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of Heat Equation Solutions∗
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We devote this article to Borislav Bojanov who was one of the first mathematicians

to undertake the study of optimal recovery problems

In this paper, we consider some optimal recovery problems which are
representatives of a vast number of problems in numerical analysis. We
focus on the so called cleaning phenomenon, where only a part of the
given information is used for the construction of an optimal recovery
method in the uniform norm.

There are a lot of results concerning the optimal recovery of linear

functionals (see, for example, [1]–[5] and the references therein). How-
ever, the problems of optimal recovery of linear operators are not studied
that extensively (see [6]–[8]). Here, we present some results about op-
timal recovery of solutions to differential equations and illustrate our
approach in the case of solutions to the heat equation ut = uxx.

1. Periodic Case

We consider the following problem for the heat equation:

ut = uxx,

u(0, t) = u(π, t) = 0, u(x, 0) = f(x).
(1.1)
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It is well known that the solution to this problem is given by the series

u(x, t) =
∞∑

k=1

bk(f)e−k2t sin kx,

with

bk(f) =
2

π

∫ π

0

f(x) sin kx dx.

We denote by Wr
2 [0, π] the Sobolev space

Wr
2 [0, π] :=

{
f ∈ L2[0, π] : f (r−1)– abs. cont. on [0, π], f (r) ∈ L2[0, π]

}
,

and by W r
2 [0, π] the set

W r
2 [0, π] :=

{
f ∈ Wr

2 [0, π] : ‖f (r)‖L2[0,π] ≤ 1
}
,

where the usual definition of the L2[0, π] norm is

‖g‖L2[0,π] =
( 2

π

∫ π

0

|g(x)|2 dx
)1/2

.

We are interested in the recovery of the solution to problem (1.1) at some
fixed time t = T , provided that u(0, ·) = f ∈ W r

2 [0, π] and we know with
some accuracy δ the vector bN (f) = (b1(f), . . . , bN (f)) of the first N Fourier
coefficients of f , namely, a vector y = (y1, . . . , yN ) for which ‖bN (f)−y‖ℓN

p
≤ δ

is available. Here the ℓN
p norm of a = (a1, . . . , aN ) is given by

‖a‖ℓN
p

=






( N∑

k=1

|ak|
p
)1/p

, 1 ≤ p < ∞

max
1≤k≤N

|ak|, p = ∞.

This type of information is denoted by FourN,δ,p, and the corresponding recov-
ery problem is denoted by R(u(·, T ), W r

2 [0, π], FourN,δ,p). An arbitrary map-
ping ϕ : R

N → L2[0, π] generates a recovery method, the value

e(R, ϕ) = sup
f∈W r

2 [0,π]

sup
y∈R

N

‖bN (f)−y‖
ℓN
p
≤δ

‖u(·, T )− ϕ(y)‖L2[0,π]

is called the error of the method ϕ, the value

E(R) = inf
ϕ:RN→L2[0,π]

e(R, ϕ)

is called the error of the R-recovery problem, and a method for which the
infimum is attained is called an optimal method.
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1.1. Case p = 2

We denote by R1 the recovery problem in the case p = 2. The following
theorem is true.

Theorem 1. For all 0 < δ < 1, the error of the recovery problem R1 is

E(R1) = e−T

√

δ2 +
1 − δ2

(N + 1)2r
e−2TN(N+2) ,

and the method

u(x, T ) ≈

N∑

k=1

(
1 +

k2r

(N + 1)2re2TN(N+2) − 1

)−1

yke−k2T sin kx

is optimal. For δ ≥ 1,
E(R1) = e−T ,

and u(x, T ) ≈ 0 is an optimal method.

Proof. From general results on recovery problems (see, for example [7,
Lemma 1]), one can obtain the lower bound

E(R1) ≥ sup
f∈W r

2 [0,π]

‖bN (f)‖
ℓN
2
≤δ

‖u(·, T )‖L2[0,π]. (1.2)

Using the Parseval’s identity, the extremal problem in the right hand-side of
(1.2) (with ‖u(·, T )‖L2[0,π] replaced by ‖u(·, T )‖2

L2[0,π]) can be rewritten as

∞∑

k=1

b2
k(f)e−2k2T → max,

N∑

k=1

b2
k(f) ≤ δ2,

∞∑

k=1

b2
k(f)k2r ≤ 1. (1.3)

We set uk = b2
k(f), write (1.3) in the form

∞∑

k=1

uke−2k2T → max,

N∑

k=1

uk ≤ δ2,

∞∑

k=1

ukk2r ≤ 1, uk ≥ 0, (1.4)

and consider the Lagrange function of (1.4):

L({uk}
∞
1 , λ1, λ2) :=

∞∑

k=1

(
− e−2k2T + λ1χk + λ2k

2r
)
uk,

where

χk =

{
1, 1 ≤ k ≤ N

0, k > N.
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It is easy to check that if there exists an admissible (in (1.4)) sequence {ûk}
∞
1

and numbers λ̂1, λ̂2 ≥ 0, such that

min
uk≥0

L({uk}
∞
1 , λ̂1, λ̂2) = L({ûk}

∞
1 , λ̂1, λ̂2), (1.5)

and if the conditions of complementary slackness

λ̂1

( N∑

k=1

ûk − δ2
)

+ λ̂2

( ∞∑

k=1

ûkk2r − 1
)

= 0, (1.6)

are satisfied, then {ûk}
∞
1 is a solution to (1.4).

For 0 < δ < 1, we choose

û1 = δ2, ûN+1 =
1 − δ2

(N + 1)2r
, ûk = 0, k 6= 1, N + 1,

λ̂1 = e−2T −
e−2(N+1)2T

(N + 1)2r
, λ̂2 =

e−2(N+1)2T

(N + 1)2r
,

and for δ ≥ 1, we select

û1 = 1, ûk = 0, k = 2, 3, . . . ,

λ̂1 = 0, λ̂2 = e−2T .

It is clear that for such {ûk}
∞
1 and λ̂1, λ̂2, (1.5) and (1.6) hold. Consequently,

the extremal value to problem (1.4) is

e−2T
(
δ2 +

1 − δ2

(N + 1)2r
e−2TN(N+2)

)
,

for 0 < δ < 1, and e−2T for δ ≥ 1.
Note that analogous arguments show that {ûk}

∞
1 is a solution to

∞∑

k=1

uke−2k2T → max, λ̂1

N∑

k=1

uk + λ̂2

∞∑

k=1

ukk2r ≤ λ̂1δ
2 + λ̂2, uk ≥ 0.

Next, we construct an optimal method of recovery. We consider the following
extremal problem for a given y ∈ R

N :

λ̂1‖b
N(f) − y‖2

ℓN
2

+ λ̂2‖f
(r)‖2

L2[0,π] → min, f ∈ Wr
2 [0, π]. (1.7)

Direct calculations show that the function

f̂(x) =
N∑

k=1

λ̂1

λ̂1 + λ̂2k2r
yk sinkx (1.8)
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is a solution to (1.7), and hence for all f ∈ Wr
2 [0, π] the following identity holds:

λ̂1‖b
N(f) − bN(f̂)‖2

ℓN
2

+ λ̂2‖f
(r) − f̂ (r)‖2

L2[0,π] + λ̂1‖b
N(f̂) − y‖2

ℓN
2

+ λ̂2‖f̂
(r)‖2

L2[0,π] = λ̂1‖b
N(f) − y‖2

ℓN
2

+ λ̂2‖f
(r)‖2

L2[0,π].

If f ∈ W r
2 [0, π], ‖bN(f) − y‖ℓN

2
≤ δ, g := f − f̂ , we obtain

λ̂1‖b
N(g)‖2

ℓN
2

+ λ̂2‖g
(r)‖2

L2[0,π] ≤ λ̂1‖b
N(f)−y‖2

ℓN
2

+ λ̂2‖f
(r)‖2

L2[0,π] ≤ λ̂1δ
2 + λ̂2.

At the same time, the error of the method

u(x, T ) ≈

N∑

k=1

bk(f̂)e−k2T sin kx

is estimated by

∥∥∥u(x, T ) −

N∑

k=1

bk(f̂)e−k2T sinkx
∥∥∥

2

L2[0,π]
=

∞∑

k=1

b2
k(g)e−2k2T

≤ sup
{ ∞∑

k=1

uke−2k2T : λ̂1

N∑

k=1

uk + λ̂2

∞∑

k=1

ukk2r ≤ λ̂1δ
2 + λ̂2, uk ≥ 0

}
.

Since this supremum coincides with the minimum value of problem (1.4), the
estimates from above and from below are equal, and therefore this method is
optimal. Substituting λ̂1 and λ̂2 in (1.8) gives the required result. �

1.2. Case p = ∞

We denote by R2 the recovery problem for p = ∞. The following theorem
holds.

Theorem 2. If m := max
{
n ∈ Z+ : δ2

∑n
k=1 k2r < 1, 0 ≤ n ≤ N

}
, then

the error of the recovery problem R2 is

E(R2) =

√√√√δ2

m∑

k=1

αke−2k2T + e−2(m+1)2T (m + 1)−2r ,

where αk := 1−
(
k/(m + 1)

)2r
e−2T (m+k+1)(m−k+1), k = 1, . . . , m. The method

u(x, T ) ≈

m∑

k=1

αkyke−k2T sin kx

is optimal.
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Proof. As in (1.2), we have

E(R2) ≥ sup
f∈W r

2 [0,π]

‖bN (f)‖
ℓN
∞

≤δ

‖u(·, T )‖L2[0,π].

Similarly to the proof of Theorem 1, we rewrite the extremal problem in the
right hand-side of this inequality in the form

∞∑

k=1

uke−2k2T → max, 0 ≤ uk ≤ δ2, k = 1, . . . , N,

∞∑

k=1

ukk2r ≤ 1, (1.9)

where uk = b2
k(f), and we consider the Lagrange function of (1.9)

L({uk}
∞
1 , λ) :=

∞∑

k=1

(
−e−2k2T + λN+1k

2r
)

uk +

N∑

k=1

λkuk,

λ := (λ1, . . . , λN+1). To solve problem (1.9), it is sufficient to find an admissible

sequence {ûk}
∞
1 and a vector λ̂ ≥ 0, such that

min
uk≥0

L({uk}
∞
1 , λ̂) = L({ûk}

∞
1 , λ̂) (1.10)

and
N∑

k=1

λ̂k(ûk − δ2) + λ̂N+1

( ∞∑

k=1

ûkk2r − 1
)

= 0. (1.11)

Then {ûk}
∞
1 will be a solution to (1.9). Let

λ̂N+1 = (m + 1)−2re−2(m+1)2T ,

λ̂k =

{
e−2k2T − λ̂N+1k

2r, 1 ≤ k ≤ m

0, m + 1 ≤ k ≤ N,

and let us define the sequence {ûk}
∞
1 as follows:

ûk =






δ2, 1 ≤ k ≤ m,
(
1 − δ2

m∑

k=1

k2r
)
(m + 1)−2r, k = m + 1,

0, k > m + 1.

If follows from the definition of m that {ûk}
∞
1 is an admissible sequence. More-

over,

L({uk}
∞
1 , λ̂) =

∞∑

k=m+2

(
−e−2k2T + λ̂N+1k

2r
)

uk ≥ 0 = L({ûk}
∞
1 , λ̂), uk ≥ 0,
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and thus condition (1.10) is satisfied. One can verify that (1.11) is also satisfied,
and therefore {ûk}

∞
1 is a solution to (1.9). Hence,

E(R2) ≥

√√√√
∞∑

k=1

e−2k2T ûk =

√√√√δ2

m∑

k=1

αke−2k2T + e−2(m+1)2T (m + 1)−2r.

Likewise, one can prove that {ûk}
∞
1 is a solution to the problem

∞∑

k=1

uke−2k2T → max,

N∑

k=1

λ̂kuk+λ̂N+1

∞∑

k=1

ukk2r ≤ δ2
N∑

k=1

λ̂k+λ̂N+1, uk ≥ 0.

Next, we construct an optimal method of recovery. For every y ∈ R
N , we

consider the extremal problem

N∑

k=1

λ̂k|bk(f) − yk|
2 + λ̂N+1‖f

(r)‖2
L2[0,π] → min, f ∈ Wr

2 [0, π]. (1.12)

It is easy to show that the function

f̂(x) =
m∑

k=1

λ̂k

λ̂k + λ̂N+1k2r
yk sin kx (1.13)

is a solution to (1.12), and hence for each f ∈ Wr
2 [0, π] the identity

N∑

k=1

λ̂k|bk(f) − bk(f̂)|2 + λ̂N+1‖f
(r) − f̂ (r)‖2

L2[0,π] +
N∑

k=1

λ̂k|bk(f̂) − yk|
2

+ λ̂N+1‖f̂
(r)‖2

L2[0,π] =
N∑

k=1

λ̂k|bk(f) − yk|
2 + λ̂N+1‖f

(r)‖2
L2[0,π] (1.14)

holds. If f ∈ W r
2 [0, π] and |bk(f) − yk| ≤ δ, k = 1, . . . , N , then from (1.14) for

g = f − f̂ , we obtain

N∑

k=1

λ̂k|bk(g)|2 + λ̂N+1‖g
(r)‖2

L2[0,π] ≤

N∑

k=1

λ̂k|bk(f) − yk|
2 + λ̂N+1‖f

(r)‖2
L2[0,π]

≤ δ2
N∑

k=1

λ̂k + λ̂N+1.

For the error of the method

u(x, T ) ≈
N∑

k=1

bk(f̂)e−k2T sin kx, (1.15)
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we have

∥∥∥u(x, T ) −

N∑

k=1

bk(f̂)e−k2T sinkx
∥∥∥

2

L2[0,π]
=

∞∑

k=1

b2
k(g)e−2k2T

≤ sup
{ ∞∑

k=1

uke−2k2T :

N∑

k=1

λ̂kuk+λ̂N+1

∞∑

k=1

ukk2r≤ δ2
N∑

k=1

λ̂k+λ̂N+1, uk ≥ 0
}
.

Since this supremum coincides with the minimum value of problem (1.12), the
estimate from above is equal to the estimate from below, and hence (1.15) is an

optimal method of recovery. Substituting λ̂1, . . . , λ̂N+1 in the definition (1.13)

of f̂ gives the required result. �

Let us set

δn :=
( n∑

k=1

k2r
)−1/2

.

If δn+1 ≤ δ < δn, Theorem 2 gives that for all k > n the error of the
recovery problem R(u(·, T ), W r

2 [0, π], Fourk,δ,∞) is the same as the error of
R(u(·, T ), W r

2 [0, π], Fourn,δ,∞). Therefore, if δ is fixed and δn+1 ≤ δ < δn,
knowing more Fourier coefficients with the same accuracy δ does not decrease
the error of optimal recovery.

2. Non-periodic Case

Now, we consider the problem of recovery of the solution to the problem

ut = uxx,

u(x, 0) = f(x), x ∈ R,
(2.1)

at time t = T , knowing the Fourier transform Ff of f on the interval ∆σ :=
(−σ, σ) with accuracy δ in the L2(∆σ)-norm. Similarly to the periodic case,
we denote by Wr

2 (R) the Sobolev space

Wr
2 (R) =

{
f ∈ L2(R) : f (r−1) – loc. abs. cont. on R, ‖f (r)‖L2(R) < ∞

}
,

and by W r
2 (R) the set

W r
2 (R) =

{
f ∈ Wr

2 (R) : ‖f (r)‖L2(R) ≤ 1
}
,

where

‖g‖L2(R) =
( ∫

R

|g(x)|2 dx
)1/2

.
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2.1. Case p = 2

We denote by R3 the recovery problem R(u(·, T ), W r
2 (R), Fourσ,δ,2) of find-

ing the value

E(R3) = inf
ϕ:L2(∆σ)→L2(R)

sup
f∈W r

2 (R)

sup
y∈L2(∆σ)

‖Ff−y‖L2(∆σ)≤δ

‖u(·, T )− ϕ(y)‖L2(R).

The following theorem is true.

Theorem 3. The error of the recovery problem R3 is

E(R3) =

√
δ2

2π
+ σ−2re−2σ2T , σ > 0,

and

u(x, T ) ≈ m̂(y) :=
1

2π

∫

∆σ

e−λ2T
(
1 + σ−2re−2σ2T λ2r

)−1
y(λ)eiλx dλ (2.2)

is an optimal method.

Proof. Similarly to (1.2), we have

E(R3) ≥ sup
f∈W r

2 (R)
‖Ff‖L2(∆σ)≤δ

‖u(·, T )‖L2(R). (2.3)

Using Plancherel’s theorem and the fact that Fu(·, T )(λ) = e−λ2T Ff(λ), (see,
for example, [9, p. 406]), the extremal problem in the right-hand side of (2.3)
can be rewritten in the form (for convenience we consider squares)

1

2π

∫

R

e−2λ2T |Ff(λ)|2 dλ → max,

∫

∆σ

|Ff(λ)|2 dλ ≤ δ2,

1

2π

∫

R

λ2r|Ff(λ)|2 dλ ≤ 1. (2.4)

We extend this problem, replacing (2π)−1|Ff(λ)|2 dλ by nonnegative measures.
Then problem (2.4) can be extended to

∫

R

e−2λ2T dµ(λ) → max, 2π

∫

∆σ

dµ(λ) ≤ δ2,

∫

R

λ2r dµ(λ) ≤ 1, dµ(λ) ≥ 0, (2.5)

with corresponding Lagrange function

L(dµ, λ1, λ2) :=

∫

R

(
− e−2λ2T + 2πλ1χσ(λ) + λ2λ

2r
)
dµ(λ),
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where

χσ(λ) =

{
1, λ ∈ ∆σ

0, λ /∈ ∆σ.

It is easy to prove that if there exists a measure dµ̂, admissible for (2.5), and

λ̂1, λ̂2 ≥ 0, such that

min
dµ

L(dµ, λ̂1, λ̂2) = L(dµ̂, λ̂1, λ̂2) (2.6)

and

λ̂1

(
2π

∫

∆σ

dµ̂(λ) − δ2
)

+ λ̂2

( ∫

R

λ2r dµ̂(λ) − 1
)

= 0, (2.7)

then dµ̂ is a solution to problem (2.5). We select

λ̂1 =
1

2π
, λ̂2 = σ−2re−2σ2T , dµ̂(λ) =

δ2

2π
δ(λ) + σ−2rδ(λ − σ),

where δ is the δ-function at zero. One can verify that for these dµ̂ and λ̂1, λ̂2,
conditions (2.6) and (2.7) are fulfilled. Thus, the solution to (2.5) is

∫

R

e−2λ2T dµ̂(λ) =
δ2

2π
+ σ−2re−2σ2T . (2.8)

It can be shown, approximating δ-functions by corresponding δ-type sequences,
that the solution (2.8) is also a solution to problem (2.4). Thus, we have proved
that

E(R3) ≥

√
δ2

2π
+ σ−2re−2σ2T .

Following the same arguments as above, one can prove that the solution to
(2.4) is also a solution to the following problem

1

2π

∫

R

e−2λ2T |Ff(λ)|2 dλ → max,

λ̂1

∫

∆σ

|Ff(λ)|2 dλ + λ̂2
1

2π

∫

R

λ2r|Ff(λ)|2 dλ ≤ λ̂1δ
2 + λ̂2.

Now, we construct an optimal method of recovery. For a given y ∈ L2(∆σ),
we consider the extremal problem

λ̂1‖Ff − y‖2
L2(∆σ) + λ̂2‖f

(r)‖2
L2(R) → min, f ∈ Wr

2 (R). (2.9)

The solution f̂ to this problem is given by

F f̂(λ) =
λ̂1

λ̂1 + λ̂2(2π)−1λ2r
y(λ) =

(
1 + σ−2re−2σ2T λ2r

)−1

y(λ), |λ| < σ,
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and
F f̂(λ) = 0, |λ| ≥ σ.

Then, for all f ∈ Wr
2 (R), we have

λ̂1‖Ff−F f̂‖2
L2(∆σ)+ λ̂2‖f

(r)− f̂ (r)‖2
L2(R)+ λ̂1‖F f̂−y‖2

L2(∆σ)+ λ̂2‖f̂
(r)‖2

L2(R)

= λ̂1‖Ff − y‖2
L2(∆σ) + λ̂2‖f

(r)‖2
L2(R).

If f ∈ W r
2 (R), ‖Ff − y‖L2(∆σ) ≤ δ, and g := f − f̂ this equality gives

λ̂1‖Fg‖2
L2(∆σ)+ λ̂2‖g

(r)‖2
L2(R) ≤ λ̂1‖Ff−y‖2

L2(∆σ)+ λ̂2‖f
(r)‖2

L2(R) ≤ λ̂1δ
2 + λ̂2.

Now, we estimate the error of method (2.2). We have

‖u(·, T )− m̂(y)‖2
L2(R) =

1

2π

∫

R

e−2λ2T |Fg(λ)|2 dλ

≤ sup
{ 1

2π

∫

R

e−2λ2T |Ff(λ)|2 dλ : λ̂1

∫

∆σ

|Ff(λ)|2 dλ

+ λ̂2
1

2π

∫

R

λ2r|Ff(λ)|2 dλ ≤ λ̂1δ
2 + λ̂2

}
.

Since the supremum coincides with the solution to (2.4), the estimate from
above is equal to the estimate from below, and hence (2.2) is an optimal method
of recovery. �

2.2. Case p = ∞

Next, we consider the same problem of optimal recovery as before, but this
time the Fourier transform of f is given with accuracy δ, measured in the
L∞(∆σ)-norm. We denote by W r

2∞(R) the set

W r
2∞(R) := {f : f (r−1)– loc. abs. cont. on R, ‖f (r)‖L2(R) ≤ 1, Ff ∈ L∞(R)}.

We are interested in the recovery problem R4 := R(u(·, T ), W r
2∞(R), Fourσ,δ,∞),

that is, in finding the error

E(R4) = inf
ϕ:L∞(∆σ)→L2(R)

sup
f∈W r

2∞(R)

sup
y∈L∞(∆σ)

‖Ff−y‖L∞(∆σ)≤δ

‖u(·, T )− ϕ(y)‖L2(R),

and in finding an optimal method of recovery. Similarly to the cases considered,
one can prove the following theorem.

Theorem 4. Let σ > 0, δ > 0, and σ0 = min(σ, σ̂) where

σ̂ =
(π(2r + 1)

δ2

)1/(2r+1)

.
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Then the error of the recovery problem R4 is

E(R4) =

(
δ2

π

∫ σ0

0

e−2λ2T dλ +
e−2σ2T

σ2r

(
1 −

δ2σ2r+1
0

π(2r + 1)

))1/2

and

u(x, T ) ≈
1

2π

∫

∆σ0

e−λ2T

(
1 −

( λ

σ0

)2r

e2(λ2−σ2
0)T

)
y(λ)eiλx dλ

is an optimal method.

It follows from this theorem that for σ ≥ σ̂

E(R4) =
(δ2

π

∫ bσ

0

e−2λ2T dλ
)1/2

.

It means that for a given δ, starting from σ̂, further extension of the interval on
which the Fourier transform of a function from W r

2∞(R) is given with accuracy
δ in the uniform metric does not result in a decrease in the recovery error. In
other words, if the relation δ2σ2n+1 ≤ π(2n + 1) between the input data and
the size of the interval on which the data is measured is violated, then the
available information turns out to be redundant. This phenomenon of cleaning
also appears in problems of optimal recovery of derivatives when inaccurate
Fourier transform are available (see [8]).
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