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Optimal recovery of linear
operators in non-Euclidean metrics

K. Yu. Osipenko

Abstract. The paper is concerned with recovery problems of operators
from noisy information in non-Euclidean metrics. A number of general
theorems is put forward and applied to recovery problems of functions and
their derivatives from noisy Fourier transform. In some cases, a family
of optimal methods is found, from which the methods requiring the least
amount of original information are singled out.
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Introduction

Given a linear operator A acting from a linear space X into a normed linear
space Z, the general problem of optimal recovery of A on a set W C X from noisy
values of another linear operator I: X — Y, where Y is a normed linear space, may
be stated as the problem of finding, for a fixed § > 0, first, the quantity

EAW,L6)= inf s [JAz—m(y)llz, (0.1)
m:Y—Z zeW, yeY
Hz—ylly <8

known as the optimal recovery error, and second, a mapping (a method), called
an optimal recovery method, on which the infimum in (0.1) is attained. Here, §
describes the noise level in the original information.

In the simplest case, when A is a linear functional, Y is a finite-dimensional
space, and d = 0, this problem was posed by Smolyak [1]. In particular, he proved
that, for a convex centrally-symmetric set W, there is a linear method among the
optimal recovery methods. This result and the formulation of the problem itself
were published only in his Candidate Thesis and are not widely available. This
topic was brought to attention by Bakhvalov [2], who initiated further studies in
this direction. As a result, some optimal recovery methods for specific problems
were put forward and the original formulation of the problem was extended to the
complex case and to the case when the original information is given with noise (see
[31-15])-

Subsequently, much research has been devoted to extensions of the original
formulation of this problem (see [6]-[14], and the references given therein). The final
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(in a sense) result for linear functionals (namely, necessary and sufficient conditions
for the existence of an optimal linear method) was put forward in [8].
The case when a set W, on which the operator A is recovered, is also given by
some linear operator,
W = {(E e X: H.Tll'”yl < 51},

has also frequently engaged the attention. Here, I;: X — Y7 and Y7 is a normed
linear space. A general result on the existence of an optimal linear method in the
case when Y, Y, and Z are Hilbert spaces was obtained in the paper [14], which
also contains the first concrete results on the recovery of linear operators. This
topic was further developed in [15]-[17] on the basis of methods residing in general
principles of the theory of extreme values. However, all these works made crucial
use of the Euclidean structure of spaces under study.

The optimal recovery problem of linear operators is closely connected with
approximation of these operators by operators with bounded norms (S. B. Stechkin’s
problem). There is an intimate connection between the approximation errors in
these problems, as well as between the corresponding extremal operators—this often
helps one to simultaneously solve these problems (see [18], [19]). In turn, in some
particular cases both these problems result in sharp inequalities for derivatives—this
topics has received extensive treatment.

A number of exact solutions to Stechkin’s problem and sharp constants in in-
equalities for derivatives in the operator case (here a metric is not uniform, in which
the operator or the derivative is estimated, for otherwise the problem reduces to the
functional case) was also obtained for non-Euclidean metrics (exact solutions are
conveniently tabulated in [18]). Nevertheless, only few optimal recovery methods
of operators are known explicitly in the non-Euclidean case. One of such examples
is given in [6], Theorem 12 on p. 45 (later, we will consider this example in detail,
obtaining for it, as a corollary to our general results, a family of optimal methods).
Another example of construction of an optimal method in the non-Euclidean case
was proposed in [20].

The aim of this paper is to obtain a number of general results on recovery of
linear operators in the non-Euclidean case.

§ 1. The general formulation

Let T be a nonempty set, > be the o-algebra of subsets of T', and p be a nonneg-
ative o-additive measure on . We let L, (T, X, 1) (or L, (T, p), for brevity) denote
the space of all classes of Y-measurable functions with values in R or C, for which

P
||m(.)||Lp(T7#) = (/ |z (t)[P du> < o0, 1<p< o,
T

l2C) 2 () = vraisup [ (t)] < o0, p = oo
€

We set

W = {a() € LT, )+ ool < 0},
W= {a(-) € # < o )al)]

L, (T,p) < 1}a
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where 1 < p,r < 00, and () is some function on 7.

For an operator Az(-) = ¢(-)z(-), A: W — Ly(T,n), 1 < ¢ < oo, where 9(-)
is some function on 7', we consider the recovery problem of A on the class W from
the function z(-) € W , which is known with errors on some subset of T. More
precisely, we shall assume that, for each function z(-) € W, one knows the function
y(+) € Lp(To, ), To C T, such that [[x(-) —y(- )|z, (1. < 0,0 = 0. It is required
to recover Az(-) from the function y(-).

As recovery methods we consider all possible mappings m: L, (Ty, 1) — Ly(T, 11).
The error of a method m is defined as

e(p,q,r,m) = sup [Az(-) = m(y) ()l Ly (-
z(-)EW, y(-)ELy(To,m)
Nl () =y (I i) <O

The quantity

E(p,q,7) = inf e(p,q,m,m)

i
m: Ly(To,pu)—Lq(T,p)
is known as the optimal recovery error, and a method on which this infimum is
attained is called optimal.

It is easily checked that

E(p,q,7) > sup Az ()l 2y (1,m)- (1.1)
z(-)EW
le Ly 1o,y <O

Indeed, let z(-) € W, |lz(-)llz,(7o,u) < 0, and let m: Ly(To, ) — Ly(T, 1) be an
arbitrary recovery method. Since z(-) € W and —z(-) € W, we have

21 Az (), < NAz(-) = m(O0)( )z, zpw + |[=Az(-) = m(0)( )z, (7.0
< 2e(p, q,m,m).

It follows that, for any method m,

e(p7Q>r7m) 2 Sup HAx(')HLq(T,p)~
z(-)eEW
le( )L, (Tg,m) <O

Now the required inequality follows by taking the infimum on the left over all
methods.

The extremal problem emerging on the right of (1.1), known as the dual problem,
may be written as

Ity = s, o lirn <8 I Ollcr <1
For Ty =T C R™ and ¢ = 1 (the constraint ¢ = 1 is immaterial, because changing
y(t) = |x(t)|? reduces the case ¢ < p, ¢ < r to the one in question), problem (1.2)
was examined in [21] in connection with Stechkin’s problem.

The emphasis in the present paper is on the construction of optimal recovery
methods for an operator A. Under this approach, problem (1.2) is studied with
the help of the Lagrange function, which enables one in a number of cases (when
some two of p, ¢ and r coincide) to obtain explicit expressions both for the value of
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problem (1.2) and for an optimal recovery method in terms of Lagrange multipliers.
In §6 we consider the cases when these multipliers may be explicitly calculated.

In the present paper, the general scheme for constructing optimal recovery
methods is as follows. First we solve the dual problem (1.2) or estimate its value;
then a method or a family of methods is constructed whose the error is estimated
by the same quantity. As a result, in all cases to be considered below, the quantity
E(p,q,r) coincides with the value of problem (1.2); that is, inequality (1.1) becomes
an equality. Each time an optimal method on the set Ty is sought in the form
a()Y(-)y(-), where the function «(-) plays the role of some filter.

To start with, we give one straightforward result (resembling the sufficient condi-
tions in the Kuhn—Tucker theorem), which will be required in solving the extremal
problem (1.2).

Let f;: A — R, j =0,1,...,n, be functions defined on some set A. Consider
the extremal problem

fo(x) — max, fi(z) <0, j=1,...,n, ze€A, (1.3)

and write down its Lagrange function
ZL(x,\) = —fo(x +Z)\ iz A=A An).

Lemma 1. Assume that there exist )\ >0,j=1,...,n, and an element T € A,
admissible for problem (1.3), such that

(a)meigf(x,X):Z(x)\) X=00A),

b) DA fi(@) =

Then T is an extremal element for problem (1.3).

Proof. Indeed, for any element x € A, admissible for problem (1.3),

—fo(x) = L(x,)) = L(F ) = —fo(@).

§2. Thecaser = ¢
Assume that 1 <g<p< oo, 7=gq.

Theorem 1. Let 1 < g < p < o0 and § > 0. Assume that )\2 > 0 satisfies the
condition

14

(/T (W01 = Rale®) T du(t)>

—5(/ ) (01 — Ralp(t)]) 57 du(t)>; SURNCR)

(functions p(-) and ¥(-) are assumed to be such that the integrals in (2.1) exist)
and that |9 (t)|7 — A2lp(t)|? < 0 for almost all t ¢ Ty. Then

P~ o\
E(p,q,q) = (q /\15”+A2) ,
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where
P—ag

P

A= %5(1—11 (/To (Jo(@)]* - X2|gp(t)|q>i%q du(t))

Moreover, the method

5, et
(13500 ) vow, rem,

0, t ¢ Ty,

m(y)(t) = (2.2)

is optimal.

Proof. 1. Lower estimate. The extremal problem (1.2) (for numerical convenience,
we raise the quantity to be maximized in the gth power) is as follows:

/ [ ()x(t)|? du(t) — max,
g (2.3)

2O du(t) < &7, / ()2 (D)]? du(t) < 1.
To T

The Lagrange function for this problem reads as
Z(a() M) = [ Lltalt) M, de) duce),
T

where

—[Y(®)x]? + Mfx[P + Aslp(t)x[?, ¢ € To,

—[(®)x] + Aofeo(t)x], t ¢ To.

We take Z( - ) so as to minimize L(¢, z(t), A1, A2) for each ¢. It is easily checked that

q N . ]
(1) = (le(W(t) Aal(t)] )+) , teTy,
0, t ¢ Tp.

L(t7x7A17)\2) - {

As a result,

L(2(t), M, he) = L(B(1), M, A).
From the definition of Xl and Xg , we have
. [Z(t)[” du(t) = 67, /le(t)f(t)lqdu(f) =1 (2.4)

By Lemma 1, Z( - ) is a solution of problem (2.3). Hence, the value of this problem
is

/T () (8)]7 dp(t).
The equality R R
R + pMIED)P + ghal(BE(D)] =0,

easily follows from the definition of Z(-). Integrating this equality over the set T,
this gives

/ WORO1 du(t) = LRb? + .
T q
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Finally, from (1.1),

1

E(p,q,q) > (§X15P+X2>

2. Upper estimate. We set

el
<1 A2|¢<t>q)+’ teto

0, te T

a(t) =

To estimate the error of method (2.2) we need to find the value of the extremal
problem:

()| [x(t) — alt)y(t)| du(t) +/\ [ (8)(t)]? du(t) — max,
o o (2.5)

|[2(t) = y(O)F du(t) < 07, / ()2 ()| dp(t) < 1.
To T

Taking z(-) = z(-) — y(-), we rewrite problem (2.5) as follows:

/ 0(6)]7 [(1 = a(t))a(t) + a(t)=(t)]" du(t) + / (E) (D] dpu(t) — max,
To T\Ti (2.6)

0
. [2(0)[" du(t) < 67, /T o) [(B)]* dp(t) < 1.

Clearly, the value of this problem agrees with that of the problem
/T [$()|7((1 — a(t)v(t) + a(tyu(t))” du(t) — max,
| wwam <o [lewmimdn <1 (2.7

u(t),v(t) >0 for almost all ¢ e T.

The Lagrange function for this problem reads as

21 ()0 ) A Ao) :/Ll(t,u(t),v(t),)\l,)\g) du(t),

T
where
—lp@)|*((1 = at)v + a(t)u)"’
Ll(tauava)\la)\Q) = +)\lup+)\2|§0(t)|qvq7 te TOa
=977 + Aafp(t)[9v9, t ¢ To.

We set A\ = /):1, Ay = /):2. Hence, for a(t) > 0,
o, _
ov 4

Consequently, for «(t) > 0 and any fixed uw > 0, the minimum of the function

Li(t,u,v, A1, A2) for v € (0,+00) is attained for v = w. If now a(t) = 0, then

Xelo ()] (V971 = (1 — a(t)v + a(t)u)i™).
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Ly (¢, U,U,Xl,j\\g) > 0. So, we have for all u(t),v(t) >0
Zl (u( : )77)( : )7/):17X2) = / Ll (u( : )au( : )7/):17X2) d/u'(t)

To
:/ L(t,u(.>,X1,X2)dﬂ(t)>/ L(t,2(-), M1, ) du(t)
To To

= A(E(),2(), A1, M)
Taking into account (2.4) it follows that the functions @(-) = v(-) = Z(-) are
solutions of problem (2.7). Hence,

p/\ o~
U(p,q,q,m / [p(t)@(t)|? du(t) = 5&6” + X2 < EY(p, q,q).

It follows that the method m is optimal and the optimal recovery error is as claimed.

§3. Thecaseq = p
Assume that 1 <p<r<oo,gq=pand Ty =T.
Theorem 2. Let 1 < p <r < oo and § > 0. Assume that )\1 > 0 satisfies the

condition
([ 1et0
=5 [ 1o (wor 377 aun) >0 (31)

(functions ¢(-) and () will be assumed to be such that the integrals in (3.1)
exist). Then

wOP =277 du))

E(p7p77") = (/)\\15;0 + ;}:2) pa

Sa =L ( [ Jote)

Moreover, the method

where

m(y)(t) = a()y(t)y(t), (3.2)
where R
R SR
ott1=1-(1- ),
is optimal.

Proof. The proof is much like that of the previous theorem.
1. Lower estimate. Problem (1.2) (for numerical convenience, we raise the
quantity to be maximized in the pth power) is as follows:

/ [(&)x(t)|P du(t) — max,

/ (O du() < 67, / () du(t) < 1.
T T

(3.3)
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The Lagrange function for this problem reads as

f(x(~),)\1,)\2) :/L(t,x(t)7)\1,>\2) d,LL(t),

T

where

L(t, 2,00, h0) = = [ ()" + Mfz]” + Ao (t)2]"
We again choose Z( ) so as to minimize L(t,x(t), A1, A2) for each t. We have

oy (PUEOF =30\ 77
© ( rha|o(t)|" ) '

As a result,

g(l‘(t),/)zl,/):g) > g(/x\(t),xl,/):g).
By the definition of Xl and Xg,
/T Z(t)[" dp(t) = 6, /T () (8)]" dp(t) = 1. (3.4)

From Lemma 1 it follows that Z(-) is a solution of problem (3.3). Consequently,
the value of this problem is
| oo au.

=Pl ()F(®)| + PAZDIP + rdel(t)2(1)]" = 0,

follows easily from the definition of Z(-). Integrating this equality over the set T,
this gives

The equality

~ r o~
/ BOROP duft) = 28” + - R

Finally, from (1.1) we have

3 =

E(papa T) 2 (Xl(sp + ;3\\2)

2. Upper estimate. To estimate the error of method (3.2) one needs to find the
value of the following extremal problem:

/ W(O)IP |2(t) — a(t)y(®)|” du(t) — max,

(3.5)
/ o0~y du() <&, [ ool du(t) < 1.
T
Setting z(-) = x(-) —y(-), we rewrite problem (3.5) in the form
/ ()P (1 — a(t)a () + alt)=(1)]” du(t) — mas,
T (3.6)

/ ()P dpu(t) < 6, / () du(t) < 1.
T T
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Clearly, the value of this problem is the same as the value of the problem
/ [0 (1= a()v(t) + alt)u())” du(t) — max,
T
[waue <o [ e dut <1,
T T

u(t),v(t) >0 for almost all ¢ € T.

The Lagrange function for this problem is as follows:

fl (u( . ), U( . )7 )\1, )\2) = /T L1 (t7 u(t), Q)(t), )\17 )\2) d,u(t),
where
Ly(t,u,v, A1, 2) = —|1/J(t)|p((1 —at)v+ a(t)u)p + AuP 4+ Aa|p(t)| 0"

We set A\ = Xh Ay = /):2. Hence, for |¢(t)|P > Xh
0Ly

Fu = le (u’kl — ((1 —a(t)v+ a(t)u)pil).

As a result, for |1(£)|? > A and any fixed v > 0, the minimum of the function
Ll(u,v,j\\l,/)\\g) for u € (0,400) is attained for v = v. If now |[¥(¢)|P < A1, then
a(t) =1 and Ly (u,v) = 0. We set Ty = {t € T : [{)(t)|? > A1 }. Therefore, for all
ult), v(t) >0,

gl(u(')vv(')a:\\lv/):2) 2/ Ll(t7u('),u('),/):1,/)\\2)d/,é(t)

T

:/ L(t,u(-),Xl,Xz)du(t)>/ L(6,3(- ), s Ro) dia()
T

= A (F(-),3(-) A1, A).

Taking (3.4) into account we see that the functions @(-) = v(-) = Z( - ) are solution
of problem (3.7). Hence,

)

~ ~ ~ T~
& (p, p,r, 1) = / B du) = 28 + R < B (pop. ),
T

Thus, the method m is optimal and the optimal recovery error is as claimed.

§4. Thecaser = p
Assume that 1 < ¢ < p =71 < co. Let xo(-) be the characteristic function of the

setTO:
1, tely,
t =
Xo() {0’ t ¢ To.

Theorem 3. Let 1 < ¢ < p < 00 and § > 0. Assume that 3\\2 > 0 satisfies the
condition

p

B e PN A 1
L sr) o= for(—G ) du(t)io )
4.1
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(functions ¢(+) and ¥(-) are assumed to be such that the integrals in (4.1) exist).
Then R o
E(p7 Qap) = (Alép + >\1>\2)Ea

where
pP—a

e (] () )

Moreover, the method

P(t)

MY)(t) = $ 1+ Aelp(t)|r
0, t & To,

y(t), t e To,

s optimal.

Proof. 1. Lower bound. Problem (1.2) (as above, we are dealing with an equivalent
problem) is as follows:

/N¢ D1 dpa(t) — max,
(O du(t) < &, /Nw DIP du(t) < 1.

To
We set

P (1)) 7
T :)\1”" - .
) <xdﬂ+&WUW>

It is easily seen from the definition of Xl and }\\2 that
FOPdnt) =5, [ a0 au) =1,
To

Hence, Z(-) is an admissible function for problem (4.2). As a result, the value of
this problem is at most
| rwwaor aut)

[OFB| = M) x0(t) + Mdole(t)F(E)7,

is an easy consequence of the definition of Z(-). Integrating this equality over the
set T, this gives

The equality

/w) 1) dp(t) = A7 + A e
Finally, from (1.1) we have

E(p,q,p) = (M6” + M) 7.

2. Upper estimate. An optimal recovery method will be sought in the form

a(t)p)y(t), teT,

1mmm={0 Py
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To estimate the error of this method we need to find the value of the following

extremal problem:

|1 [0 - @) dutt) + /T o P07 i) — ma,

o) =P du®) < [ eleP du(t) < 1.
Using Hélder’s inequality,

(1= a(®)a () + a®)(@(t) — y(t)|" < h(#) Calp®a(®)P +|a(t) — y(B)) 7,

’ a
1—«t)P N\ P 1 1
h(t)—(wa(”ﬂa(t)w)p, =1
X o0 p

Hence, the value of problem (4.3) is estimated by

| st

To

where
(t)[9h(t), t € T,
HORE S G
A3 ()]
Qe + 12(0P) 7, te Ty,
g(t)— 4
A3 le()z(t)]4, teT\Tp.
Let .
O = Reor
Then
(1))

- > q
(xo(t) + Azl (t)[7)>
An application of Holder’s inequality to (4 5) gives the bound

([ 10 au ) ([ 1stor aute )

where 1/s + 1/s' = 1. Taking s = p/q, we have, for this bound,

([ ans) ™ ([ )

) (1) 7 5
<) (/T (xot) + dele()lP) 7 d“(t)>

b—q

= (oo + S ([ ez ann) T =50+ ik

Therefore,

o~ o~ o~

eq(p’q,p’ T/fl) < )\151) +A1A2 < Eq(paqvp)

(4.3)

(4.4)
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§5. Thecaser = q = p
Assume now that 1 < p < oo, r=¢q=np.
Theorem 4. Let 1 < p < oo. Assume that there exist A1, Ay = 0 such that the

value of the extremal problem

[ 1wt autt) - max
T (5.1)
sOF dut) <. [ lela®F du(t) < 1.

T T

is not smaller than \16P + Ao and that, for almost all t € T,

=[O + Aixo(t) + Ale(@)[” > 0, (5.2)

where xo( ) is the characteristic function of the set Ty. Then

E(p,p,p) = (M6” + Ao)7.

Moreover, each of the methods

. a(t)p(t)y(t), te T,
t) = 5.3
)1 {07 o (53
is optimal, where, for § > 0, A1, A2 > 0, a function () satisfies the condition
= a@) Dl 11
N L B W W
Az Ple) P Al L (5.4)
pO0—a®l B0l
A2l ()] A1

for almost all t € Ty (in particular, for a(t) = a(t) = A\1(A1 + A2|e(t)|P) ™1 method
(5.3) is optimal), and for 1 < p < 0o, 6 =0, the condition

()] 11— a(t)] < AZ lp(0)] (5.5)

For Ay =0 the method m(y)(-) = 0 is optimal, and for Ay = 0, method (5.3) with
a(-) =1 is optimal.

Proof. From the hypotheses of the theorem and inequality (1.1) it follows that

E(p,p,p) = (Md” + Ao) 7.

Let § > 0 and A; Ay > 0. To estimate methods of form (5.3) we write down the
extremal problem

()P [2(t) — a(®)y(t)]” du(t) + / o(t)x ()P dp(t) — max,
To T\To (5.6)
() — (O du(t) < 6, /T (e (t)]? dut) < 1.

To

Similarly to (4.4), we have
[(1 = a(®)2(t) + a®)(@(t) = y(t)]" < hyp(t) Qalo®Oz@)F + Mla(t) = y(B)P),
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where

_ ' P\ P/P
(Loetal gy
Ay ()P Al

11— at)] () B
max{ JWEDIREDY } p=t

hy, (t) =

Hence, letting
S(a(+)) = Vr?i;up [ ()|Php(t)
€lop

and taking into account that S(a(-)) < 1 by the hypotheses of the theorem and
since inequality (5.2) for t € T\ Ty reads as [¢(t)[? < A2|p(t)|P, we have

WO 2(t) — alt)y()]” du(t) +/ o)z ()P dp(t)
To T\Tp

<S(a()) [ Qale@a(Ol + Ml (®) - y(o)") dutt)

To

o [ P du(t) < 2+
T\To

Consequently, it follows that

e(p7papam) g ()\1517 +)‘2)% < E(p7p7p)

It remains to show that the set of functions «(-) satisfying conditions (5.4) is

nonempty. Setting
At

Oé(t) = 4)\1 +)\2|50(t)|p’

(5.7)

we have

R - [ ()l
S@())() = vrfggglp(wwwv>'

Inequality (5.2) shows that S(a(-))(¢) < 1.
For § = 0 we need to estimate the value of the extremal problem

; ()" (1) —a(t)x(t)}pdu(tH/T\T ()2 ()| dp(t) — max,

| et aut <1
Using condition (5.5), this gives

(@) [2(t) — a®)z(t)]" < Aelp(t)z(t)P.
Since [(t)|P < A2le(t) P for t € T'\ T, we have

(@7 |2 (t) — a(t)2(t)|” dput) +/ () ()P du(t) < As.
T T\To

If Ay =0, then |[(¢)[P < A2|e(t)[P for almost all ¢ € T, and so, for the method
m(y)(-) =0,
| o2 dutv) < x.
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If Ay = 0, then |¢(¢)|P < A for almost all ¢ € Ty and ¢(t) = 0 for almost all
t € T\ Ty. Hence,

[ () () — »()y(1)|” du(t) +/ [ ()2 (t)[P dp(t)
T T\To

< [ 12— y(OP du(t) < 2o?.
To

The action of the so-obtained optimal methods can be regarded by the action of
the operator being recovered multiplied by some function, the latter may be looked
upon as a filter or a smoothing multiplier. For example, for (5.7) the method is as
follows:

A(t)
R ARy, teTy,
() = 4 2+ Ale@p U o
0, t ¢ TOa
the function
A1

AL+ Agp(t)[P

may be regarded as such a filter.

We shall be concerned with the sets for which the use of filtration may be
dispensed with (in other words, this multiplier may be taken to be 1). Besides,
we shall be interested in how the original set, on which a noisy information about
the function is given, may be reduced without increasing the optimal recovery error.
In other words, our aim is to find all the sets on which we may put a(t) = ¢ (t) and
a(t) =0.

We set

T = {teTy: [wt)] > Mle®l},  T'={te T (b <A}

Corollary 1. For § > 0, A1, A2 > 0, the methods

Y(t)y(t), teT,
m(y)(t) = § at)pt)y(t), teT°\T,
0, teT\T°,

with o ) satisfying conditions (5.4) are optimal. For § =0, the methods

0
W)1) = {ﬁ“)y(“’ e

are optimal.

From Corollary 1 it follows that there exist optimal methods that use the given
noisy information only on the set T°. In other words, information on the set 7"\ T°
becomes superfluous in the sense that it does not decrease the optimal recovery
error.
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§ 6. Optimal recovery of functions from noisy Fourier transform

Let S be the Schwartz space of rapidly decreasing C'°°-functions on R, S’ be the
corresponding space of distributions, and let F': S — S’ be the Fourier transform.
We let %, denote the space of distributions from S’ for which

(/H%@F&>p<m,1<p<w,
R

vraisup |Fz(§)], D= 00.
£ER

[l )llp =

We set
Fp={a() eS8 |2 (), <oo},  Ep={reFp:[aW()], <1}

Assume that the Fourier transform of a function z(-) € F*N.%, is known on the
interval A, = (—0,0),0 < 0 < 00, to within § > 0 in the metric of L, (A, ). In other
words, one knows a function y(-) € L,(A,) such that |[Fz(-) —y(- )|z, a,) < 0.
How one should best use this information to recover the kth derivative of the
function in the metric #,, 0 < k < n? By recovery methods here we mean all
possible mappings m: L,(A,) — #,. The error of a method is, by definition, the
quantity

k
epgr(m) = sup ||33( )() —m(y)()llg-
z()EFNF, y(-)eLp(As)
1Fz()—y(llr,as) <o
The optimal recovery error is defined as follows:
E,r = inf .
par = Lp(lgg)—»g?q epqr(m)

A method on which this lower bound is attained is called optimal.

It is readily checked that this problem is a particular case of the above general
problem with 7 =R, Ty = A,, ¥(§) = (i€)*, ¢(&) = (i€)”. We now proceed to
apply the results obtained above to the problem in question.

We start with the case 1 <r =g < p < oco. Let

_pf kFt1Va=1/p 2-4q/p
B — B 9 ?
(n—k)1—q/p)" 1—q/p
where B(-,-) is the Euler B-function and

5 ((q)éé (n—k)i s )wéup
2B)  §(k+1/q—1/p)s

Theorem 5. Let k,n€Z,0<k<n,1<qg<p<o0,d>0andoc >ads. Then
1
n+1/g—=1/p\ 7 . (n—)
Eyg=—"—"""- .
Paq <k:+1/q—1/p Ts
Moreover, the method m(y)(-) = F~'Y,(-) with

(mw(l—(“)ﬂmﬂ)<a €l <5
Y, (€) = 55 yis) >
0, 61> 5

is optimal.



16 K. Yu. Osipenko

Proof. Consider equation (2.1), in which we put Do = s79=k) where s < o is be
to specified later. We have

s ng \ voq ¥ s ng \ req 7
([ (1err - 5 )" =o( [ e (e - L5) 7 ae)

Changing £ = su, this gives

1 ! kpq %
s (/ ur-a (1 — ud=k)) 55 du)
0
1 2 F
o (/ u”‘”%(l - u‘I("_k))ﬁ du) .
0

To specialize to B-functions, we write t = u(™ ¥4, As a result,
1
( 2s )szl’( k+1/qg—1/p 2—q/p>
q(n — k) (n—k)1—q/p)"1—q/p

- ‘S‘S"(q<ngik>>;3é (e m o o an )

Using the well-known equality

=

2

I
\}
Q=
Va)
Q=

Bla+1,b—1) = bf B(a,b),

we find that s = g5. The proof is completed by application of Theorem 1.

Note that the case with o < 75 requires more sophisticated analysis. For q = 2
the corresponding analysis was given in the paper [20], which also puts forward the
above theorem with ¢ = 2.

Taking into account the remark at the end of § 5, it follows from Theorem 5 that
if a function is such that

/ ()P de < o7, / € ()] de < 1,
R R

then it satisfies the sharp inequality
(n—k)
[tk a1 de < comtint,
R

where 0 < k <n, 1< qg<p< oo, and

1_1 1 k+l/a—1/p
_ “H/q—l/l’((?B)" ’ (’f+1/q—1/p)q>"+l/q 7

Ck+1/g-1/p (n—k)i s

From this we get the following sharp inequality

_(n—k)qg
1€50() ey < Clla@)I T ™ ena(e)| T 7. (6.1)
Considering even functions z( - ), we have the inequality

_(n—k)g

1€ ()|, @) < Callz(€ )||Z+(ln§i)l/p [ S (6.2)
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where
1/q=1/p

11 1. Kkt p
c _7%+Uq—1/p(<3>q_p%4-Uq—1hﬁQ)"““1”
Tkt 1/g—1/p\\ ¢ (n—k)3i s

which is a particular case of Carlson—Bellman—Levin’s inequality [22] (this inequality
was carried over to the multidimensional case in [23]).
Nowlet 1<p=gq<r<oo,1<k<nandoc=+occ. We set

B ((231>;_1(n—k—1/p+1/r);>"1/1p+1/,.

S§ —
p Sk~ T

?

where

—k—-1 1 2 —
= p(2lln e 30l
k(L—p/r) " 1=p/r
Theorem 6. Letk,n e N1 <k<n,1<p<r<oo,og=+00 andd > 0. Then
1
n—1/p+1/r \?_
E,,. = 0.
= ()
Moreover, the method m(y)(-) = F~1Y,(-) with

(9. €l < 5.
Y, () = . S5\ 7 ~
© <z§>’<(|;|) y(©), Il > 5.

18 optimal.

Proof. Consider equation (3.1), in which we put A= s*P_ where s will be specified

later. We have
(/ €175 ()™ = 5'7) 7 df) - 5</ €175 (] — 57) d£>
Il>e €125

Changing ¢ = s/u, we arrive at the equation

1 1 ! PT("*’V)_;'_]C 2 kpy —2— %
2v sy u o TPTH(1 —uMPYrr du
0

1
1 1 pr(n—k) .
— 2;3;+n (/ w T—p 72(1 _ ukp),,«ip du>
0

To specialize to B-functions, we write t = u*P. As a result, we have

() o (i )

1
s

-o(i5) o (S )

Consequently s = 35. It remains to invoke Theorem 2.

r

1
r

Now we consider the case 1 < g<p=1r < cc.
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Theorem 7. Let kkn € Z,0 <k <n,1 <qg<p<oo,0<+00,d >0 and let
a be such that

- é-kq =q 5p(1/q_ l/p)
(1 — (Spfnp) (A n ) dg T T ak—1/qt1/p .
/0 a+ e Uﬁ(n—kfl/Q+1/p)

Then

- kpg 1 1
Epyp = <2/O MZ’;)&dQ @+ 677)76.
Moreover, the method m(y)(-) = F~1Y,(+) with
a(ig)*
Yy(§) = ng €l

=

y(€), €l <o,
| >0

s optimal.

Proof. In our setting equation (4.1) reads as

v

o gha ),f’q . ( cha )pq
—_— d¢ = 6° Pl —— d
/0 (1 + A&™P < /o ¢ 14 Mgl ¢

6P(1/q —1/p)
n—k—1/q+1/p

N a1 (n—k—1/q+1/p)
Letting a = XQ_ ! we obtain the equation f(a) = 0, where

o ¢ka >p“q 0P(1/q—1/p)
= [ (1—grgmr ds — '
f(a) /0 ( 3 )<a+€np ¢ U%W(n—k—l/Q‘i‘l/p)

It is readily checked that f(a) — 400 as a — 0 and

*(1/q —=1/p)
f(a) - - n—k—1/q9+1/p
o Vieir T (n—k—1/q+1/p)
as a — +oo. The function f(-) is continuous, and hence there exists @ > 0 at
which f(@) = 0. It remains to apply Theorem 3.

+

For o = 400 equation (4.1) may be solved explicitly. In this case we have the
following result.

Theorem 8. Let k,n € 7,0 <

Epgp = <

<n,1<qg<p<oo,6>0andoc=+oco. Then

k
SICNCORE
p i

=

where X K
11 Kglp 1-K
Kopyl L BZ_B( /P ntz/p>.
q p 1—q/p” 1—q/p
Moreover, the method m(y)(-) = F~1Y,(+) with
(i€)"*

Y, () = y(&)

L+ Egorig|ne

s optimal.
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We finally consider the case 1 < p=¢g=r < co. If o0 = 400 and § = 0, then the
recovery problem becomes vacuous, because all the information about the function
is available, so we exclude this case hereafter. Given k > 1, we set

1
n \ p(n—Fk) 1
— 6~n, >0
8: <k> ) >7

400, 6=0,
n—k . _pe ~ E pine
n 4 " ozo0, —6¥, 0'2/0\’
AL = B\ T — k A=
a’“’( > , 0<0, o Pk 5 <5
n n

Next, given k = 0, we take \; =1,

{a‘p", o < 400,
Ao =
0, o = ~40o0.

Theorem 9. Letk,ne€ Z,0<k<nand1l <p<oo. Then
1
Eppp = (AM16” + A2) 7.

Moreover, the methods m(y)(-) = F~'Y,(-) are optimal, where

_ a9 (e, ¢l <o,
Y, (€) = {07 e

and, for 6 > 0, Aa > 0, the function a(-) satisfies the condition,

L-a@©F Ifka@)lp

1 1
<1, 1<p<oo, —+4+—=1,

»’ e r P p/
Ay (314 (n=k) A (6.3)
1— k
1e@l @y,
Az €[ AL
for almost £ € A, and for 1 < p < oo, § = 0, the condition
1
11— a(®l <Al
For Ao = 0 the method m(y)(-) = F~Yy(-) is optimal.
Proof. In our setting the extremal problem (5.1) reads as
[l 1Pa(e)p dg - max
® (6.4)

/ Fa(€)[P de < 67, / €77 |Fa(e)P de < 1.

o

In the (u,v)-plane consider the curve v = u*/™ is defined parametrically by

{“ = lel™, 3 (6.5)

v = [¢[*7,



20 K. Yu. Osipenko

Let £ > 1, 6 > 0. The line v = A1 + \su, where

_k P ]ﬂ p(n—
A = B smn Ay = gt
n n

is tangent to this curve at u = 6~P. The curve (6.5) is concave, and hence, for all
£ eR,
— €[+ A1+ Aol > 0.

If 0 > 7, then, for all £ € R,
[l + Mo (&) + Aale]™ > 0, (6.6)
where X, () is the characteristic function of A,.
For sufficiently small € > 0, we consider the function z.(-) such that

6 _1 1
Fxg(g): m; 56(6 ”_676 n)a

07 £¢ (57% _5757%)'
Hence,

/‘|Fm4@Wdf:5a

o

and further,

. o
[l ipaora =" [ erae<t
R € Jomn—e
So, the function z.(-) is admissible in (6.4), and therefore,

5P 6_%
Egpp 2 A|£|kp |Fx5(§)|p df = 7/5 ) gk}p dé—

€

-1
Making € — 0, this gives
Eppp = 677 = (A6? + Ag)¥.

For k > 1,0 > 0 and o < &, the tangent to curve (6.5) at the point

B\ 7F
n—
u=oc"P(—

n

is given by v = A\ 4+ Aqu, where

k_
M=ot (k) L kv Ay = g P(nh),

n n

Since curve (6.5) is concave and since A|£[P" > [£[PF for |¢] > o, inequality (6.6)
is satisfied (with new A; and Ap). For sufficiently small 1,62 > 0, consider the
function ., ¢, () such that

é
6177 56(50750—"51)7

FthEz(f) = 1
cr, ¢ € (0,04 e2),

0, &¢ (£0,&0 +e1)U (0,0 +e2),
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1
k\ p(n—k)
50_0-(71) )

and ¢ will be specified later. We have

where

/ Py o0 (€)[P de = 67,
Ay

and moreover,
5P Eoter o+e2
[z a@ra =2 [ eracre [ e ae
R El 0 g
Foreqy — 0and 6 >0
&P Eoter

k- nzk k nzk
£ d¢ — 5p£gp — §PoTP () < §Pgne () =1.
€1 o n

Hence, setting

op Eoter
== e
€1 Jgo

o+te2
| e

/R €] [Fae, o, (€)|P dE = 1.

As a result, the function z., ., () is admissible in (6.4), and hence,

k
B> [ 1617 1P, (O de

for 0 > 0, this gives

o+ea
&P Eo+e1 5P Eoter / fkp dg§
_ gkpdg_;'_(l_/ gnpdf)ﬂ
€1 o 9

o+eo
1 J¢o / €np dE
Making €7 and €5 tend to zero, this establishes
Eppp > (/\161) + )‘2>%~
Let k=0 and ¢ < +00. Then \; =1, Ay = c7P"

. It is readily checked that
inequality (6.6) also holds in this case. The same function z., ., (with § = 0) is
easily seen to be admissible in problem (6.4). Hence,

EP > F P 5P or [ np €9
o 2 | |FTey ()P dE =07+ (1 - = &P de
R 1Jo /

o+tea :
£ dg

g
Making €; and €5 to zero, we see that

Eppp = (67 +07P")5 = (M6” + M) 7.
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It remains to consider the case when £k = 0 and ¢ = +00. Now A\; =1, Ay = 0.
It is clear that (6.6) holds. For sufficiently small € > 0, consider the function z.(-)
such that

1)
Fao(6) = i £€(0,¢),
0, §¢(0,¢).
Hence,
[ Paop as = o,
R
and

np rae =2 [ e e
[ e ipaepae == [ emie—o

as ¢ — 0. This shows that, for sufficiently small ¢ > 0, the function z.(-) is
admissible in problem (6.4). Hence,

Efp = /R|F$E(f)|p d§ = 6P = \0P + Ao,

Now the assertion of Theorem 9 follows from Theorem 4.

From Theorems 6, 8 and 9 one may get sharp Carlson-type inequalities as in
(6.1) and (6.2).
Similarly to Corollary 1 we have the following result.

Corollary 2. For k > 1,6 > 0 the methods m(y)(-) = F~'Y,(-) are optimal,
where

(&) y(€), €] < o,
Yy (§) = Oé(ﬁ)(if)ky(ﬁ)v foo < [¢| < 00,
€| = oo,
0= ( )k :z> o oo = min{o, 7},

and o(-) satisfies condition (6.3). For 6 = 0 or k = 0 the method m(y)(-) =

FYY, () with
_ kY, el <o,
lu@—{a M
s optimal.

For p = 2 the corresponding recovery problem of the derivative on the Sobolev
class W3' = F3' was examined in [16] (see also [24]).

§ 7. The discrete case

If T'=N and p({j}) = 1, then the corresponding space L,(T,u), 1 < p < oo,
agrees with the space l,,, which consists of the vectors x = (z1,22,...) such that

o 1
P
nﬂ%=(§mmﬁ <.
J=1
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We set
o0 o0
%:{melp:2|1/jxj|p<oo}, Wp:{xe%:2|ujxj|p<1}.
j=1 j=1
Assume we are given an operator A: %), — I,
Az = (p121, pa, . . .),

where the sequence |u;|/|v;] is bounded for sufficiently large j (this condition implies
that Az € 1, for all z € #).
Let us consider the problem of optimal recovery of the values of an operator A on

the set W, from noisy information on the coordinates zi,...,zy. More precisely,
it is assumed that, for any = € W, one knows the vector y = (y1,...,yn) such
that ||[INz — y||l]zov < 6, where Nz = (21,...,7x) and

N 1

P

lelly = (S las)
i=1

The problem is to recover, with the best possible accuracy, the value of Az from
the given vector y.

Here, by recovery methods we mean all possible mappings m: ZI])V — lp. In
accordance with the general formulation of the problem, the error of a method is
defined by

ep(m)= sup Az —m(y)lls,.
Wy, yelﬁf
HINx—yHlév <8

The quantity
E,= inf ey(m
P m: l;y-»lp p( )
is the optimal recovery error, and a method on which this lower bound is attained
is called optimal.
We shall assume that v; # 0 for all j > N + 1. We set

A= sup "uj‘p
jeNt1 |y[P7
M = co{(0,0) U{(lvI?, ;") }jen} + {(t, tX) [ £ > 0},

where co € is the convex hull of a set . Consider the function () on [0, 00)
defined by 6(¢t) = max{z | (¢,z) € M}. Clearly, 6(-) is a concave broken line (see
Fig. 1).

Puc. 1
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Theorem 10. For all § >0 )

E,=14807(67P).
Let 6 > 0 and let 6P lies in the interval of Ry on which 0(-) is given by the
equation O(t) = A1 + Aot. If A1, Ao > 0, then, for all a;, 1 < j < N, satisfying the
condition

=P P 1 1
|Mj|p(| J|/ +|J‘/ )él, 1<p<oo,;)+—:1,

ya ya /

NP > p
;7" A A (7.1)
|1 (1 — )| s
— 1, —— <1, =1,
|Uj|>\2 )\1 p
the methods
T/ﬁ(y) = (Oélulyl,...,OzN,uNyN,O,...) (72)

are optimal.

If Ay = 0, then m(y) = 0 is an optimal method, and if Ao = 0, then m(y) =
(Y1, .-, bNYN,0,...) s an optimal method. If 6 = 0, then E, = \* and all
methods (7.2), in which

1
i (1 = aj)| < [wjlA7,
are optimal.
Proof. In this setting the extremal problem (5.1) is as follows:

N %S

ol —max, > faylP <6, Y |y <1 (7.3)
j=1

Jj=1 Jj=1

According to the definition of the set M and the function 4( ), if on some interval
the broken line ( -) is given by the equation 6(t) = A1 + Aot, then Ay > 0, Ay > A,
and moreover,

=i [P+ Aixg + AelvyP = 0

for all j € N, where

Xj:{o, j>N.

Let 0 < |vg,|P < -++ < |vs, [P be the arguments of the bend points of the broken
line (). Assume that |vs,_,| < 671 < |vg,| for some [, 1 < sl < k, and that the
function 0(-) for |vs, [P <t < |vg,|P is as follows: 0(t) = Ay + Aot. We set Z; = 0,
J# si-1, 81,

- ( 57| [P — 1 )i _ (1—6p|usll|p)é
x f— —_— .’L‘ = - .
e |V3l‘p - |V3171‘p ’ * |Vsl|p - |V8171|p

|Zs,_, |7 + |75, [P = 6P, Vs, @, [P+ Vs, @, [P = 1,

Since

T = (Z1,Z2,...) is an admissible element in problem (7.3). Consequently, the value
of this problem is estimated from below by the quantity

s [P 1% 1P 4 s, 7 126, [P = A0 6P 4 Ao (7.4)
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Assume now that 671 < v,,. If v; = 0 for some j € N, then, for sy satisfying
0(0) = |ps,|?, vs, = 0, equality (7.4) is proved by the arguments similar to those
used above in the case | = 1; here, A; and A2 are such that 6(¢t) = A\; + Aat on the
closed interval [0, |vg, |P]. If v; > 0 for all j € N, then Ay = 0 and 6(t) = Aot for
t €[0,|vs, [P]. So, we set T; =0, j # s1, Ts, = 1/vs,. It is easily checked that T is
an admissible element for problem (7.3). Hence, its value is estimated from below
by the quantity

b, 775, [P = Az

Now assume that § < |vs, |71 and that () = A\1+Aat on the interval [|vg, |P, +00).
Clearly, Ay = A, because |vs, |P is the last bend of 6(-). From the definition of A it
follows that, for any ¢ > 0, there exists sx11 > IV + 1 such that

|/’[’3k+1 |p

|V5k+1 |P

>A—e. (7.5)

We set z; = 0, j # s, Sp+1, and choose Ty, and T, , so as to have
S P — Sp = op ~ p_
|x5k| =P, |y5k'r5k‘ + |y5k+1xsk+1‘ =1L

Clearly, Z is an admissible element for problem (7.3). Hence, its value is estimated
from below by the quantity

- - |pesi P
|/’[’5k |p |‘T5k ‘p + |M5k+1 |p ‘x8k+1|p = )‘161) + A2 — ()‘ - |I/Sk+1‘p (1 - 6;0|U8k|p)
Sk+1

> MO+ Xg — (1 — 0P |ws, |P).

Since € > 0 is arbitrary, the value of problem (7.3) is estimated from below by the
quantity A;6P + Ag.

Assume now that 6( - ) has no bends. In this case, 6( -) is the line 6(t) = A + Aot
in Ry. Clearly, now Ay = A. To build the vector & we consider two cases. Assume
first that there exists so such that v, = 0 and 0(0) = |us,|P. We set z; = 0,
J # 80, Sk+1, and choose Ty, and T, , so as to have

|Tso [P = 07, Vspi1 T [P =1
(here, skt is the same as in (7.5)). Consequently, the value of problem (7.3) is

estimated from below by the quantity

- . Prspr [P
[0 [P |Tso [P 4 [tspyr [P |Zspr [P = A10P + Ag — ()\ - Sk“'p) > AP+ A — e
|Vsk+1|
Next, if (0) = 0 (in this case, Ay = 0), we set Z; = 0, j # Sp41, Loy = 1/Vsy,,-
Now the value of the problem is estimated by

e~ P — )\ A |M3k+1|p A
|/‘L5k+1| |xsk+1| = A2+ —— | > A2 —E.

|Z/Sk+1 P

The required estimate A\10P 4+ Ao follows in this and the remaining cases, because
€ > 0 is arbitrary.
Finally, application of Theorem 4 completes the proof.
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We note that at the bend points (|vs, |2, |us, [P), I = 1,...,k, of the broken line
6( - ) there are may tangent lines to the set M. It is easily checked that for § = |vg,|~*
for each such a tangent line A; + Aot with A\j, Ay > 0, all methods (7.2) for which
aj, j=1,..., N, satisfy condition (7.1), are optimal.

Corollary 3. Assume that 6P lies in the interval Ry, on which 0(t) = A\ + Aot
with A1, Ao > 0. We set

D={j:|wl" > v|PA2, 1<j< N}, Do ={j€D:|uP <A}
Then the methods
K555 J € Do,
{my)}; = { ajnyi, 7€ D\ D,
0, N\D,

where o satisfies conditions (7.1), are optimal.

From Corollary 3 it follows that the valuable information about a given noisy
vector x consists of the coordinates x, whose numbers are contained in the set D.
Moreover, for numbers from the set Dy one may apply a method that acts on the
coordinates exactly as the operator being recovered. Figure 2 illustrates the form
of the sets D and Dy.

Puc. 2

In the case of recovery of the derivative from noisy Fourier coeflicients, the above
recovery problem was solved in the Euclidean case in [15], and in a more general
setting, in [25], but again in the Euclidean framework (in both cases no family of
methods was provided).

We now apply the results of Theorem 10 to the example from [6] (Theorem 12
on p. 45). In this example p; = 1, j € N (in fact, [6] considers sequences on Z, but
this is immaterial). We set

B
leg}ignN‘VjL A:jigjﬁf'l/jlv C:Z
(it may be assumed that A > 0, for otherwise E, = +00). For the quantity A
introduced above, we have A = 1/AP.
The next result follows from Theorem 10.

Theorem 11. 1. For 6 =0, all methods (7.2), in which

121 ,
|1—aj|<7J, j=1,...,N,
are optimal.
2. For C=0,0(t) =1+ t/AP and all methods (7.2), in which

’

AP , , 1 1
W|1—ajlp+|aj|p <1, 1<p< oo, §+17:1’
J

1< il ' B
11— aj| < e loj| <1, p=1,

are optimal.



Optimal recovery in non-Euclidean metrics 27

3. For0<C<1landé ' >B,0() =1+ (t—BP)/AP =1—CP +t/AP and all
methods (7.2), in which

’

A 1 P+ o <1, 1<p< Lol

T _aj 1 ANy S X p o0, - — =4

|v;[P 5 (1—Cryr'/p p7 (7.6)
Vs

are optimal.
4. For C > 1,0(t) =t/AP, and for 0 < C < 1 and ' < B, §(t) = t/BP, and
the method m(y) = 0 is optimal.

In [6] the following values of the coefficients «; were found:

1,2, a; =1,
3. a5 =1-0CP
4. (Jéj:O.

Let us examine for which j one may put o; = 0 and a; = 1. We set
Ny = {j S {].,,N} : |Vj| <A}
Corollary 4. 1. For 6 =0 or C = 0, method (7.2) with

o — 1, j€ Ny,
700, ¢ N

is optimal.
2. For0 < C <1 and 6~ > B, all methods (7.2), in which o satisfy condition
(7.6) for j € N1 and a; =0 for j ¢ Ny, are optimal.

I am greatly indebted to the referees for a number of valuable remarks, and in
particular, for drawing attention to the connection of the problems under study
with sharp inequalities of Carlson’s type.
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