
OPTIMAL RECOVERY AND EXTREMUMTHEORYGEORGII G. MAGARIL-IL'YAEV, KONSTANTIN YU. OSIPENKO, andVLADIMIR M. TIKHOMIROV1Abstract. In this paper optimal recovery problems of linear functionals on classes of smooth andanalytic functions on the basis of linear information are considered from the general viewpoint ofextremum theory. A general result about the connection of optimal recovery method with Lagrangemultipliers of some convex extremal problem is applied to the analysis of classical recovery problemson the generalized Sobolev, Hardy, and Hardy{Sobolev classes.Keywords: optimal recovery, Lagrange principle, Hardy spaces.2000 Mathematics Subject Classi�cation: 41A46, 30D55.1 Setting of the problem and general theoryLet X and Y be real or complex linear spaces and x0 a linear functional on X. It is requiredto recover x0 (as exactly as possible) on elements from some set (class) A � X using theinformation y = Fx where F : A ! Y is a linear operator which is called an informationoperator. Any function ' : F (A)! K where K = R or C we call a method of recovery of x0on A from the information F . The error of recovery is given bye(x0; A; F; ') = supx2A jhx0; xi � '(Fx)j:The value E(x0; A; F ) = inf' e(x0; A; F; ') (1)where the in�mum is taken over all functions ' : F (A) ! K is called the error of optimalrecovery. Any method b' for which the in�mum in (1) is attained we call an optimal recoverymethod.Examples of such recovery problems are the problem of best integration methods (it isrequired to recover an integral of a function from some class using information about valuesof the function and its derivatives at a �xed system of points), the problem of recovery of afunction value or a value of its derivative at some given point using information about theFourier coe�cients, Taylor coe�cients, or values of the function at some other points, etc.The method of the solution of the optimal recovery problems which we propose in thispaper is based on the following concepts. In problem (1), for a convex and balanced setA, among optimal methods of recovery there exists a linear method. Thus the in�mum in(1) may be taken over linear functionals on Y . In other words, the value E(x0; A; F; ) is thevalue of the following convex problemsupx2A jhx0; xi � hy0; Fxij ! min; y0 2 Y 01This research was carried out with the �nancial support of the Russian Foundation for Basic Research(grants Â99-01-01181, Â02-01-00386), Federal Program on Support of Leading Scienti�c Schools (grantÂ00{15{96109), INTAS-97-1050, and Research Grant 12513 of the Royal Swedish Acad. of Sci.1



(where Y 0 is the algebraic dual of Y ), which is dual to another convex problem (see [13,p. 61]; here for de�niteness X and Y are complex linear spaces)Rehx0; xi ! max; Fx = 0; x 2 A; (2)which we call an associated problem to (1). Denote byL(x; �; �0) = �0Rehx0; xi+Reh�; Fxithe Lagrange function of the problem (2) where �0 � 0 and � 2 Y 0 are the Lagrangemultipliers. If there exists a solution to (2) then it follows from the general theory ofextremum that the Lagrange multipliers are connected with the solution of the dual problem,i.e., with the optimal method of recovery. The explicit assertions are contained in thefollowing theorem.Theorem 1 (the Lagrange principle for optimal recovery problems). Let X and Ybe real or complex linear spaces, A a convex balanced subset of X, and F : X ! Y a linearoperator. Then the admissible in (2) point bx is a solution of this problem if and only if thereexists the Lagrange multiplier b� 2 Y 0 for whichminx2A L(x;b�;�1) = L(bx;b�;�1): (3)In this case hx0; xi � hb�; Fxiis an optimal method of recovery in (1) andE(x0; A; F ) = Rehx0; bxi:Proof: We use the following algebraic version of the separation theorem: Let C be a convexsubset of a real linear space X, icrC 6= ;2, and x0 =2 icrC. Then there exists x0 2 X 0, x0 6= 0,such that infx2Chx0; xi � hx0; x0iand hx0; xi > hx0; x0i for all x 2 icrC (see [13, p. 38]).1. Necessity. Let bx be a solution of (2). Suppose �rst that Rehx0; bxi = 0. We show thatin this case there exists a b� 2 Y 0 such thatRehx0; xi = Rehb�; Fxi (4)for all x 2 A. From here evidently follows (3). Note that sinceA is balanced Rehx0; xi = 0 forall admissible x. De�ne the functional l on the subspace F (spanA) by the equality l(y) =Rehx0; xi where x 2 F�1(y). This de�nition is well-de�ned. Indeed, let x1; x2 2 F�1(y).Since A is balanced it is absorbing in spanA and therefore there exists an � > 0 such that�(x1 � x2) 2 A. It is clear that �(x1 � x2) 2 F�1(0) and consequently �(x1 � x2) is anadmissible element in (2). Thus Rehx0; �(x1 � x2)i = 0, that is Rehx0; x1i = Rehx0; x2i. It iseasy to verify that l is a linear functional. Denote by b� any of its extensions on the all Y . Itis obvious that (4) is ful�lled with this b�.2icrC is the set of algebraic relative interior points of C. If a� C = x + LC (where x 2 C and LC is asubspace of X) is an a�ne hull of C, i.e., a minimal linear manifold containing C, then x0 2 icrC if for anyx 2 LC there exists " = "(x) > 0 such that [x0; x0 + "x] � C.2



Assume that Rehx0; bxi 6= 0. Denote by YR a real linear space of elements from Y withmultiplication only by the real numbers. Consider the setC = f (�; y) 2 R� YR j � = Rehx0; xi; y = Fx; x 2 A g:It is easy to see that C is a convex balanced set and, in particular, (0; 0) 2 icrC. It isalso easy to verify that (Rehx0; bxi; 0) =2 icrC. Then by the separation theorem there exist(b�0;b�R) 2 R� Y 0R not all equal to zero such thatb�0� + hb�R; yi � b�0Rehx0; bxi; 8(�; y) 2 C; (5)and b�0�+ hb�R; yi > b�0 Rehx0; bxi; 8(�; y) 2 icrC: (6)Since (0; 0) 2 icrC it follows from (6) that b�0 6= 0. It is clear that (Rehx0; bxi; 0) 2 C andconsequently 2�1(Rehx0; bxi; 0) 2 C. Substituting this in (5) we have that 2b�0 � b�0, that isb�0 < 0. Let us assume that b�0 = �1.Denote by b� an element from Y 0 for whichhb�R; yi = Rehb�; yi (7)for all y 2 Y . Let x 2 A. Then (Rehx0; xi; Fx) 2 C (8)and we haveL(x;b�;�1) = �Rehx0; xi+Rehb�; Fxi (7)= �Rehx0; xi+ hb�R; Fxi(5);(8)� �Rehx0; bxi Fbx=0= �Rehx0; bxi+Rehb�; Fbxi = L(bx;b�;�1):2. Su�ciency. Let (3) be ful�lled and x be an admissible point in (2). Then�Rehx0; xi = �Rehx0; xi+Rehb�; Fxi (3)� �Rehx0; bxi+Rehb�; Fbxi = �Rehx0; bxi;i.e., bx is a solution of (2).Let us prove the second assertion of the theorem. SinceA is balanced (3) may be rewrittenas follows maxx2A jhx0; xi � hb�; Fxij = Rehx0; bxi: (9)Hence E(x0; A; F ) � Rehx0; bxi: (10)Let us show that, in fact, we have here equality. Assume x 2 A and Fx = 0. Since �x 2 Afor any method ' we have2Rehx0; xi � 2jhx0; xij = jhx0; xi � '(0) + '(0) + hx0; xij� jhx0; xi � '(0)j + jhx0;�xi � '(0)j � 2 supx2AFx=0 jhx0; xi � '(0)j � 2 supx2A jhx0; xi � '(Fx)j:This means that the reverse inequality to (10) holds and thusE(x0; A; F ) = Rehx0; bxi:It follows from this equality and (9) that b� is an optimal method of recovery.3



Remark 1 The existence of a linear optimal method of recovery in the problem (1) wasdiscovered for the �rst time by Smolyak [21] for the real case and convex centrally-symmetricset A with dimspanF (A) <1. The generalization of this result and corresponding literaturemay be found in [12]. Dual methods for the solution of the problem (1) were used by manyauthors (see [5], [14], [24], [15], [4]) but the exact connection between the problems (1) and(2), which is that the optimal method of recovery is none other than the Lagrange multiplierin (2), was apparently used for the �rst time in [13].Remark 2 The constraints on A in (2) may be also described by a system of equalitiesand/or inequalities. In this case some of them may be included in the Lagrange function(with corresponding multipliers). But an optimal method is always the Lagrange multiplierat the constraints related to the information operator. The proof of this fact (which is moregeneral only in appearance) is just the same as that of Theorem 1.In Theorem 1 the so-called Lagrange principle for convex extremal problems with con-straints de�ned by equalities and inclusions is con�rmed. This principle is in the fact thatif a problem has a solution then there exist Lagrange multipliers such that this solutionis the absolute minimum of the Lagrange function on the set of the remaining constraints(not included in the Lagrange function). In the examples below we use this principle as anheuristic method. Namely, using equality (3) we extract the information about what bx andb� must be to satisfy the equality (3). After that we use the su�ciency of this condition and�nd the solution of (2) and the optimal recovery method. Sometimes, instead of using thesu�ciency, it is easy to verify the optimality of the obtained method directly.In the next section using Theorem 1 we prove a general result about the optimal recov-ery of functions from classes de�ned by the convolution with some kernels on the basis ofinformation about Fourier coe�cients. In Section 3 we apply this result to classes de�ned bythe convolution with cyclic variation diminishing kernels. We list there several well-knownresults which are particular cases of the considered problem.In Section 4 using Theorem 1 we obtain optimal recovery algorithms for Hardy classes.These results are known, but we point them out in order to demonstrate the general methodfrom Theorem 1. In Sections 5 and 6 we obtain some new results related to optimal recoverymethods from Hardy{Sobolev classes.2 Optimal recovery of function values from Fourier co-e�cientsLet r 2 N and 1 � p � 1. Denote by W rp (T) the Sobolev class of functions x(�) de�nedon the unit circle T (realized as the interval [��; �] with identi�ed endpoints) whose the(r � 1)st derivative is absolutely continuous and kx(r)(�)kLp(T) � 1. In 1936 Favard provedthat for all n 2 N and for all functions x(�) 2 W r1(T) such thatZTx(t) cos kt dt = ZTx(t) sin kt dt = 0; k = 0; 1; : : : ; n� 1;the following exact inequality kx(�)kC(T) � Krnr (11)4



holds. The numbers Kr (known as the Favard constants) are de�ned byKr = 4� 1Xj=0 (�1)j(r+1)(2j + 1)r+1 ; r 2Z+:Note that the case when n = r = 1 was previously considered by H. Bohr and therefore(11) is usually called the Bohr{Favard inequality.It is obvious that the problem of the exact constant in (11) is equivalent (in view ofshift-invariance of the norm) to the following:x(0)! max; a0 = : : : = an�1 = b1 = : : : = bn�1 = 0; x(�) 2 W r1(T);where a0; : : : ; bn�1 are the Fourier coe�cients of x(�). This problem has the form (2) andhence it relates to the optimal recovery problem of a function value at the point 0 on theclass W r1(T) from Fourier coe�cients. The same problem is closely related to the problemof deviation of the class W r1(T) from the space of trigonometric polynomials Tn�1 of degreeat most n � 1. Beginning from the Favard's result a lot of papers were devoted to thesesubjects.The recovery problem of a function value at some given point from the Fourier coe�cientson the class de�ned as the convolution of a real kernel K(�) with functions from the unit ballof Lp(T) involves many particular cases. More precisely, let K(�) 2 Lp0(T) (1=p + 1=p0 = 1)and �k = 1� ZTK(t) cos kt dt; k 2Z+; �k = 1� ZTK(t) sin kt dt; k 2 N;be the Fourier coe�cients of K(�). Assume that �2k + �2k 6= 0 (�0 = 0) with the exception ofa �nite (possibly empty) set Q �Z+. Set TQ = spanfcos kt; sin kt; k 2 Qg andWKp (T;Q) = nx(�) j x(�) = y(�)+ 1� ZTK(��t)u(t) dt; y(�) 2 TQ; u(�) 2 T �jQ ; u(�) 2 Lp(T)o;where T �jQ is the annihilator of TQ. It is clear that WKp (T; Q) is a subspace of the space C(T)of continuous functions on T. The corresponding convolution class is the setWKp (T;Q) = fx(�) 2 WKp (T;Q) j ku(�)kLp(T) � 1g:For instance, in the case of the Sobolev class W rp (T) we have Q = f0g, K(�) = Br(�)where Br(t) = 1Xk=1 cos(kt� �r=2)kris the Bernoulli kernel.Consider the problem of optimal recovery of a function x(�) at a point � 2 Ton the classWKp (T; Q) from the Fourier coe�cientsak = 1� ZTx(t) cos kt dt; k = 0; 1; : : : ; n� 1; bk = 1� ZTx(t) cos kt dt; k = 1; : : : ; n� 1:In accordance with the general notation we have X = WKp (T; Q), A = WKp (T;Q), Y =R2n�1, Fx(�) = Fourn x(�) = (a0; a1; : : : ; an�1; b1; : : : ; bn�1), and hx0; x(�)i = x(�).Note that if f0; 1; : : : ; n � 1g nQ 6= ;, then it is easy to check that the error of optimalrecovery equals +1 and hence any method is optimal. Therefore we assume that Q �f0; 1; : : : ; n� 1g. Put Q0 = f0; 1; : : : ; n� 1g nQ.5



For a normed linear space X, x 2 X, and a nonempty subset A of X denote by d(x;A;X)the deviation from x to A in the metric of X.We say that a function K(�) 2 L1(T) satis�es the Favard -property (for a �xed n 2 N)if there exists a polynomial bq(�) 2 Tn�1 and a number  2 [0; �=n) such that the function(K(t) � bq(t)) sinn(t + ) is nonnegative or nonpositive for almost all t 2 T. If K(�) is acontinuous function, then bq(�) may be found as a polynomial which interpolates K(�) at thezeros of sinn(�+ ).The following theorem holds.Theorem 2 (on optimal recovery from Fourier coe�cients). Let 1 < p � 1 andbp(t) = A02 + n�1Xk=1(Ak cos kt+Bk sin kt)be a polynomial of the best approximation of K(�) by Tn�1 in the metric Lp0(T). Thenx(�) � b�0a0 + n�1Xk=1(b�k(�)ak + b�k(�)bk);where b�0 = 1=2 if 0 2 Q and b�0 = A0=(2�0) if 0 =2 Q; b�k(�) = cos k�, b�k(�) = sin k� ifk 2 Q n f0g and b�k(�) = (�kAk + �kBk) cos k� + (�kBk � �kAk) sin k��2k + �2k ;b�k(�) = (�kAk � �kBk) cos k� + (�kAk + �kBk) sin k��2k + �2kif k 2 Q0, is an optimal method of recovery of x(�) on the class WKp (T; Q) from Fouriercoe�cients. Moreover,E(x(�);WKp (T; Q);Fourn) = 1�d (K(�);Tn�1; Lp0(T)) :If p =1 and K(�) satis�es the Favard -property, thenE(x(�);WK1 (T; Q);Fourn) = 1� ����ZTK(t) sign sinn(t+ ) dt���� :Let us formulate a corollary from this theorem related to the deviation of WKp (T;Q)from the subspace of trigonometric polynomials. Recall that for a normed linear space Xand nonempty subsets A and C of X the valued(C;A;X) = supx2C d(x;A;X)is called the deviation of C from A in the metric X.The value dL(WKp (T; Q);Tn�1; Lp(T)) = inf� supx(�)2WKp (T;Q)kx(�)� �x(�)kLp(T);where the in�mum is taken over all linear operators �: WKp (T; Q)! Tn�1, characterizes abest linear approximation ofWKp (T;Q) by trigonometric polynomials from Tn�1. An operator� for which the in�mum is attained is called an extremal method.Obviously, d(WKp (T; Q);Tn�1; Lp(T))� dL(WKp (T; Q);Tn�1; Lp(T)):6



Corollary 1 If K(�) satis�es the Favard -property, thend �WK1 (T;Q);Tn�1; C(T)�= dL �WK1 (T; Q);Tn�1; C(T)�= E(x(�);WK1 (T; Q);Fourn)and the operator b� which associates x(�) 2 WK1(T; Q) with the polynomialb�0a0 + n�1Xk=1(b�k(�)ak + b�k(�)bk)is extremal.Proof of Theorem 2: The problem associated with the considered problem of the optimalrecovery has the formx(�)! max; a0 = : : : = an�1 = b1 = : : : = bn�1 = 0; x(�) 2 WKp (T): (12)Its Lagrange function isL(x(�); �0; �1; : : : ; �n�1; �1; : : : ; �n�1; �0) = �0x(�) + �0� ZTx(t) dt+ 1� n�1Xk=0 ZT(�k cos kt+ �k sin kt)x(t) dt; (13)where �0, �k, k = 0; 1 : : : ; n� 1, and �k, k = 1; : : : ; n� 1, are the Lagrange multipliers.Further we argue heuristically. Namely, we set �0 = �1 and use the Lagrange principleformally. It allows us to understand how the solution of (12) is organized and what formthe Lagrange multipliers have (which determine an optimal method of recovery according toTheorem 1). After that we use the su�cient conditions of Theorem 1.Let bx(�) be a solution of the problem (12). Then (according to the Lagrange principle)there exist such numbers b�k, k = 0; 1 : : : ; n � 1, and b�k, k = 1; : : : ; n � 1, that the func-tion L(x(�); b�0; b�1; : : : ; b�n�1; b�1; : : : ; b�n�1;�1) attains its absolute minimum onW rp (T) at thepoint bx(�) (for simplicity we do not indicate that b�k and b�k depend on �).For de�niteness we assume that 0 2 Q. Substitute in L instead of x(�) its representationin terms of u(�) and y(�) = 0 + Xk2Qnf0g(k cos kt+ �k sin kt)(the coe�cients k and �k are uniquely determined by x(�) since they are the correspondingFourier coe�cients of x(�)). Denote by b0, bk, b�k, k 2 Q n f0g, and bu(�) the coe�cients andthe function which correspond to bx(�). By means of simple calculations we obtain that thefunction� 0 � Xk2Qnf0g(k cos k� + �k sin k�) + 2b�00 + Xk2Qnf0g(b�kk + b�k�k)+ 1� ZT��K(� � t) +Xk2Q0((b�k�k + b�k�k) cos kt+ (b�k�k � b�k�k) sin kt)�u(t) dt (14)attains its absolute minimum on the set0; k; �k 2 R; 1� ZTu(t)cos ktsinkt dt = 0; k 2 Q; ku(�)kLp(T) � 1 (15)7



at the point (fb0;bk; b�kgk2Qnf0g; bu(�)). Hence b�0 = 1=2 and b�k = cos k�, b�k = sin k�, k 2Q n f0g.The problem (14){(15) is a problem of type (12) (the minimization of a linear functionalon a convex balanced set). Its Lagrange function may be written obviously (we set themultiplier at the minimizing functional equals 1 and do not include the last constraint in(15)). Then according to the Lagrange principle there exist such bc0, bck; bdk, k 2 Q n f0g, thatthe function1� ZT��K(� � t) + bc0 + Xk2Qnf0g(bck cos kt+ bdk sin kt)+Xk2Q0((b�k�k + b�k�k) cos kt+ (b�k�k � b�k�k) sin kt)�u(t) dt (16)attains the absolute minimum on the unite ball of Lp(T) at the point bu(�). If we denote byL(�) the multiplier preceding u(�) under the integral sign, then it is clear thatbu(�) = �kL(�)k1�p0Lp0(T)jL(�)jp0�1 signL(�):Note that bu(�) 2 T �jn�1. It follows from (15) (when k 2 Q) and the fact that for k 2 Q0,�2k + �2k 6= 0 and therefore the vanishing of Fourier coe�cients of bx(�) implies the vanishingof corresponding Fourier coe�cients of bu(�). Then in accordance with the criterion of thebest approximation in Lp0(T) we obtain that the polynomialp(t) = bc0 + Xk2Qnf0g(bck cos kt+ bdk sin kt) +Xk2Q0((b�k�k + b�k�k) cos kt+ (b�k�k � b�k�k) sin kt)must be the best approximation polynomial for the function t! K(� � t) by the subspaceTn�1 in the metric Lp0(T).Now we shall apply su�cient conditions. Let bp(�) be the polynomial mentioned in thestatement of the theorem. Then bp(� � �) is the polynomial of the best approximation ofK(���) by the subspace Tn�1 in the metric Lp0(T). Choose multipliers bc0, bck, bdk, k 2 Qnf0g,and b�k; b�k, k 2 Q0, so that p(�) = bp(� � �). We obtain just the same formulae for thesecoe�cients which are given in the theorem. With these Lagrange multipliers the polynomialp(�) is in fact the polynomial of the best approximation of K(�) by the subspace Tn�1 in themetric Lp0(T). From the criterion of the best approximation it follows that the functionbu(�) = �kbL(�)k1�p0Lp0(T)jbL(�)jp0�1 sign bL(�);where bL(�) is L(�) with just de�ned Lagrange multiplier, is orthogonal to Tn�1 and evidentlykbu(�)kLp(T) = 1. Hence bu(�) is admissible in (15). Put b0 = bk = b�k = 0, b�0 = 1=2,b�k = cos k�, and b�k = sin k�, k 2 Q n f0g. Then since bu(�) is a solution of (16) (withcorresponding multipliers) by Theorem 1 the point (fb0;bk;b�kgk2Qnf0g; bu(�)) is a solution ofthe problem (14){(15). This is equivalent to the fact that the functionbx(�) = 1� ZTK(� � � )bu(� ) d�(by(�) = 0 since b0 = bk = b�k = 0, k 2 Q n f0g) gives the minimum of the Lagrange function(13) with �0 = �1 and Lagrange multipliers de�ned above. Since bu(�) 2 T �jn�1, by the same8



arguments as above the Fourier coe�cients of bx(�) vanish for k 2 Q0 and it means that bx(�)is admissible in (12). Then by Theorem 1 it is a solution of this problem and the Lagrangemultipliers de�ne an optimal method. The case when 0 2 Q0 is considered analogously. The�rst part of the theorem is proved.Further,bx(�) = 1� ZTK(� � t)bu(t) dt = 1� ZT(K(� � t)� bp(� � t))bu(t) dt= 1�kK(�)� bp(�)kLp0(T) = 1�d(K(�);Tn�1; Lp0(T));that is the quantity in the right-hand side is the value of the problem (12). Hence and fromTheorem 1 the second assertion of the theorem follows.Let p =1 and K(�) satis�es the Favard -property. Putu(t) = sign(K(t)� bq(t));where bq(�) is from the de�nition of the Favard -property. Thenu(t) = " sign sinn(t+ ); " = 1 or � 1;almost everywhere. Since it is clear that u(�) 2 T �jn�1, from the criterion of the best approx-imation it follows that bq(�) is the best approximation polynomial of K(�) by the subspaceTn�1 in the metric L1(T). Consequently,d(K(�);Tn�1; L1(T)) = ZTjK(t)� bq(t)j dt = "ZT(K(t)� bq(t)) sign sinn(t+ )dt= ����ZTK(t) sign sinn(t+ ) dt���� :Together with the previous equality this proves the last assertion of the theorem.Proof of Corollary 1: The upper bound. Set� = ����ZTK(t) sign sinn(t+ ) dt���� :Let x(�) 2 WKp (T;Q). Then taking into account the last assertion of Theorem 2 we havekx(�)� b�x(�)kC(T) = max�2T jx(�)� b�x(�)j � max�2TE(x(�);WKp (T; Q);Fourn) = ��:Hence dL(WK1 (T; Q);Tn�1; C(T))� E(x(�);WK1 (T;Q);Fourn) = �� :The lower bound. Consider the functionx(�) = 1� ZTK(� � � ) sign sinn(� � ) d�:Clearly, x(�) 2 WK1 (T; Q). This function may be rewritten as followsx(t) = 1� ZTK(� ) sign sinn(� +  � t) d�:9



It is easily seen thatx�k�n � = (�1)k� ZTK(� ) sign sinn(� + ) d� = "(�1)k �� ; " = 1 or � 1;and in view of the fact that jx(t)j � �=� the function x(�) has 2n-alternance on the pe-riod. By the Chebyshev alternance theorem the trivial polynomial is its best approximationpolynomial by the subspace Tn�1 in C(T). Therefore,d(WK1 (T; Q);Tn�1; C(T))� d(x(�);Tn�1; C(T)) = kx(�)kC(T) = ��:3 Cyclic variation diminishing kernelsDenote by K(Q) the set of kernels K(�) 2 L1(T) for which for all y(�) 2 TQ and all u(�) 2L1(T) such that u(�)�j TQ and u(�) 6= 0 the inequalityS(y(�) + (K � x)(�)) � S(u(�))holds, where S(u(�)) is the number of sign changes of u(�) on the period and(K � u)(�) = 1� ZTK(� � t)u(t) dt:For a function u(�) 2 C(T) denote by distu(�) the length of the largest subinterval of Tcontaining no zeros of u(�). Denote by K(Q; �) the class of kernelsK(�) 2 L1(T) for which forall u(�) 2 L1(T) and y(�) 2 TQ such that u(�)�j TQ, u(�) 6= 0, and dist(y(�) + (K � u)(�)) < �the inequality S(y(�) + (K � u)(�)) � S(u(�))holds, and moreover, if (K � u)(�) 2 C2(T), thenZ2(y(�) + (K � u)(�)) � S(u(�));where Z2(u(�)) is the number of zeros of u(�) when multiple zeros are counted twice andintervals on which the function vanishes identically are discarded. Assume as before that�2k + �2k 6= 0, k =2 Q, where �k and �k are the Fourier coe�cients of K(�).Suppose that Kj(�) 2 K(Qj; �j); j = 1; : : : ; k; K0(�) 2 K(Q0): (17)Set K(�) = (Kk � : : : �K1 �K0)(�); Q = k[j=0Qj; � = min1�j�k �j: (18)Consider some particular cases of the classes WK1 (T; Q) for such kernels.1. Let k = 0, Q0 = ;. The kernels from the set K(;) are called cyclic variation dimin-ishing kernels or CVD-kernels. The corresponding classesWK1 (T;;) = fx(�) j x(�) = (K � u)(�); ku(�)kL1(T) � 1 g10



were studied in [20]. In particular, the kernelK�(t) = 12 + 1Xm=1 cosmtcoshm�is a CV D-kernel and the corresponding class WK�1 (T;;) coincides with the class h�1 whichis the set of real, 2�-periodic functions f(�) that can be analytically continued to the stripS� = fz 2 C j j Im zj < �g so that jRe f(z)j � 1 in this strip.2. Let P (D) be a di�erential polynomial of degree r with constant real coe�cientsP (D) = Dr + ar�1Dr�1 + : : :+ a0; D = ddt:Set KP (t) = 12 Xm2ZP (im)6=0 eimtP (im) :For Q = fm 2 Z+ j P (im) = 0g the class WKP1 (T;Q) coincides with the generalizedSobolev class which is the set of 2�-periodic functions x(�) with (r�1)st derivative absolutelycontinuous and satisfying the conditionk(P (D)x)(�)kL1(T) � 1:In particular, for P (D) = Dr this class coincides with the standard Sobolev class W r1(T).In the general case a polynomial P (D) can be represented in the following formP (D) = kYj=1 Pj(D); (19)where Pj(D) are di�erential polynomials with real coe�cients of degrees at most 2. It followsfrom [16] that KPj (�) 2 K(Qj; �j) whereQj = fm 2Z+ j Pj(im) = 0 g; �j = �=h(Pj(�)); (20)and h(Pj(�)) is the largest imaginary part of the zeros of the polynomial Pj(�).3. For a di�erential polynomial P (D) with real coe�cients let hP1;� be the class of2�-periodic real-valued functions f(�) that can be analytically continued to the strip S�satisfying the condition jRe(P (D)f)(z)j � 1 for all z 2 S�. Then hP1;� = WKP1 (T; Q) where(using the notation (19), (20))KP (�) = (KPk � : : : �KP1 �K�)(�); Q = k[j=1Qj:Set hn(t) := sign sinnt:Lemma 1 Assume that a kernel K(�) satis�es (17) and (18). Then for alln > maxf supj2Q j; 2�=� g (21)K(�) satis�es the Favard -property where  de�ned by the condition(K � hn)() = �k(K � hn)(�)kL1(T): (22)11



Proof: Consider the problem of optimal recovery of x(�) at the zero on the class WKp (T;Q)from the Fourier coe�cients of this function a0; : : : ; an�1; b1; : : : ; bn�1. The associated prob-lem has the formx(0)! max; a0 = : : : = an�1 = b1 = : : : = bn�1 = 0; x(�) 2 WK1 (T; Q):It follows from [19] that under the conditions (21), (22) the function (K � hn)(� � ) is asolution of this problem. Assume for de�niteness that 0 2 Q. Similarly to the proof ofTheorem 2 we obtain that there exist bck, bdk, k 2 Q, and b�k, b�k, k 2 Q0, such that thefunction1� ZT��K(�t) + bc0 + Xk2Qnf0g(bck cos kt+ bdk sin kt)+Xk2Q0((b�k�k + b�k�k) cos kt+ (b�k�k � b�k�k) sin kt)�u(t) dtattains the absolute minimum on the unit ball of L1(T) at the point bu(�) = hn(� + ).Denoting by L(�) the multiplier preceeding u(�) under the integral sign we obtain that bu(�) =� signL(�). Changing the variable t on �t we get the existence of polynomial P (�) 2 Tn�1such that sign(K(t)� P (t)) = �hn(t+ ).Thus for the classes WK1 (T; Q) with kernels K(�) satisfying the conditions (17) and (18)the assertions of Theorem 2 (for p =1) and Corollary 1 hold.We list several well-known results which are particular cases of the assertions provedhere. The inequality (11) obtained by Favard [7] was used in [8] (and also independently byAkhiezer and M. Krein [3]) to prove the equalityd(W r1(T);Tn�1; C(T)) = Krnr ; r 2 N: (23)The class W r1(T) is de�ned by the convolution with the Bernoulli kernel which satis�es theFavard -property for  = 0 if r is odd and  = �=(2n) if r is even. For this class theproblem of optimal recovery from Fourier coe�cients was solved by Bojanov [5] who provedthat E(x(�);W r1(T);Fourn) = Krnr :The result of Favard{Akhiezer{Krein (23) was developed in several directions. Partiallythis was elucidated in [1]. Note the own result of Akhiezer [2]d(h�1;Tn�1; C(T)) = 4� 1Xm=0 (�1)m(2m+ 1) cosh(2m + 1)n�and M. Krein [11] d(��1;Tn�1; C(T)) = 4� arctan �n;where ��1 is the class of functions x(�) represented in the form x(�) = u(�; �), 0 < � < 1,with functions u(r; t), 0 � r < 1, t 2 T, harmonic in the unit ball and satisfying there thecondition ju(r; t)j � 1. The class ��1 coincides with the class W P�1 (T; ;) whereP�(t) = 12 1� �21 � 2� cos t+ �212



is the Poisson kernel which satis�es the Favard �=(2n)-property.The problem of generalization of the Favard{Akhiezer{Krein result for fractional r wasopen for a long time. This problem was solved by Dzyadyk [6] and Sun Yongsheng [22],[23]. It turns out that the Bernoulli kernel with fractional r � 1 also satis�es the Favard-property with  de�ned by the condition1Xm=0 cos((2m+ 1) � �r=2)(2m+ 1)r = 0:The following result holds:d(W r1(T);Tn�1; C(T)) = 4�nr ����� 1Xm=0 sin((2m+ 1) � �r=2)(2m+ 1)r ����� :4 The Hardy spacesNow we consider optimal recovery problems for classes of analytic functions. First we givesome de�nitions. Denote by Hp(D), 1 � p � 1, the Hardy space, i.e., the set of functionsf(�) analytic in the unit disk D = fz 2 C j jzj < 1g and satisfyingsup0<r<1 12� ZTjf(reit)jp dt = App <1; 1 � p <1;supz2D jf(z)j = A1 <1; p =1:Every function f(�) 2 Hp(D) associates with the unique function ~f (�) 2 Lp(@D) (@D is theboundary of D) by the rule: ~f �eit� = limr!1 f �reit�for almost all t. Moreover, k ~f(�)kLp(@D) = Ap and for all z 2 D the Cauchy formulaf (k)(z) = k!2�i Z@D ~f(�)(� � z)k+1 d�; k 2Z+; (24)holds.The subset of Lp(@D) that consists of all such functions ~f (�) is the set of those functionsfrom Lp(@D) for which 12�i Z@D ~f(�)�k d� = 0; k 2 N: (25)For simplicity we shall use the same notation for f(�) 2 Hp(D) and its boundary values.The set Hp(D) = ff(�) 2 Hp(D) j kf(�)kLp(@D) � 1gwe call the Hardy class.We consider the following recovery problem: recover a value of f(�) at a point � 2 D onthe Hardy class Hp(D) from the informationf(z1); f 0(z1); : : : ; f (k1�1)(z1); : : : ; f(zn); f 0(zn); : : : ; f (kn�1)(zn);13



where z1; : : : ; zn are distinct points from the disk D. We are interested in an optimal methodof recovery.In accordance with the general notation here X = Hp(D), Y = CN , N = k1 + : : :+ kn,Rehx0; f(�)i = Re f(� ), A = Hp(D), and F : A! C N ,Ff(�) = �f(z1); f 0(z1); : : : ; f (k1�1)(z1); : : : ; f(zn); f 0(zn); : : : ; f (kn�1)(zn)� :The associated problem has the formRe f(� )! max; f (k)(zj) = 0; j = 1; : : : n; k = 0; 1; : : : ; kj � 1; f(�) 2 Hp(D): (26)In contrast to the real case where a solution of associated problem and optimal method wereobtained simultaneously, here we �rst �nd a solution of (26) directly and then use it toobtain an optimal recovery method.Since every function f(�) 2 Hp(D) for whichf(z1) = : : : = f (k1�1)(z1) = : : : = f(zn) = : : : = f (kn�1)(zn) = 0may be represented in the form f(z) = B(z)g(z) where g(�) 2 Hp(D) andB(z) = nYj=1� z � zj1 � zjz�kj ;it su�ces to �nd the extremum in the problemRe g(� )! max; g(�) 2 Hp(D):Evidently, for p = 1 the function bg(z) � 1 is extremal. We prove that for 1 � p < 1 thefunction bg(z) = (1� j� j2)1=p(1� �z)�2=p is extremal. By the residue theorem we haveg(� ) = 12�i Z@D g(�)(1� j� j2)(p�2)=p(� � � )(1� ��)(p�2)=p d� = 12� ZT g(eit)(1 � j� j2)(p�2)=p(1� �e�it)(1 � �eit)(p�2)=p dt: (27)Applying the H�older inequality to the last integral we obtain thatjg(� )j � (1� j� j2)�1=p (28)for all g(�) 2 Hp(D). Moreover, it follows from (27) that(1 � j� j2)�1=p = bg(� ) = kbg(�)kpLp(@D)(1 � j� j2)�1=p:Thus, bg(�) 2 Hp(@D) and for this function (28) turns to equality. Consequently, the functionbf(z) = e�i argB(�)B(z)bg(z)is extremal in (26).In accordance with (24) and (25) the problem (26) may be rewritten as followsRe 12�i Z@D f(�)� � � d� ! max; k!2�i Z@D f(�)(� � zj)k+1 d� = 0; j = 1; : : : ; n;k = 0; 1; : : : ; kj � 1; 12�i Z@D f(�)�m d� = 0; m 2Z+; kf(�)kLp(@D) � 1: (29)14



It is a convex problem. We apply the Lagrange principle to it noting that the set A(see (2)) is de�ned here by a countable number of equalities and one inequality. We includethe constraints of equality type in the Lagrange function by \natural" way without givingmore precise descriptions since, as it was said, we apply the Lagrange principle heuristically.We note only that an optimal recovery method is de�ned by multipliers at the constraintsrelated to the information operator (see Remark 2).The Lagrange function of the problem (29) isL = Re 12� ZT� �1eit � � + nXj=1 kj�1Xk=0 �jkk!(eit � zj)k+1 +Xm�0 �meimt�f(eit)eit dt;where �jk; �m 2 C , 1 � j � n, 0 � k � kj � 1, m � 0. By the Lagrange principle there existsuch b�jk; b�m 2 C , 1 � j � n, 0 � k � kj � 1, m � 0, that L attains its minimum at thepoint bf (�) on the set ff(�) 2 Lp(@D) j kf(�)kLp(@D) � 1g. Hence it follows that for z = eitand 1 < p <1 L(z) = Cz bf(z)j bf(z)jp�2 = C1B(z)(z � � )(1� �z)(p�2)=p ; (30)where L(z) is the expression in parentheses under the integral sign in the Lagrange function.Since B(z) = B�1(z) for z = eit, we have� 1z � � + nXj=1 kj�1Xk=0 b�jkk!(z � zj)k+1 +Xm�0 b�mzm = C1B(z)(z � � )(1� �z)(p�2)=p : (31)The function in the right-hand side of this equality is analytic in the diskD with the exceptionof points �; z1; : : : ; zn where it has poles. If we multiply the both sides of (31) by z � � andsubstitute z = � , we get C1 = �B(� )(1� j� j2)(p�2)=p. In a similar way we obtainb�jk = B(� )(1� j� j2)(p�2)=pk!(kj � k � 1)! � (1 � zjz)kj!j(z)(� � z)(1� �z)(p�2)=p�(kj�k�1)���z=zj ;where !j(z) = nYm=1m6=j � z � zm1� zmz�km :We prove now that the method de�ned by b�jk (which are well-de�ned for all 1 � p � 1;for p = 1 all expressions involving p are understood as the limit values as p ! 1) isoptimal. Indeed, for all 1 � p � 1 the equality (31) holds with some b�m, m � 0 (we do notneed explicit expressions for them). Let 1 � p < 1. Then for all f 2 Hp(D) taking intoaccount the last equality of (30) and applying the H�older inequality we obtain����f(� )� nXj=1 kj�1Xk=0 b�jkf (k)(zj)����= ����� 12�i Z@D Xm�0 b�mzm + B(� )(1� j� j2)1=pz bf (z)j bf (z)jp�2! f(z) dz�����= jB(� )j(1� j� j2)1=p 12� ����ZTbf(eit)j bf(eit)jp�2f(eit) dt����� jB(� )j(1 � j� j2)1=pk bf(�)kp�1Lp(@D)kf(�)kLp(@D) � j bf(� )j:15



For p =1 using the fact that the integral of the Poisson kernel equals 1 we have����f(� )� nXj=1 kj�1Xk=0 b�jkf (k)(zj)���� = ����� 12�i Z@D Xm�0 b�mzm + B(� )(1� j� j2)B(z)(z � � )(1 � �z)! f(z) dz�����= jB(� )j 12� ����ZT 1� j� j2j1� �eitj2f(eit) dt���� � jB(� )j = j bf(� )j:It follows from Theorem 1 that the error of optimal recovery equals j bf (� )j. Thus it isproved that the method f(� ) � nXj=1 kj�1Xk=0 b�jkf (k)(zj)is optimal. In particular, for one point z1 = 0 with the multiplicity n (that is we considerthe problem of optimal recovery from Taylor coe�cients at the zero) for p =1 we havef(� ) � n�1Xj=0 � j(1 � j� j2(n�j))f (j)(0)j! : (32)The optimality of these methods was obtained, without using the Lagrange principle, in [17],[18] (p =1), and [9] (1 � p <1).5 The Hardy{Sobolev spacesFor p =1 we can obtain a more general result rather than formula (32).Denote by Hr1(D) the Hardy{Sobolev class which is the set of all functions analytic inthe unit disk D for which jf (r)(z)j � 1, z 2 D. Consider the problem of optimal recovery off(�) 2 Hr1(D) at a point � (without loss of generality we may assume that � 2 (0; 1)) fromthe information f(0); f 0(0); : : : ; f (n+r�1)(0).From the equalityf(z) = Sr�1(z) + Z z0 (z � �)r�1(r � 1)! f (r)(�) d�; Sr�1(z) = r�1Xk=0 f (k)(0)k! zk;and the Cauchy formula for f (r)(�) we havef(z) = Sr�1(z) + 12� ZT 1Xk=0 k!(k + r)!zk+re�iktf (r)(eit) dt: (33)Thus the associated problem can be written as followsRe Sr�1(� ) + 12� ZT 1Xk=0 k!(k + r)!� k+re�iktf (r)(eit) dt! ! max;f(0) = : : : = f (r�1)(0) = 0; k!2� ZTf (r)(eit)e�ikt dt = 0; k = 0; : : : ; n� 1;12� ZTf (r)(eit)eimt dt = 0; m 2 N; kf (r)(�)kL1(@D) � 1:16



We prove that the function bf(z) = n!(n+ r)!zn+ris extremal in this problem. Assume that there exists a function f0(�) 2 Hr1(D) for whichf0(0) = : : : = f (n+r�1)(0) = 0 and jf0(� )j > bf (� ). Without loss of generality we may assumethat f0(� ) > 0. Since g0(z) = f0(z) + f0(z)2has the same properties as f0(�) and is real on the real axis, we assume from the verybeginning that the function bf (�) is real on the real axis. PutF (z) := bf(z)� �f0(z); � = bf0(� )f0(� ) :The function F (�) has at least n + r + 1 zeros on the interval (�1; 1) taking into accountmultiplicities. Consequently, by Rolle's theorem F (r)(�) has at least n + 1 zeros on thisinterval. For z 2 @D we havej bf (r)(z)� F (r)(z)j = �jf (r)0 (z)j � � < 1 � j bf (r)(z)j:Since bf (r)(�) has exactly n zeros in D (counting multiplicities) Rouche's theorem implies thatthe function F (r)(�) must have the same number of zeros. This contradiction proves that thefunction bf(�) is extremal.Now let us write out the Lagrange function of the considered problemL = Re �Sr�1(� ) + r�1Xk=0 �kf (k)(0)+ 12� ZT � 1Xk=0 k!(k + r)!� k+re�ikt + n�1Xk=0 �k+rk!e�ikt + 1Xm=1�meimt! f (r)(eit) dt! ;where �k; �m 2 C , 0 � k � n + r � 1, m 2 N. According to the Lagrange principle thereexist such b�k;b�m 2 C that L attains its minimum at the point bf (�) on the set of functionsfor which kf (r)(�)kL1(@D) � 1.Clearly, b�k = 1k!� k; k = 0; : : : ; r � 1:Denoting by L(�) the expression in parentheses under the integral sign we haveL(eit) = � bf (r)(eit)jL(eit)j:Consider the Fourier-series expansion of jL(eit)jjL(eit)j = 1Xk=�1 akeikt:Taking into account the fact that it is a real function we have a�k = ak. Thus� 1Xk=0 k!(k + r)!� k+re�ikt + n�1Xk=0 b�k+rk!e�ikt + 1Xm=1 b�meimt= �e�int a0 + 1Xk=1 akeikt + 1Xk=1 ake�ikt! :17



Consequently, ak = (n+ k)!(n+ k + r)!�n+k+r;ak = (n� k)!(n� k + r)!�n�k+r � (n� k)!b�n�k+r ; k = 1; : : : ; n:Hence we obtain b�n+r = �m+r(m+ r)! �1 � (m+ r)!m! (2n�m)!(2n�m+ r)!� 2(n�m)� :By the direct veri�cation (similar to the case described above) it can be proved that themethodf(� ) � r�1Xk=0 f (k)(0)k! � k + n+r�1Xk=r �1 � k!(k � r)! (2n + r � k)!(2n + 2r � k)! j� j2(n+r�k)� f (k)(0)k! � k (34)is optimal.Thus we have proved the following theorem.Theorem 3 (on optimal recovery from Taylor coe�cients). Let r 2Z+, n 2Z, and� 2 D. Then the method (34) is optimal method of recovery on the class W rH1(D) fromthe information Tayn+r f(�) = (f(0); f 0(0); : : : ; f (n+r�1)(0)):Moreover, E(f(� );W rH1;Tayn+r) = n!(n+ r)! j� jn+r:For r = 1 this result was obtained by Newman (see [14, p. 42]).6 Optimal recovery from the values at the equidistantsystem of points on a circleConsider now the problem of optimal recovery of a value f(� ), f(�) 2 H11(D), � 2 D, fromthe values f(�j), j = 0; : : : ; n�1, where f�jg is the system of equidistant points on the circleof the radius 0 < � < 1: �j = �eij2�=n. From [10] it follows that the functionbf (z) := "zn � �nn ; " = e�iarg(�n��n);is extremal in the associated problemRe f(� )! max; f(�j) = 0; j = 0; : : : ; n� 1; f 2 W 1H1(D):In view of (33) this problem may be rewritten as followsRe f(0) + 12� ZT 1Xk=0 � k+1k + 1e�iktf 0(eit) dt!! max;f(0) + 12� ZT 1Xk=0 � k+1jk + 1e�iktf 0(eit) dt = 0; j = 0; : : : ; n� 1;12� ZTf 0(eit)eimt dt = 0; m 2 N; kf 0(�)kL1(@D) � 1:18



The Lagrange function of this problem isL = Re �f(0) + n�1Xj=0 �jf(0)+ 12� ZT � 1Xk=0 � k+1k + 1e�ikt + n�1Xj=0 �j 1Xk=0 � k+1jk + 1e�ikt + 1Xm=1�meimt! f 0(eit) dt! ;where �j ; �m 2 C , 0 � j � n � 1, m 2 N. According to the Lagrange principle there existsuch b�j;b�m 2 C that L attains its minimum at the point bf(�) on the set of functions forwhich kf 0(�)kL1(@D) � 1.It is clear that n�1Xj=0 b�j = 1:Denoting by L(�) the expression in parentheses under the integral sign we haveL(eit) = �bf 0(eit)jL(eit)j:Consider the Fourier-series expansion of jL(eit)jjL(eit)j = 1Xk=�1 akeikt:Taking into account the fact that it is a real function we have a�k = ak. Thus"ei(n�1)t 1Xk=0 �ke�ikt � 1Xm=1 b�meimt! = a0 + 1Xk=1 akeikt + 1Xk=1 ake�ikt;where �k = 1k + 1  � k+1 � n�1Xj=0 b�j� k+1j ! :Hence ak = "�n�k�1, ak = "�n+k�1, k = 1; : : : ; n� 1.Assume for simplicity that � 2 (�1; 1). Put � = �=�. Then1n � k  �n�k � n�1Xj=0 b�j��kj ! = �2kn+ k  �n+k � n�1Xj=0 b�j�kj! ;where �j = eij2�=n, j = 0; : : : ; n� 1. Puttingbk := n�1Xj=0 b�j��kjwe have n�1Xj=0 b�j�kj = n�1Xj=0 b�j(�j)�(n�k) = bn�k:Thus we obtain the system1n� k (�n�k � bk) = �2kn+ k (�n+k � bn�k); k = 1; : : : ; n� 1:19
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