also wonder whether it is possible to take the smoothing factor equal to one on a wider
set [−σ0, σ0], where σ0 ≥ σ. In this case, the corresponding optimal method will be exact on
the wider space Bσ0,2(R) and, hence, in view of Proposition 1, will be optimal on the wider class
W n

2 (R) + Bσ0,2(R).
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In the following corollary to Theorem 1, we set

(σ0, γ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σ, γA), (γA, σ) ∈ Σ1,(
σ̂

γ̂
γA, γA

)
, (γA, σ) ∈ Σ2,

(σ̂, γ̂), (γA, σ) ∈ Σ3,(
σ,

γ̂

σ̂
σ

)
, (γA, σ) ∈ Σ4.

Corollary 1. Let 0 ≤ k ≤ n − 1, A be a measurable subset of R, δ ≥ 0, γA > 0, and
0 ≤ σ ≤ γA. In this case,

(1) if k ≥ 1 and δ > 0, then, for all θ(·) ∈ Ξ(A, σ0), the methods

ϕ̂θ(y(·))(t) =
1

2π

∫
|ξ|≤σ0

(iξ)ky(ξ)eiξt dt+
1

2π

∫
σ0≤|ξ|≤γ0

(iξ)kaθ(ξ)y(ξ)e
iξt dt

with the functions aθ(·) defined in (2.6) are optimal in the (Dk,W n
2 (R) + Bσ,2(R), I

δ
A)-

problem and exact on the subspace Bσ0,2(R);

(2) if k = 0 or δ = 0, then the method

ϕ̂(y(·))(t) = 1

2π

∫
|ξ|≤γA

(iξ)ky(ξ)eiξt dt

is optimal in the (Dk,W n
2 (R) + Bσ,2(R), I

δ
A)-problem and exact on the subspace BγA,2(R).

In case (1), the transition from the point (σ, γA) to the point (σ0, γ0) for each of the domains Σj ,
j = 1, 2, 3, 4, is schematically illustrated in Fig. 2.

Let us indicate the form of the optimal methods in the original (Dk,W n
2 (R), I

δ
A)-problem that

are exact on the subspaces Bσ,2(R).
Corollary 2. Let 0 ≤ k ≤ n − 1, A be a measurable subset of R, δ ≥ 0, and γA > 0. In

this case,
(1) if k ≥ 1 and δ > 0, then, for all θ(·) ∈ Ξ(A, σ0), the methods

ϕ̂θ(y(·))(t) =
1

2π

∫
|ξ|≤σ̃

(iξ)ky(ξ)eiξt dt+
1

2π

∫
σ̃≤|ξ|≤γ̃

(iξ)kaθ(ξ)y(ξ)e
iξt dt,
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where γ̃ = min{γA, γ̂}, σ̃ = (σ̂/γ̂)γ̃, and the functions aθ(·) are defined in (2.6), are optimal
in the (Dk,W n

2 (R), I
δ
A)-problem and exact on the subspace Bσ̃,2(R);

(2) if k = 0 or δ = 0, then the method

ϕ̂(y(·))(t) = 1

2π

∫
|ξ|≤γA

(iξ)ky(ξ)eiξt dt

is optimal in the (Dk,W n
2 (R), I

δ
A)-problem and exact on the subspace BγA,2(R).

3. PROOFS

Proof of Theorem 1. We begin with a lower estimate for E(Dk,W n
2 (R) + Bσ,2(R), I

δ
A). Con-

sider the problem∥∥x(k)(·)∥∥
L2(R)

→ max, ‖Fx(·)‖
̂L2(A) ≤ δ,

∥∥Fx(n)(·)
∥∥

̂L2(R\Δσ)
≤ 1, x(·) ∈ Wn

2 (R), (3.1)

where Δσ = [−σ, σ]. Let us show that the value of this problem, i.e., the supremum of the functional
to be maximized under the indicated constraints, is not greater than E(Dk,W n

2 (R) + Bσ,2(R), I
δ
A).

As a preliminary step, we show that x(·) ∈ Wn
2 (R) belongs to W n

2 (R) + Bσ,2(R) if and only
if ‖Fx(n)(·)‖

̂L2(R\Δσ)
≤ 1. Indeed, if x(·) ∈ W n

2 (R) + Bσ,2(R), then x(·) = x1(·) + x2(·), where
x1(·) ∈ W n

2 (R) and x2(·) ∈ Bσ,2(R). By the Plancherel theorem (since Fx2(·) is concentrated on
the interval Δσ), we have∥∥Fx(n)(·)

∥∥2
̂L2(R\Δσ)

=
∥∥Fx

(n)
1 (·)

∥∥2
̂L2(R\Δσ)

=
1

2π

∫
R\Δσ

ξ2n|Fx1(ξ)|2 dξ ≤ 1

2π

∫
R

ξ2n|Fx1(ξ)|2 dξ

=
∥∥x(n)1 (·)

∥∥2
L2(R)

≤ 1.

Conversely, let x(·) ∈ Wn
2 (R) and ‖Fx(n)(·)‖

̂L2(R\Δσ)
≤ 1. Denote by x2(·) the function in L2(R)

with the Fourier transform Fx2(·) = χσ(·)Fx(·), where χσ(·) is the characteristic function of the in-
terval Δσ. Then clearly x2(·) ∈ Bσ,2(R). Set x1(·) = x(·)− x2(·). It is obvious that x1(·) ∈ Wn

2 (R),
and by the Plancherel theorem (since Fx1(·) = 0 on Δσ) we have∥∥x(n)1 (·)

∥∥2
L2(R)

=
1

2π

∫
R\Δσ

ξ2n|Fx1(ξ)|2 dξ =
1

2π

∫
R\Δσ

ξ2n|Fx(ξ)|2 dξ =
∥∥Fx(n)(·)

∥∥2
̂L2(R\Δσ)

≤ 1;

i.e., x(·) = x1(·) + x2(·) ∈ W n
2 (R) + Bσ,2(R).

Taking into account the remark made, we now prove that E(Dk,W n
2 (R) + Bσ,2(R), I

δ
A) is not

less than the value of problem (3.1). Let x0(·) be an admissible function in (3.1) (i.e., x0(·) satisfies
the constraints of the problem); then it is obvious that the function −x0(·) is also admissible and
for any ϕ : L2(A) → L2(R) (ϕ(0)(·) is the value of the mapping ϕ on the zero function) we have

2‖x(k)0 (·)‖L2(R) ≤
∥∥x(k)0 (·) − ϕ(0)(·)

∥∥
L2(R)

+
∥∥−x

(k)
0 (·)− ϕ(0)(·)

∥∥
L2(R)

≤ 2 sup
x(·)∈Wn

2 (R)

‖Fx(·)‖
̂L2(A)

≤δ, ‖Fx(n)(·)‖
̂L2(R\Δσ)

≤1

∥∥x(k)(·)− ϕ(0)(·)
∥∥
L2(R)

= 2 sup
x(·)∈Wn

2 (R)+Bσ,2(R)
‖Fx(·)‖

̂L2(A)
≤δ

∥∥x(k)(·)− ϕ(0)(·)
∥∥
L2(R)

≤ 2 sup
x(·)∈Wn

2 (R)+Bσ,2(R), y(·)∈IδAx(·)

∥∥x(k)(·)− ϕ(y(·))(·)
∥∥
L2(R)

.
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Taking the supremum over all admissible functions in (3.1) on the left and to the infimum over all
methods ϕ on the right, we obtain what was required.

Now, we proceed directly to the proof of the assertions of the theorem.

1. In case (1), let, first, σ > γA. By the definition of γA, in the set [−σ,−γA] ∪ [γA, σ] there
exists a subset D of positive measure such that D ∩A = ∅. Let c > 0 and a function xc(·) be such
that Fxc(·) = c on D and Fxc(·) = 0 outside D. It is clear that xc(·) is admissible in problem (3.1)
and (by the Plancherel theorem)

∥∥x(k)c (·)
∥∥2
L2(R)

=
c2

2π

∫
D

ξ2k dξ.

The number c can be arbitrarily large; therefore, equality (2.4) is proved.
Suppose that σ = γA = 0. In this case, mes(A ∩ [−ε, ε]) < 2ε for any ε > 0. Hence, the measure

of the set Ωε = {(R \ A) ∩ [−ε, ε]} is positive. Consider a function xε(·) such that

Fxε(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ ∫

Ωε

ξ2n dξ

⎞
⎠−1/2

, ξ ∈ Ωε,

0, ξ /∈ Ωε.

This function is admissible in problem (3.1), and

∥∥x(k)ε (·)
∥∥2
L2(R)

=

∫
Ωε

ξ2k dξ∫
Ωε

ξ2n dξ
=

∫
Ωε

ξ2nξ−2(n−k) dξ∫
Ωε

ξ2n dξ
≥ ε−2(n−k),

which implies (since ε is arbitrary) that the value of the functional to be maximized in (3.1) can be
made arbitrarily large.

2. In case (2), we first show that the following estimate is valid in each of the domains Σj ,
j = 1, 2, 3, 4:

E
(
Dk,W n

2 (R) + Bσ,2(R), I
δ
A

)
≥

√
λ1δ2 + λ2. (3.2)

Let (γA, σ) ∈ Σ1. By the definition of γA, for every positive integer m, there exists a subset Dm

of positive measure in the set [−γ(A)− 1/m,−γ(A)] ∪ [γ(A), γ(A) + 1/m] such that A ∩Dm = ∅.
Let m be such that 1/m < σ. For every such m, consider a function xm(·) such that

Fxm(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
√
2πm, σ − 1

m
≤ ξ < σ,

√
2π

(
γA +

1

m

)−n

(mesDm)−1/2, ξ ∈ Dm,

0 otherwise.

The functions xm(·) are admissible in problem (3.1). Indeed, applying the Plancherel theorem and
the definition of xm(·), we have

‖Fxm(·)‖2
̂L2(A)

=
1

2π

∫
A

|Fxm(ξ)|2 dξ =
1

2π
δ22πm

1

m
= δ2 (3.3)
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and

∥∥Fx(n)m (·)
∥∥2

̂L2(R\Δσ)
=

1

2π

∫
|ξ|≥σ

ξ2n|Fxm(ξ)|2 dξ =
1

2π
2π

(
γA +

1

m

)−2n

(mesDm)−1

∫
Dm

ξ2n dξ

≤
(
γA +

1

m

)−2n

(mesDm)−1

(
γA +

1

m

)2n

mesDm = 1.

Next,

∥∥Fx(k)m (·)
∥∥2 = 1

2π

∫
R

ξ2k|Fxm(ξ)|2 dξ = δ2m

σ∫
σ−1/m

ξ2k dξ +

(
γA +

1

m

)−2n

(mesDm)−1

∫
Dm

ξ2k dξ

≥ δ2m

(
σ − 1

m

)2k 1

m
+

(
γA +

1

m

)−2n

(mesDm)−1γ2kA mesDm

= δ2
(
σ − 1

m

)2k

+

(
γA +

1

m

)−2n

γ2kA .

As m → ∞, the expression on the right-hand side tends to σ2kδ2 + γ
−2(n−k)
A = λ1δ

2 + λ2, which
is obviously not greater than the value of problem (3.1). However, by what has been proved, this
value is not greater than E(Dk,W n

2 (R) + Bσ,2(R), I
δ
A); hence inequality (3.2) is proved in this case.

Let (γA, σ) ∈ Σ2. Set

ξ0 =

(
k

n

)1/(2(n−k))

γA.

Notice that

σ ≤ σ̂

γ̂
γA =

(
n− k

n

)1/(2k)

ξ0 < ξ0, ξ2n0 ≤
(
k

n

)n/(n−k)

γ̂ 2n = δ−2.

Let m be such that σ < ξ0 − 1/m. For every such m, consider a function xm(·) such that

Fxm(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ
√
2πm, ξ0 −

1

m
≤ ξ < ξ0,√

2π(1− δ2ξ2n0 )

(γA + 1/m)n
√
mesDm

, ξ ∈ Dm,

0 otherwise.

Equalities (3.3) remain valid. In addition,

∥∥Fx(n)m (·)
∥∥2

̂L2(R\Δσ)
=

1

2π

∫
|ξ|≥σ

ξ2n|Fxm(ξ)|2 dξ

= δ2m

ξ0∫
ξ0−1/m

ξ2n dξ +
(
1− δ2ξ2n0

)(
γA +

1

m

)−2n

(mesDm)−1

∫
Dm

ξ2n dξ

≤ δ2ξ2n0 +
(
1− δ2ξ2n0

)(
γA +

1

m

)−2n

(mesDm)−1

(
γA +

1

m

)2n

mesDm = 1.

Thus, the functions xm(·) are admissible in problem (3.1).
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Next, we have

∥∥Fx(k)m (·)
∥∥2 = 1

2π

∫
R

ξ2k|Fxm(ξ)|2 dξ

= δ2m

ξ0∫
ξ0−1/m

ξ2k dξ +
(
1− δ2ξ2n0

)(
γA +

1

m

)−2n

(mesDm)−1

∫
Dm

ξ2k dξ

≥ δ2
(
ξ0 −

1

m

)2k

+
(
1− δ2ξ2n0

)(
γA +

1

m

)−2n

γ2kA .

As m → ∞, the expression on the right-hand side tends to

δ2ξ2k0 +
(
1− δ2ξ2n0

)
γ
−2(n−k)
A = λ1δ

2 + λ2.

Hence, for the same reasons as above, inequality (3.2) is also valid in this case.
Let (γA, σ) ∈ Σ3. Set

ξ1 = δ−1/n.

In this case,

γA ≥ γ̂ > ξ1, σ ≤ σ̂ < ξ1.

Let m be such that σ < ξ1 − 1/m. For every such m, consider a function xm(·) such that

Fxm(ξ) =

⎧⎨
⎩ δ

√
2πm, ξ1 −

1

m
≤ ξ < ξ1,

0 otherwise.

One can easily verify that the functions xm(·) are admissible in problem (3.1). Next,

∥∥Fx(k)m (·)
∥∥2 = 1

2π

∫
R

ξ2k|Fxm(ξ)|2 dξ = δ2m

ξ1∫
ξ1−1/m

ξ2k dξ ≥ δ2
(
ξ1 −

1

m

)2k

.

The expression on the right-hand side tends to δ2ξ2k1 = λ1δ
2 + λ2 as m → ∞. Hence, inequality (3.2)

is satisfied in this case as well.
Finally, let (γA, σ) ∈ Σ4. Set

ξ2 =

(
n− k

n

)−1/(2k)

σ.

It is obvious that ξ2 > σ. On the other hand,

ξ2 ≤
(
n− k

n

)−1/(2k) σ̂

γ̂
γA =

(
k

n

)1/(2(n−k))

γA < γA.

Note also that

ξ−2n
2 ≤

(
n− k

n

)n/k

σ̂−2n = δ2.
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Let m be such that 1/m < σ < ξ2 − 1/m. For every such m, consider a function xm(·) such that

Fxm(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2πm

(
δ2 − ξ−2n

2

)
, σ − 1

m
≤ ξ < σ,

ξ−n
2

√
2πm, ξ2 −

1

m
≤ ξ ≤ ξ2,

0 otherwise.
Then

‖Fxm(·)‖2
̂L2(A)

=
1

2π

∫
A

|Fxm(ξ)|2 dξ = δ2 − ξ−2n
2 + ξ−2n

2 = δ2

and

∥∥Fx(n)m (·)
∥∥2

̂L2(R\Δσ)
=

1

2π

∫
|ξ|≥σ

ξ2n|Fxm(ξ)|2 dξ = ξ−2n
2 m

ξ2∫
ξ2−1/m

ξ2n dξ ≤ 1.

Thus, the functions xm(·) are admissible in problem (3.1). In addition,

∥∥Fx(k)m (·)
∥∥2 = 1

2π

∫
R

ξ2k|Fxm(ξ)|2 dξ = m
(
δ2 − ξ−2n

2

) σ∫
σ−1/m

ξ2k dξ + ξ−2n
2 m

ξ2∫
ξ2−1/m

ξ2k dξ

≥
(
δ2 − ξ−2n

2

)(
σ − 1

m

)2k

+ ξ−2n
2

(
ξ2 −

1

m

)2k

.

The expression on the right-hand side tends to(
δ2 − ξ−2n

2

)
σ2k + ξ

−2(n−k)
2 = λ1δ

2 + λ2

as m → ∞. Hence, inequality (3.2) is satisfied in this case as well.
Let us proceed to estimating E(Dk,W n

2 (R) + Bσ,2(R), I
δ
A) from above and to constructing opti-

mal recovery methods. We will seek such methods among the mappings ϕ̂a : L̂2(A) → L2(R) that
are represented in terms of Fourier transforms as

Fϕ̂a(y(·))(ξ) = (iξ)ka(ξ)y(ξ), ξ ∈ R,

where the function a(·) ∈ L∞(R) is such that Fϕ̂a(y(·))(·) ∈ L2(R).
Let us estimate the error of such a method, which is by definition (see also the remark at the

beginning of the proof) equal to the value of the following problem:∥∥x(k)(·)− ϕ̂a(y(·))(·)
∥∥
L2(R)

→ max,

‖Fx(·)− y(·)‖
̂L2(A) ≤ δ, y(·) ∈ L̂2(A),

∥∥Fx(n)(·)
∥∥

̂L2(R\Δσ)
≤ 1, x(·) ∈ Wn

2 (R).
(3.4)

Passing to the Fourier images in the functional to be maximized, by the Plancherel theorem we find
that the squared value of problem (3.4) is equal to the value of the following problem:

1

2π

∫
A

∣∣(iξ)kFx(ξ)− (iξ)ka(ξ)y(ξ)
∣∣2 dξ + 1

2π

∫
R\A

ξ2k|Fx(ξ)|2 dξ → max,

1

2π

∫
A

|Fx(ξ)− y(ξ)|2 dξ ≤ δ2, y(·) ∈ L̂2(A),
1

2π

∫
|ξ|≥σ

ξ2n|Fx(ξ)|2 dξ ≤ 1.

(3.5)
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Notice that on the admissible pairs (x(·), y(·)) in this problem, where x(·) ∈ Bσ,2(R) and
y(·) = Fx(·), the functional has the form

1

2π

∫
Δσ

ξ2k|Fx(ξ)|2|1− a(ξ)| dξ.

Therefore, if the function a(·) is not equal to one almost everywhere on Δσ, then the value of
problem (3.5) (and, hence, the value of problem (3.4)) is equal to infinity, because Bσ,2(R) is a linear
space; i.e., the error of the method with such a(·) is infinite, and this case is of no interest to us.

Let a(·) ≡ 1 on A ∩Δσ. We estimate the functional maximized in (3.5) from above by repre-
senting it as a sum of three terms,

I1 =
1

2π

∫
A∩Δσ

∣∣(iξ)kFx(ξ)− (iξ)ky(ξ)
∣∣2 dξ, I2 =

1

2π

∫
A\Δσ

∣∣(iξ)kFx(ξ)− (iξ)ka(ξ)y(ξ)
∣∣2 dξ,

I3 =
1

2π

∫
R\A

ξ2k|Fx(ξ)|2 dξ.

Let us show that

I1 ≤
λ1

2π

∫
A∩Δσ

|Fx(ξ)− y(ξ)|2 dξ (3.6)

in all the domains Σi, i = 1, 2, 3, 4.
Indeed, the inequality

I1 ≤
σ2k

2π

∫
A∩Δσ

|Fx(ξ)− y(ξ)|2 dξ

is obvious. Since σ2k = λ1 in Σ1 and Σ4, inequality (3.6) holds for these domains. If (γA, σ) ∈ Σ2,
then

λ1 =

(
σ̂

γ̂
γA

)2k

≥ σ2k,

and if (γA, σ) ∈ Σ3, then
λ1 = σ̂ 2k ≥ σ2k,

so estimate (3.6) is valid for all the domains.
Now, let us estimate I2. Applying the Cauchy–Bunyakovsky–Schwarz inequality, we have∣∣(iξ)kFx(ξ)− (iξ)ka(ξ)y(ξ)

∣∣2 = ξ2k
∣∣(1− a(ξ))Fx(ξ) + a(ξ)(Fx(ξ) − y(ξ))

∣∣2
≤ ξ2k

(
|1− a(ξ)|2

λ2ξ2n
+

|a(ξ)|2
λ1

)(
λ2ξ

2n|Fx(ξ)|2 + λ1|Fx(ξ)− y(ξ)|2
)
. (3.7)

Set

Sa = ess sup
ξ∈A\Δσ

ξ2k
(
|1− a(ξ)|2

λ2ξ2n
+

|a(ξ)|2
λ1

)
. (3.8)

Then, integrating (3.7), we obtain the following estimate for I2:

I2 ≤ Sa

⎛
⎝ 1

2π

∫
A\Δσ

(
λ2ξ

2n|Fx(ξ)|2 + λ1|Fx(ξ)− y(ξ)|2
)
dξ

⎞
⎠ . (3.9)
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Now, let us show that I3 can be estimated in all the domains Σi, i = 1, 2, 3, 4, as

I3 ≤
λ2

2π

∫
R\A

ξ2n|Fx(ξ)|2 dξ. (3.10)

Indeed, since |ξ| > γA for a.e. ξ ∈ R \ A (by the definition of γA), it follows that

I3 =
1

2π

∫
R\A

ξ−2(n−k)ξ2n|Fx(ξ)|2 dξ ≤ γ
−2(n−k)
A

2π

∫
R\A

ξ2n|Fx(ξ)|2 dξ. (3.11)

Since γ
−2(n−k)
A = λ2 in Σ1 and Σ2, inequality (3.10) holds in these domains. If (γA, σ) ∈ Σ3, then

λ2 = γ̂ −2(n−k) ≥ γ
−2(n−k)
A ,

and if (γA, σ) ∈ Σ4, then σ ≤ σ̂ γ̂ −1γA; therefore,

λ2 =

(
γ̂

σ̂
σ

)−2(n−k)

≥ γ
−2(n−k)
A .

Thus, estimate (3.10) is valid in all the domains.
If we assume that the function a(·) is such that Sa ≤ 1, then, summing inequalities (3.6), (3.9),

and (3.10), we obtain the following estimate for the functional in problem (3.5):

λ1
1

2π

∫
A

|Fx(ξ)− y(ξ)|2 dξ + λ2
1

2π

∫
A\Δσ

ξ2n|Fx(ξ)|2 dξ + λ2
1

2π

∫
R\A

ξ2n|Fx(ξ)|2 dξ

= λ1
1

2π

∫
A

|Fx(ξ)− y(ξ)|2 dξ + λ2
1

2π

∫
|ξ|≥σ

ξ2n|Fx(ξ)|2 dξ ≤ λ1δ
2 + λ2,

which means that
e
(
Dk,W n

2 (R) + Bσ,2(R), I
δ
A, ϕ̂a

)
≤

√
λ1δ2 + λ2.

Comparing this with (3.2), we see that ϕ̂a is an optimal method in the (Dk,W n
2 (R)+Bσ,2(R), I

δ
A)-

problem.
Now, we show that functions a(·) for which Sa ≤ 1 do exist. First (completing the square),

notice that the condition Sa ≤ 1 is equivalent to the fact that the inequality∣∣∣∣a(ξ)− λ1

λ1 + λ2ξ2n

∣∣∣∣2 ≤ ξ2(n−k)λ1λ2(λ1 + λ2ξ
2n − ξ2k)

λ1 + λ2ξ2n

holds for a.e. ξ ∈ A \Δσ. If the function ξ 
→ f(ξ) = λ1 + λ2ξ
2n − ξ2k is nonnegative on A \Δσ,

then such a(·) obviously exist and are described by equality (2.6). Let us check that f(·) is nonneg-
ative on A \Δσ.

One can easily verify that the minimum value of this function on the whole real axis is

C = λ1 −
n− k

n

(
k

nλ2

)k/(n−k)

.

Let us show that C ≥ 0 in each of the domains Σj, j = 1, 2, 3, 4.
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Let (γA, σ) ∈ Σ1. Then

σ2k ≥ σ̂ 2k

γ̂ 2k
γ2kA .

By the definition of λ1 and λ2, this inequality can be rewritten in Σ1 as

λ1 ≥
n− k

n

(
k

n

)k/(n−k)

λ
−k/(n−k)
2 ,

which implies that C ≥ 0. We can easily verify by direct substitution that C = 0 for the domains Σj ,
j = 2, 3, 4.

3. In case (3), by analogy with the proof of case (2) for the domain Σ1, we obtain the lower
bound

E
(
Dk,W n

2 (R) + Bσ,2(R), I
0
A

)
≥ γ

−(n−k)
A .

For the upper bound, applying the same arguments as in the proof of the upper bound in case (2),
we arrive at the following problem:

1

2π

∫
A

∣∣(iξ)kFx(ξ)− (iξ)ka(ξ)Fx(ξ)
∣∣2 dξ + 1

2π

∫
R\A

ξ2k|Fx(ξ)|2 dξ → max,

1

2π

∫
|ξ|≥σ

ξ2n|Fx(ξ)|2 dξ ≤ 1.

(3.12)

Since a(·) ≡ 1 on A ∩Δσ (otherwise, as has been shown, the error of the method is equal to infinity),
the functional to be maximized in (3.12) is represented as a sum of two terms,

J1 =
1

2π

∫
A\Δσ

ξ2k|Fx(ξ)|2|1− a(ξ)|2 dξ, I3 =
1

2π

∫
R\A

ξ2k|Fx(ξ)|2 dξ.

We have

J1 ≤ ess sup
ξ∈A\Δσ

(
γ
2(n−k)
A

ξ2(n−k)
|1− a(ξ)|2

)
γ
−2(n−k)
A

2π

∫
A\Δσ

ξ2n|Fx(ξ)|2 dξ.

For I3, estimate (3.11) holds. Therefore, if the inequality

γ
2(n−k)
A

ξ2(n−k)
|1− a(ξ)|2 ≤ 1 (3.13)

is satisfied for a.e. ξ ∈ A \Δσ, then the functional in (3.12) is estimated by

γ
−2(n−k)
A

2π

∫
|ξ|≥σ

ξ2n|Fx(ξ)|2 dξ ≤ γ
−2(n−k)
A .

It remains to notice that condition (3.13) is equivalent to

a(ξ) = 1 + θ(ξ)

∣∣∣∣ ξ

γA

∣∣∣∣n−k

.

4. In case (4), the proof repeats almost word for word the proof of case (2) for the domain Σ1

(here λ1 = 1 and λ2 = γ−2n
A ). �
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Proof of Corollary 1. Let us consider only case (1). The condition Sa ≤ 1 obtained in the
proof of Theorem 1 implies that the inequality

|1− a(ξ)|2
λ2ξ2n

+
|a(ξ)|2
λ1

≤ ξ−2k (3.14)

holds almost everywhere. This implies that for those ξ ∈ A \Δσ for which |ξ| ≥ λ0 = λ
−1/(2(n−k))
2 ,

we can set a(ξ) = 0.
It follows immediately from the same inequality (3.14) that on the set σ < |ξ| < σ0, where

σ0 = λ
1/(2k)
1 , we can take the smoothing factor a(·) equal to one. �

Corollary 2 follows from Corollary 1 for σ = 0.
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