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Let Sg :={z € C : |Imz| < p}. For 27-periodic functions which are
analytic in Sg with p-integrable boundary values, we construct an optimal
method of recovery of f'(£), £ € S, using information about the values

f(21)7 o '7f(2n)7 Z; € [07 277) .
INTRODUCTION

Let X and Y be linear spaces, L a linear functional on X, and I: X — Y a
linear operator (which is usually called an information operator). Suppose that
W C X. Consider the problem of the optimal recovery of Lz, + € W, on the
basis of the information x. The value

e(L,W,I):=infsup |Lx — F([lz)], (1)
F zeW
where F:Y — ( are any functionals (not necessarily linear or continuous) is
called the intrinsic error. A functional fy for which

sup |La — Fo(lx)| =e(L, W, 1)
zeEW
is said to be an optimal algorithm or optimal method.
General settings of recovery problems can be found in [3, 4, 13, 2].
Denote by H, 3, 1 < p < oo, the space of all 2r-periodic functions f, which
are analytic in Sg := {2z € € : [Imz| < 8} and satisfy

1 por . . 1/p
= sp (=[S il + 17— imPydt) < oo, 1< p< oo,

0<n<p

113006 := sup [f(2)] < o0.
ZESﬁ
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Set
Hyp:= {f € Hpp: HfHHp,,B < 1}-
We will consider the problem (1) for W = H, 5, Lf = f'(£), £ € S3, and

[f = (f(l'l)v e 7f($n)),

where x; are distinct points from T := [0, 27). In this case we denote the intrinsic
error (1) by €'(&, Hy g, I). From the well-known Smolyak’s formula (the complex
version of this result was proved in Osipenko [5]) it follows that

(€ Hyp, ) = sup [[/(E)]. (2)
fEH,
1f=0

For the unit ball H, of the Hardy space of nonperiodic functions analytic in
the unit disk the analogous problem of optimal recovery was solved in Micchelli,
Rivlin [3, 4] (p = oo) and Osipenko, Stessin [8] (1 < p < o0). The problem
of recovery of f¥)(¢) in H, was considered in Osipenko [6]. An interesting ex-
tremal problem concerning minimization of the intrinsic error by choosing points
T1,...,x, was studied by Rivlin, Ruscheweyh, Shaffer, Wirths [12]. Several re-
sults relating to optimal recovery of f/(¢), f € H,, from inaccurate values of f
can be found in Osipenko, Stessin [9, 10]. An optimal method of recovery of f(¢),
f € H, 3, was recently obtained by Osipenko, Wilderotter [11].

In Section 1 we construct an optimal method of recovery of f'(¢), f € H, 5 and
calculate the appropriate intrinsic error. In Section 2 we examine the intrinsic
error of optimal recovery for the classes H., 3 and H; g in the case where the
values of functions are known at equidistant nodes.

1. OPTIMAL METHOD OF RECOVERY

Extremal problems for periodic analytic functions are often solved in terms
of elliptic functions (see, for example, [7, 11]). We shall recall some notions from
this theory. The Jacobi elliptic function w = sn(z, k) is defined by the equation

L /w dt
0 (1 —12)(1 — k22)

We shall also deal with the elliptic functions

en(z, k) :=+/1 —sn?(z,k), dn(z,k):= \/1 — k2sn?(z, k)
(en(0,k) = dn(0,k) = 1), and complete elliptic integrals of the first kind with
moduli k& and &' := /1 — k2
1

o dt oo [ d
. '_/o =) (1 — k2e2)] b /o =) (1 —k2e2)
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We always assume that the modulus k is defined from the equation

T K'
oK b

It can be shown (see, for example, Akhiezer [1]) that
o] — mm 2

k=4e" Zm=o € o +1)2

1425 e-2m

Henceforth we shall not note the dependence of the Jacobi elliptic functions on

the modulus k.
In what follows all expressions with p for p = oo are considered in their limits

as p — oo.
Set
n [7 n [,7
Wi(z):= /2 IIsn i(z: —a;), wi(z):=]] s i(z: — ).
o =
., &, } and consider the equation
1 p—2 T W'(§)
sn — 4k sn(v+ K)| = —
! (SH(’V +K) ;0 )) K W(¢)
Denote the function in the left hand side of (3) by s(v). Since s(¥) is a continuous
function in (— K, K') and s(y) — +oo as v — £ K there exists a solution of (3)
St put y0 = K.

Assume that & ¢ {x, ..
(3)

Y0 € (=K, K). For £ € {a4,..

Set xg:= & — 7y /K,
K K
w(z) :=ksn ?(Z —&)sn ?(Z — &+ ),

T —1
I {c €T SO < ) } Ty:=T\ T,

p o W[ B
p—12kK W)’ £ €Ty, n=2m,
b= W(¢) sign W/(§)2 : EeTon=m,
W T P )
T KM ©) - W)
_w(l'o), n = 9m — 17
L, ey, n=">2m,
e To, n =2m
ug(z) :={ 14 bw(z)’ ¢ €T, )
w(z) +b K ~1 -
1+ buw(z) (ﬂsn —(= wo)) Con=2m— 1.



THEOREM 1. For all 1 < p < oo the method

(€~ Y e (6 (x),

J=1

where for & # x;

2(p=1) 20=1) K
ra(g)  uel@) (L +bw(z;)) 7 dnm e —(— )
C](f) = _an/2+11( K )

wi(zj)sn® —(§ — )

and

2kK? W (§)

oz(f) = 7Tn+1§tzgf)

———wilrj), E=a;,j=1,...,n,

fgé {xlv"'vxn};

is an optimal method of recovery on the class H,z. Moreover, the following
equality holds

kKNS W] e
o\ (1+b) Py fgé{xl? 7$n};
178
2 X P
5 (7) |w;(z;)], £ =x;

Proof. The function

is analytic in Sg. Moreover, v(z+27) = —v(z) and |v(x +i3)| =1 for all € IR.
Thus W(z) = W=(z) for z € 3S5. Using the definition of b, it can be shown
that b € [—1,1]. Consider the function

. w(z)+b W(z)
9(2) = L+ bw(z) ue(z)
K K

4%
Since dn —z and w(z) are 2m-periodic, |w(z)| < 1, z € Ss, and dn —z does not
T

(1+ bw(z))z/p dn?/? g(z —£).

0
vanish in Sg, g € H, 5.
For fe H,pand 1 <p < oo set

77 = 2 G T Bt + 0P e+ i8)

A
+9(x —iB)lg(x — i)~ f(x —if)) de. (4)
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Using the properties of elliptic functions, we have for all x € R

K
— cn —(x 1)
dn %(xiw) =i T (5)
sn ?(:1; +1)

The element of integration in J f is a 2m-periodic function. Consequently, we can
rewrite J f in the form

a(é) / ue(2) (1 +buw(z) "5 ek (50

Jf:= W )w(2) dn 7 ?(Z — f)K—f(z) dz

4y

4y

ot ug(2)(1+ b)) "7 dn” T 29,
: EW (z)sn? —(Z —¢)

s

where I'. is the boundary of rectangle —e < Rez < 27 — e, |Imz| < 3, and ¢ is
such that & x4,..., 2y, lie inside this rectangle. Assume that & ¢ {xy,...,22,}.
By the residue theorem

2n

Jf= &)+ CFE&) =) (O f(x),
where

a8) | (2 — )2ue(2)(1 + bw(z)) "7 dn~ 7 ?”(Z_g)

(= ——1lim ~
2 Wizt (= — )
W) (w21 b)) T
uel€) W) n

It is not hard to check that b is defined from the condition C' = 0. Thus we have

n

Jf = 1) =2 ci()f (). (7)

71=1
From (4) and Hélder’s inequality
11 < 1a(Olllgllr -

Hence

¢'(& Hyp, 1) < |a(©)]ll9ll3;,
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On the other hand for go := g/|g||n, , we have Jgo = g{({). Using equality (2),
we obtain
¢(& Hyp, 1) > |g(O] = g0l = le(©)lgll%, .-
Thus
¢(& Hyp, 1) = a(O)lll9ll3;, -
To calculate ||g|#, , substitute f(2) = g(z) in (6)
o) (0() £ D)1 b)) dn? 2 )

A9l = 7 / 7 dz = o)

: k sn? ?(Z —¢)

s

1+ b?
QK( + )

(8)
(we omit here some technical details concerned with the application of the residue
theorem). Consequently,

T 1/p
o, - = (501 + %))

and
ptl

v [W(O)]
|ug(€)]

[,7
If ¢ = x;, then b = 0 and ¢g(z) = w(Z)W(Z)ugl(z) dn?/? i(z: — ;). In this
case the assertion of the theorem can be obtained by the same scheme.
For p = oo consider the integral

2 [ G Bt + i)+ i0)
t+g(e = iB)p(z —iB)f(z —iB)) da,

, k2K
(¢ ) = 5 (2)

s

Jf =

where
P(2) = |1+ () dn (- 6

The representation (7) follows from (5) and the residue theorem. We have

A<l ]l -
Taking in account that ¢(z) > 0, we obtain

9" (O] = gl = (Ol 5-

Hence
€'(§, Hoo g 1) = [a(E)] [l -
Using the residue theorem, by analogy with (8) we obtain
T

1+6%). 1
QK( + )

lello,s =



Let us consider our problem in the case when ¢ =0 and

If=1,f = (f(_h)vf(h))v h € (Ovﬁ)'

In other words we wish to construct an optimal formula of numerical differenti-
ation at the point £ = 0, using the information about values of function at the
points £h.

In this particular case we have

K K K
W(z) = ksn i(z: + h)sn i(z: —h), W(0) = —ksn® ih, W'(0) = 0.
s s s
Moreover, 0 € T} and b = 0. Thus we obtain that an optimal method has the
form K fh ) %
f/(()) ~ if( ) f)(_ ) an A iy X
s 2K s
sn —h
s
and
K 2K\ K s (KN
- iy /v [ 2 4
(0, Hy 5, 1) = 2<W) s’ —h = k2 (W) B2 1 O(hY).

2. OPTIMAL RECOVERY USING AN EQUIDISTANT SYSTEM OF POINTS

For optimal recovery of periodic functions the most natural system of points
is an equidistant system. We will estimate the error of optimal recovery of the
derivative from the information

If=1C"f = (f(t)...., f(15,)),

where -
t?:(j—l)g, j=1,...,2n.

Set
elzn(Hpﬁ) i= sup 6/(57 Hy g, [(271))‘
EeT
THEOREM 2. For all 3 >0

2nA
ey (Hy )\L = Ine " 4 O(n _55”),

2K\ 2 A 2K
ey (Hyp) =1/ rAZn =4/ X2716_5”4—0 55”)

A\ = 4207 S209_, e~ 0nmim 1) 2
= 4e 1+ 22;’;;:1 e—4Bnm2

and A is the complete elliptic integral of the first kind for modulus .

where




Proof. Using the first principal transform of elliptic functions of degree 2n (see

[1]), we find

2n e s
W(Z—l):knnsn<éz—2j 1]&”)
2 i 2

n T n
n K 27 —1 K 279 —1
— (—1)”1{”]1;[1 sn (%Z — JZn K) sn (%Z + JZn K)
2 N [,7
n sn? J K — sn? iz: 2m A
:k”H 2n2._1 7TK = )\sn( Z—I—A,)\).
j=11 — k2gn2 J Ksn?—z
2n T

Hence

In view of the equalities

%sn(t, A)=cn(t, A)dn(t, A) = \/(1 —sn?(t, A))(1 — A?sn?(t, \)),

from Theorem 1 we obtain

1+p
k /2K »
(fs) = sup = (Z2) 7 Vi (),
se[0,1]2 ™
where
) p=1
1= s2)(1— M%)\ 7
(oo ) ) ®
— s
D, (s) = !
()(1+ > )T 0,1]\ 5
S y s C ”
! 72(s) '
A —1\?
a = %, S, = {5 € [0,1] : a®(1 — s*)(1 — A\?s%) < (pT) 32},

v(s) = ay/(1 = s2)(1 — A2s?) + %2(1 _ )= nsty— P2

Let us begin with the case p = 2. It is easy to check that

Py(s) = /82 +4a?(1 — s2)(1 — A2s2).

From properties of the first principal transformations of elliptic functions of degree
2n it follows that

2 (7
2mA n sn (—]&)
=TI Lt (9)




Hence 2a¢ > 1 and
P3(s) < s* +4a*(1 — 5%) < 4a’.

This estimate is attained for s = (0. Thus

2_K )\Zn/\‘

T T

G/Qn(Hpﬁ) =
The asymptotic equality follows from the equations
VA=2e4 0 (6_55”) ,
_T —4fn
A_2+0@ ).

Let p = oo. It can be easily shown that S, = (s*,1] where s* is the unique
solution of the equation

a2(1 — 32)(1 — )\232) = 52,

We have

2a /(1 — s2)(1 = X?s2), s €[0,57]

Doo(s) = s+ 20 82)(81 — AQSZ)v s € (s7,1]

Since the function

o (1 —sH)(1 — A%s?)

S

F(s):==s4a

is convex for s € (0,1) we obtain

max_F(s) = max{F(s"), F(1)} = max{®..(s),1}.

s€[s*,1]

The function ®..(s) decreases while s € [0, s*]. Consequently

max ®..(s) = max{®..(0),1} = 2a. |

s€[0,1]
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