
ON OPTIMAL RECOVERY METHODS INHARDY{SOBOLEV SPACESK. YU. OSIPENKOAbstract. In the paper a general approach to the constructionof optimal recovery methods for linear functionals by a knownsolution of a dual extremal problem is proposed based on someparametrization of the solution of this dual problem. Using theproposed approach we succeeded in solving of series optimal recov-ery problems in Hardy{Sobolev classes such as optimal recovery offunctions by the information of the Fourier coe�cients or functionvalues at some system of nodes in periodic and non-periodic cases.1. Setting of problem and method of parametrizationLet W be some set of a linear space X. Consider the problem ofoptimal recovery of a linear functional L on this set by the values oflinear functionals l1; : : : ; ln. For x 2 W we setIx := (l1x; : : : ; lnx):The operator I : W ! Kn, where K = R or C depending on whetherX is a real or complex space, is called an information operator. Thevalue e(L;W; I) := infS : Kn!K supx2W jLx� S(Ix)jis called the error of optimal recovery of functional L on the set W .Any method S0 for whichsupx2W jLx� S0(Ix)j = e(L;W; I);is said to be an optimal method of recovery.S. A. Smolyak [1] proved that in the real case for a convex andcentrally symmetric set W among optimal methods of recovery thereexists a linear method ande(L;W; I) = supx2WIx=0 jLxj:(1)The analogous result in the complex case for a convex and balanced setW was proved in [2] (more general settings of optimal recovery problemsand appropriate results may be found in [3] and in the literature citedthere).This research was carried out with the �nancial support of the Russian Founda-tion for Basic Research (grants Â99-01-01181 and Â00{15{96109).1



2 K. YU. OSIPENKOAny element x0 2 W for which Ix0 = 0 andjLx0j = supx2WIx=0 jLxjwe call extremal. The problem of �nding an extremal element oftenturns out more simple than the problem of �nding an optimal recoverymethod. The purpose of this paper is to o�er a way allowing to obtainan optimal method of recovery by extremal element (in the presenceof some its parametrization) and to construct a number of optimalrecovery methods, using the o�ered scheme.Theorem 1. Let X be a real linear space, W a convex centrally sym-metric set from X, and x0 an extremal element in the problem of opti-mal recovery of a linear functional L on the setW by the values of linearfunctionals l1x; : : : ; lnx. Assume that for allM = (t1; : : : ; ts+n) 2 Rn+sfrom some neighborhood of M0 2 Rn+s there exist x(M) 2 X suchthat x(M0) = x0 and for the given functions  1(M); : : : ;  s(M) suchthat  j(M0) = 0, j = 1; : : : ; s, for all M from a neighborhood ofM0, satisfying the condition  j(M) = 0, j = 1; : : : ; s, x(M) 2 W(in the case when s = 0 we assume that for all M from a neighbor-hood of M0, x(M) 2 W ). Then if the functions '(M) := Lx(M),'j(M) := ljx(M), j = 1; : : : ; n, and  j(M), j = 1; : : : ; s, have con-tinuous partial derivatives with respect to all variables in a neighborhoodof M0 and the determinant of the matrixJ(M) =0BBB@ @'1@t1 : : : @'n@t1 @ 1@t1 : : : @ s@t1: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :@'1@tn+s : : : @'n@tn+s @ 1@tn+s : : : @ s@tn+s1CCCAdoes not vanish at M0, then the methodLx � nXj=1 Cjljx;where C1; : : : ; Cn are solutions of the systemJ(M0)C = grad'��M0;in which C = (C1; : : : ; Cn+s), is the unique linear optimal method ofrecovery.Proof. Let Lx � nXj=1 Cjljx



ON OPTIMAL RECOVERY METHODS 3be an optimal method of recovery. Then in view of the fact that x0 isan extremal element we have for all x 2 WjLx� nXj=1 Cjljxj � jLx0j:Consequently for all M from some neighborhood of M0 such that j(M0) = 0, j = 1; : : : ; s, the inequalityj'(M) � nXj=1 Cj'j(M)j � j'(M0)jholds. Since 'j(M0) = 0, j = 1; : : : ; n, from here it easily follows thatthe function '(M)� nXj=1 Cj'j(M)has an relative extremum at the point M0. The method of Lagrangeleads to necessary conditions@'@tm � nXj=1 Cj @'j@tm � sXj=1 Cn+j @ j@tm = 0; m = 1; : : : ; n+ s;from which C1; : : : ; Cn are uniquely determined.We cite one simple example. Let HR1 be the space of functionsanalytic in the unit diskD := f z 2 C : jzj < 1 g;bounded, and real in the interval (�1; 1). As the set W we considerHR1 which is the set of functions from HR1 satisfying the conditionsupz2D jf(z)j � 1:For the problem of optimal recovery of functions from HR1 at thepoint � 2 (�1; 1) by their values at zero the dual problem (1) may besolved immediately using the Schwartz lemma:supf2HR1f(0)=0 jf(� )j = j� j:Thus the function f0(z) = z is extremal for the considered problem.Set f1(z; t) = z + t1 + tz :It is easy to see that f1(z; t) 2 HR1 for all t 2 (�1; 1). Moreover,f1(z; 0) = f0(z) and f1(0; t) = t. From Theorem 1 we get that themethod f(� ) � �@f1@t (0; 0)��1 @f1@t (�; 0)f(0) = (1 � � 2)f(0)



4 K. YU. OSIPENKOis the unique linear optimal method of recovery. More general resultsconcerning the considered problem may be found in [2] and [4] (theyalso can be obtained by the proposed method).2. Optimal recovery by Fourier coefficientsWe shall call the Hardy{Sobolev class Hr1;� the set of 2�-periodicfunctions analytic in the strip S� := fz 2 C : j Imzj < �g and satisfyingthe condition jf (r)(z)j � 1, z 2 S�. By Hr;R1;� we denote the class offunctions from Hr1;� that are real on the real axis. In the case r = 0we denote these classes by H1;� and HR1;�, respectively.Put aj(f) := 1� ZTf(x) cos jx dx; j = 0; 1; : : : ;bj(f) := 1� ZTf(x) sin jx dx; j = 1; 2; : : : ;where T := [0; 2�). Consider the problem of optimal recovery of f(�),f 2 Hr1;�, � 2 T, by the values of the information operatorIf = (a0(f); a1(f); : : : ; an�1(f); b1(f); : : : ; bn�1(f)):In view of a translate invariance of the considered class the optimalrecovery error does not depend on �. We denote it by e(Hr1;�; I).The solution of the investigated problem gives in terms of the ellipticfunction theory. We recall some de�nitions from this theory. Thecomplete elliptic integrals of the �rst kind with moduli k and k0 :=p1 � k2 are de�ned byK := Z 10 dtp(1� t2)(1 � k2t2) ; K 0 := Z 10 dtp(1� t2)(1 � k02t2) :In what follows we assume that k is chosen from the condition�K 02K = �:In this case k is de�ned by the equation (see, for example, [5])k = 4e�� � P1m=0 e�2�m(m+1)1 + 2P1m=1 e�2�m2�2 :We shall use the standard notation sn(z; k), cn(z; k), and dn(z; k) forthe Jacobi elliptic functions omitting the dependence on the moduluswhen it equals k.Set��n;0(z) := p� sn�2n�� z; �� ; ��n;r := Dr � �n;0; r � 1;



ON OPTIMAL RECOVERY METHODS 5where � is the complete elliptic integral of the �rst kind for the modulus� de�ned by �0� = 2nK 0K = 4�n� ;Dr(t) = 2 1Xm=1 cos(mt� �r=2)mr ; r = 1; 2; : : : ;is the Bernoulli kernel, and(f � g)(z) := 12� ZTf(z � t)g(t) dt:The functions ��n;r introduced in [6] have the properties similar tothe ones of the Euler perfect splines (see, for example, [7, p. 72]).The Euler perfect splines are solutions of number of classical extremalproblems for the Sobolev classes (about exact values of n-widths, aboutthe Kolmogorov type inequality for derivatives, and others), and thefunctions ��n;r turns out the solutions of analogous problems for analyticfunctions from the Hardy{Sobolev classes. It follows from [6] that��n;r(z) = �p��nr 1Xm=0 sin((2m+ 1)nz � �r=2)(2m+ 1)r sinh((2m+ 1)2n�) ;k��n;rk1 = �p��nr 1Xm=0 (�1)m(r+1)(2m+ 1)r sinh((2m+ 1)2n�) ; r = 0; 1; : : :(we denote by k � k1 the standard norm in L1(T)).It was proved in [8] thate(Hr1;�; I) = k��n;rk1and the extremal function for the problem of optimal recovery of f(0)on the class Hr1;� by the information operator I is the function'�n;r(z) := (��n;r �z + �2n� ; r = 2l;��n;r(z); r = 2l + 1:Nevertheless the question about optimal recovery method remainedopen. Using Theorem 1, we shall construct a linear optimal method ofrecovery for this problem.First we prove one auxiliary result. Setctn z := cn z dn zsn z :Lemma 1. For all 0 � t1 < : : : < t2n < 2K the system of functions1; ctn�K� z � t1� ; : : : ; ctn�K� z � t2n�is a Chebyshev system on the set Tn f�t1=K; : : : ; �t2n=Kg.



6 K. YU. OSIPENKOProof. Assume that there exist real C0; C1; : : : ; C2n not all equal zerofor which the functionC0 + 2nXj=1 Cj ctn�K� z � tj�has 2n+1 zeros on the setTnf�t1=K; : : : ; �t2n=Kg. Then the functiong(z) = C0 2nYj=1 sn�K� z � tj�+ 2nXm=1Cm cn�K� z � tm�dn�K� z � tm� 2nYj=1j 6=m sn�K� z � tj�must have at least 2n + 1 zeros on T. The function g(z) is an ellipticfunctions with periods 2�, 2�K 0=K. By the Liouville theorem (see [5,p. 14]) it follows that the number of zeros of g(z), counting multiplici-ties, in the parallelogram of periods coincides with the number of poles.The number of poles of g(z) in the parallelogram of periods does notexceed 2n+1. Since the number of zeros counting multiplicities of 2�-periodic function should be even it does not exceed 2n what contradictswith made assumption.Put �(z) := sn�2n�� z; �� ctn K� z:Theorem 2. For all � 2 T the methodf(�) � d0a0(f)2 + n�1Xj=1 dj(aj(f) cos j� + bj(f) sin j�);wheredj = 2naj(�) nXm=1(�1)m+1 ctn 2m � 12n K cos j 2m� 12n �;j = 0; : : : ; n� 1;is optimal for the class H1;�. For r � 1 and all � 2 T the methodf(�) � a0(f)2 + 2n n�1Xj=1 jrdjraj(�)(aj(f) cos j� + bj(f) sin j�);wheredjr = 8>>>><>>>>:(�1)r=2 nXm=1(Dr � �)�2m � 12n �� cos j 2m� 12n �; r = 2l;(�1)(r�1)=2 n�1Xm=1(Dr � �)�mn �� sin jmn �; r = 2l + 1;



ON OPTIMAL RECOVERY METHODS 7is optimal for the class Hr1;�.Proof. First we consider the problem of optimal recovery of f(0) forthe class Hr;R1;� by the information operatorI0f := (a0(f); a1(f); : : : ; an�1(f)):We have e(Hr;R1;�; I0) = supf2Hr;R1;�I0f=0 jf(0)j � j'�n;r(0)j:On the other hand, if f 2 Hr;R1;� and I0f = 0, then, puttingf0(z) := f(z) + f(�z)2 ;we have f0 2 Hr;R1;�, I0f0 = 0, and furthermore, since f0 is an evenfunction, bm(f) = 0, m 2 N. Consequently,f(0) = f0(0) � supf2Hr1;�If=0 jf(0)j = j'�n;r(0)j:Thus, e(Hr;R1;�; I0) = j'�n;r(0)j:Using the �rst principal transform of elliptic functions of degree 2n,it can be shown (see [9]) that'�n;0(z) = p� sn�2n�� z + �; �� = kn 2nYm=1 sn�K� z � 2m� 12n K� :For M = (t1; : : : ; tn) puthM (z) := kn nYm=1 sn�K� z � tm� 2nYm=n+1 sn�K� z � 2m � 12n K� :Then for all M 2 [0; 2K)n, hM 2 HR1;�, and fort0m := 2m � 12n Kand M0 := (t01; : : : ; t0n), hM0 = '�n;0.Let r = 0. Let us show that the determinant of the matrix consistingof the elements@@tmaj(hM )��M0 = aj�@hM@tm ���M0�; m = 1; : : : ; n; j = 0; : : : ; n� 1;does not vanish. If we assume the converse, then there exist realC1; : : : ; Cn not all equal zero such that for the functiong = nXm=1Cm@hM@tm ���M0



8 K. YU. OSIPENKOthe equalities a0(g) = : : : = an�1(g) = 0 hold. Consequently, for theeven function g0(z) := g(z) + g(�z) the equalitiesa0(g0) = a1(g0) = b1(g0) = : : : = an�1(g0) = bn�1(g0) = 0hold. Since @hM@tm (z) = �hM (z) ctn�K� z � tm� ;in view of the evenness of hM0 we haveg0(z) = �hM0(z) nXm=1Cm�ctn�K� z � t0m�� ctn�K� z + t0m��= �hM0(z) nXm=1Cm�ctn�K� z � t0m�� ctn�K� z � � 0m�� ;where � 0m = 2K � t0m. PutF := g0 � C0hM0;where C0 = g0(0)=hM0(0). For the function F the equalitiesa0(F ) = a1(F ) = b1(F ) = : : : = an�1(F ) = bn�1(F ) = 0hold. In view of the fact that the trigonometric system1; cos x; sinx; : : : ; cos(n� 1)x; sin(n� 1)xis a Chebyshev system the function F must have at least 2n signchanges on T (see [10, p. 41]). In addition, in view of the evennessF (z) has a zero at z = 0 without sign changes. Thus F has at least2n + 1 distinct zeros on T, which contradicts Lemma 1.By Theorem 1 (for s = 0) it follows that for �nding an optimalrecovery method it remains to solve the system(2) n�1Xj=0 Cjaj�@hM@tm ���M0� = @hM(0)@tm ���M0 = p� ctn 2m� 12n K;m = 1; : : : ; n:We haveaj�@hM@tm ���M0� = � 1� ZThM0(z) ctn�K� z � t0m� cos jz dz= � 1� ZThM0 �z + 2m� 12n �� ctn K� z cos j�z + 2m� 12n �� dz= (�1)m+1p�aj(�) cos j 2m� 12n �:



ON OPTIMAL RECOVERY METHODS 9From the fact that the determinant of the system (2) does not vanishit follows that aj(�) 6= 0, j = 0; : : : ; n � 1. Thus the system (2) isequivalent to the system(3) n�1Xj=0 Cjaj(�) cos j 2m� 12n � = (�1)m+1 ctn 2m� 12n K;m = 1; : : : ; n:In view of the orthogonality of the system 1; cos x; : : : ; cos(n� 1)x atthe points 2m� 12n �, m = 1; : : : ; n, we obtain that C0 = d0=2, Cj = dj ,j = 1; : : : ; n� 1.Now let r � 1. Consider the functionhP;r(z) := 8><>:t02 + (Dr � hM)(z); r = 2l;t02 + (Dr � hM)�z � �2n� ; r = 2l + 1;where P = (t0; t1; : : : ; tn) 2 Rn+1. For all P such that (P ) := a0(hM) = 0;hP;r 2 Hr;R1;�, and furthermore, for P0 := (0; t01; : : : ; t0n), hP0;r = '�n;r. ByTheorem 1 (by now with s = 1) it follows that for �nding an optimalmethod of recovery one have to solve the systemn�1Xj=0 Cj @aj(hP;r)@tm ���P0 + Cn @ @tm = @hP;r(0)@tm ���P0 ; m = 0; : : : ; n:(4)We have (all partial derivatives are calculated at the point P0)@a0(hP;r)@t0 = 1; @aj(hP;r)@t0 = 0; j = 1; : : : ; n� 1; @ @t0 = 0;@a0(hP;r)@tm = 0; @ @tm = (�1)m+1p�a0(�); m = 1; : : : ; n;@aj(hP;r)@tm = 8>>><>>>:(�1)r=2+m+1p�aj(�)jr cos j 2m� 12n �; r = 2l;(�1)r=2+m�1=2p�aj(�)jr sin jmn �; r = 2l + 1;j = 1; : : : ; n� 1; m = 1; : : : ; n:



10 K. YU. OSIPENKOFor r = 2l the system (4) takes the form: C0 = 1=2,n�1Xj=1 (�1)r=2aj(�)jr Cj cos j 2m� 12n � + a0(�)Cn= (Dr � �)�2m� 12n ��; m = 1; : : : ; n;and is solved similarly to the system (2).If r = 2l + 1, then the system (4) is reduced to the following: C0 =1=2,n�1Xj=1 (�1)(r�1)=2aj(�)jr Cj sin jmn � � a0(�)Cn= (Dr � �)�mn ��; m = 1; : : : ; n:Using the orthogonality of the system sinx; : : : ; sin(n � 1)x at thepoints m�=n, m = 1; : : : ; n� 1, we obtain the solution of this system.Let us prove that the constructed method (denote it by S) is optimalfor the class Hr1;�. Assume that there exists a function f0 2 Hr1;� forwhich jf0(0)� S(I0f0)j > e(Hr1;�; I0):(5)Then for f0(z) 2 Hr1;� the inequality (5) also holds. Without loss ofgenerality we may assume that f0(0)� S(I0f0) > 0. Consequently, forthe function g(z) := f0(z) + f0(z)2 2 Hr;R1;�we have g(0)� S(I0g) > e(Hr1;�; I0) � e(Hr;R1;�; I0);which is impossible in view of optimality of the method S on the classHr;R1;�.To �nd an optimal method of recovery of f(�) it is su�cient toconsider an optimal method of recovery at zero for the function F (z) =f(z + �).Corollary 1. For all � 2 T the methodf(�) � 1n Xjjj�n�1� nXm=1(�1)m+1 ctn 2m� 12n K cos j 2m� 12n �� eij�cj(�)cj(f)is an optimal method of recovery on the class H1;� by the Fouriercoe�cients cj(f) = 12� ZTf(t)e�ijt dt; jjj � n � 1:



ON OPTIMAL RECOVERY METHODS 11For r � 1 and all � 2 T the methodf(�) � c0(f) + 1n Xjjj�n�1j 6=0 jjjrdjjjr eij�cj(�)cj(f)is an optimal method on the class Hr1;� .3. Recovery by function valuesConsider now the problem of optimal recovery of the value f(�),f 2 Hr1;�, � 2 T, by the values of the information operatorI� := (f(�1); : : : ; f(�2n));where � = (�1; : : : ; �2n), 0 � �1 < : : : < �2n < 2�. Assume that r � 1(for r = 0 the solution of considered problem was obtained in [8]).First we prove a number of auxiliary statements.Lemma 2. For all 0 � �1 < : : : < �2n < 2� there exist such 0 � �1 <: : : < �2n < 2� that for the function f0 2 Hr1;� which has the formf0 = c+Dr �B0;where c 2 R and B0(t) = kn 2nYj=1 sn�K� (t� �j)� ;a0(B0) = 0 and f0(�1) = : : : = f0(�2n) = 0:Proof. Recall that a Blaschke product of degree m for a domain 
 � Cis a function of the formB(z) = " exp�� mXj=1 P (z; �j)�;where �1; : : : ; �m are points from 
, j"j = 1, P (z; �) = u(z; �)+iv(z; �),u(z; �) is the Green's function for 
 with singularity at �, and v(z; �)is the harmonic conjugate of u(z; �) (which, in general, is multiplevalued). Denote by B2n the set of single valued Blaschke products ofdegree at most 2n for the annulus 
� = fz 2 C : e�� < jzj < e�greal on the unite circle E = fz 2 C : jzj = 1g. Using the generalizedPick{Nevanlinna problem in [11] an odd and continuous in the topologyof uniform convergence on compacts from 
� mapping � : S2n ! B2n,where S2n = fx = (x0; : : : ; x2n) 2 R2n+1 : 2n+1Xj=0 jxjj2 = 1 g;was constructed.For x 2 S2n we set�0(x) = (a0(B); fB(�2)� fB(�1); : : : ; fB(�2n)� fB(�1));



12 K. YU. OSIPENKOwhere B(t) = �(x)(eit) and fB = Dr �B. Then the mapping �0 : S2n !R2n is odd and continuous and consequently, by Borsuk's theorem thereexists x0 2 S2n such that �0(x0) = 0. Thus the function bB(t) :=�(x0)(eit) for which a0( bB) = 0 and the function bf := a + Dr � bB forwhich for a = �(Dr � bB)(�1)bf(�1) = : : : = bf(�2n) = 0are constructed. Since bf (r) = bB, by Rolle's theorem follows that bB hasat least 2n distinct zeros on Tand in view of the fact that �(x0) 2 B2n,bB has exactly 2n zeros on T. It remains to note that from the form ofBlaschke products for the annulus with zeros on the unite circle (see [9])the equality bB(t) = "B0(t)follows, where " = 1 or �1. Putting f0 = " bf , we obtain the assertionof the lemma.Proposition 1. Let 0 � �1 < : : : < �2n < 2� and f0 be the functionfrom Lemma 2. Then for any � 2 T and any function f 2 Hr1;� suchthat f(�1) = : : : = f(�2n) = 0 the inequalityjf(�)j � jf0(�)jholds.Proof. Suppose that for some � 2 Tn f�1; : : : ; �2ng there exists a func-tion g 2 Hr1;� for which g(�1) = : : : = g(�2n) = 0 and jg(�)j > jf0(�)j.Since the function bg(z) = g(z) exp(�i arg g(�)) satis�es the same con-ditions without loss of generality we may assume that g(�) > 0. Setg0(z) := g(z) + g(z)2 :Evidently that g0 2 Hr;R1;� and g0(�) = g(�). Consider the functionF := f0 � �g0; � = f0(�)g0(�) :This function has zeros at the points �1; : : : ; �2n; �. Consequently, byRolle's theorem F (r) has at least 2n+1 zeros onT. Hence it follows thatthe single valued and analytic in the annulus 
� function F (r)�1i lnw�has on this annulus at least 2n+ 1 zeros. Since on the boundary 
� aBlaschke product satis�es the condition����B0�1i lnw����� = 1; w 2 @
�;



ON OPTIMAL RECOVERY METHODS 13and f (r)0 = B0, for w 2 @
� we have����f (r)0 �1i lnw�� F (r)�1i lnw����� = �����g(r)0 �1i lnw������ j�j < 1 = ����f (r)0 �1i lnw����� :As B0�1i lnw� has exactly 2n zeros on the domain 
�, by Rouche'stheorem the function F (r)�1i lnw� must have the same number ofzeros. The contradiction so obtained completes the proof of the theo-rem.Theorem 3. For all � 2 T the methodf(�) � 2nXj=1 Cj(�)f(�j);in which C1(�); : : : ; C2n(�) are the solutions of the system0BB@ 1 : : : 1 0f1(�1) : : : f1(�2n) a0(g1): : : : : : : : : : : : : : : : : : : : : : : : : : : : : :f2n(�1) : : : f2n(�2n) a0(g2n)1CCA0BB@ C1(�)C2(�)...C2n+1(�)1CCA =0BB@ 1f1(�)...f2n(�)1CCA ;(6)wherefm = (Dr � gm); gm(t) = B0(t) ctn�K� (t� �m)� ; m = 1; : : : ; 2n;and the function B0 with the zeros �m is de�ned by Lemma 2, is optimalon the class Hr1;�. Moreover, for the error of optimal recovery theequality e(�;Hr1;�; I�) = j(Dr �B0)(�) � (Dr �B0)(�1)jholds.Proof. Set �0 := �(Dr �B0)(�1) andBP (t) := kn 2nYj=1 sn�K� (t� tj)� ; fP := t0 +Dr �BP ;where P = (t0; t1; : : : ; t2n). Then in view of duality (1) and Proposi-tion 1 for P = P0 := (�0; �1; : : : ; �2n) the function fP0 is extremal inthe problem of optimal recovery of f(�) on the class Hr1;� and on theclass Hr;R1;�, too. Put �0 := �,'j(P ) := fP (�j); j = 0; : : : ; 2n;  (P ) := a0(BP ):



14 K. YU. OSIPENKOWe have @'j@t0 = 1; j = 0; : : : ; 2n; @ @t0 = 0;and for all m = 1; : : : ; 2n@'j@tm ���P0 = �K� fm(�j); j = 0; : : : ; 2n; @ @tm ���P0 = �K� a0(gm):From Theorem 1 it follows that the coe�cients of optimal recoverymethod are determined from the system (6) under the condition thatthe determinant of this system does not vanish. If we assume theconverse, then there should exist real �0; �1; : : : ; �2n not all equal zerofor which the functiong = �0 +Dr �� 2nXj=1 �jgj�vanishes at the points �1; : : : ; �2n and furthermorea0� 2nXj=1 �jgj� = 0:Let �0 2 Tn f�1; : : : ; �2ng. Consider the functionF := g � �fP0 ; � = g(�0)fP0(�0) :The function F has zeros at the points �0; �1; : : : ; �2n. Consequently,by Rolle's theorem F (r) has at least 2n + 1 zeros on T. We haveF (r)(t) = 2nXj=1 �jgj(t)� �B0(t) = B0(t)� 2nXj=1 �j ctn�K� (t� �j)�� ��:From Lemma 1 it follows that F (r) can not have more than 2n zeros onT. The contradiction so obtained proves that the determinant of thesystem (6) does not vanish.To prove the optimality of constructed method on the class Hr1;�one may use the same arguments which were realized in the proof ofTheorem 2.Denote by A the matrix of the system (6). Then the optimal methodconstructed in Theorem 3 will have the formf(�) � (A�1G(�); f) = (G(�); (A�)�1f);where G(�) = (1; f1(�); : : : ; f2n(�)), f = (f(�1); : : : ; f(�2n); 0) and A�is the matrix conjugated to A (here (�; �) is the standard scalar productin R2n+1). Thus the optimal method can be written in the formf(�) � d0 + 2nXm=1 dm(Dr � gm)(�);



ON OPTIMAL RECOVERY METHODS 15where d0; d1; : : : ; d2n are the solutions of the system8>>>>><>>>>>: d0 + 2nXm=1 dm(Dr � gm)(�j) = f(�j); j = 1; : : : ; 2n;2nXm=1 dma0(gm) = 0:(7)Let X�2n is the set of functions of the formc0 + 2nXn=1 cm(Dr � gm);where c1; : : : ; c2n satisfy the condition2nXn=1 cma0(gm) = 0:Then, taking into account (7), we obtainCorollary 2. Let 0 � �1 < : : : < �2n < 2� and 0 � �1 < : : : < �2n <2� be de�ned by Lemma 2. Then the function g(�) 2 X�2n interpolatedf at the points �1; : : : ; �2n is an optimal method of recovery of f(�),� 2 T, on the class Hr1;� by the values at the points �1; : : : ; �2n.Consider the problem of optimal recovery for the equidistant points� 0m := m� 1n �; m = 1; : : : ; 2n:Put tmr := (� 0m; r = 2l;� 0m + �2n; r = 2l + 1; m = 1; : : : ; 2n:Theorem 4. For all � 2 T the methodf(�) � bf1 + 12n 2nXm=1� 2nXj=2 bfjbcj e�i(m�1)(j�1)�=n�(Dr � �)(� � tmr);where bfj = 12n 2nXm=1 f(� 0m)ei(m�1)(j�1)�=n;bcj = 12n 2nXm=1(Dr � �)(tmr)ei(m�1)(j�1)�=n; j = 1; : : : ; 2n;is an optimal method of recovery on the class Hr1;� by the informationabout function values at the equidistant points � 0m, m = 1; : : : ; 2n.



16 K. YU. OSIPENKOProof. Let r = 2l. Then ��n;r(� 0m) = 0, m = 1; : : : ; 2n. Since��n;r = (Dr � '�n;0)�z � �2n�and '�n;0 �z � �2n� = �kn 2nYm=1 sn�k� (z � � 0m)� ;for the system of points � 0m the points �m from Lemma 2 coincide with� 0m. Thus gm(z) = (�1)m+1p��(z � � 0m):The system (7) in the considered case will have the form8>>>>><>>>>>: d0 +p� 2nXm=1(�1)m+1dm(Dr � �)(� 0j � � 0m) = f(�j); j = 1; : : : ; 2n;2nXm=1(�1)m+1dm = 0:Putting x0 = d0, xm = p�(�1)m+1dm, cm = (Dr � �)(� 0m), and usingthe periodicity and evenness of the function Dr � �, we arrive at thesystem 0BBBB@1 c1 c2 : : : c2n1 c2n c1 : : : c2n�1: : : : : : : : : : : : : : : : : : : : :1 c2 c3 : : : c10 1 1 : : : 1 1CCCCA0BBBB@ x0x1...x2n�1x2n 1CCCCA = 0BBBB@f(� 01 )f(� 02 )...f(� 02n)0 1CCCCA :Summing the �rst 2n equalities of this system and using the last equal-ity, we �nd that x0 = bf1. Further, the solution may be easily foundusing the equality U�CU = 0BB@bc1 bc2 00 . . . bc2n1CCA ;whereU = � 1p2nei(j�1)(m�1)�=n�2nj;m=1 ; C = 0BB@ c1 c2 : : : c2nc2n c1 : : : c2n�1: : : : : : : : : : : : : : : : : :c2 c3 : : : c1 1CCA :If r = 2l + 1, then��n;r �� 0m + �2n� = 0; m = 1; : : : ; 2n:



ON OPTIMAL RECOVERY METHODS 17Since ��n;r �z + �2n� = (Dr � '�n;0)(z)and '�n;0(z) = kn 2nYm=1 sn�K� �z � �� 0m + �2n��� ;the points �m from Lemma 2 coincide in this case with the points� 0m + �2n . Consequently,gm(z) = (�1)mp���z � �� 0m + �2n�� :Further arguments are carried out similarly to the even case.4. The non-periodic caseIn the non-periodic case we call the Hardy{Sobolev class Hr1 theset of functions analytic in the unit disk D := fz 2 C : jzj < 1g andsatisfying the condition jf (r)(z)j < 1, z 2 D. Denote by Hr;R1 the setof functions from Hr1 real on the interval (�1; 1). For r = 0 we denotethe class Hr1 by H1.Consider the problem of optimal recovery of f(�), � 2 (�1; 1) by thevalues of the information operatorI�f = (f(�1); : : : ; f(�n+r));where �1 < �1 < : : : < �n+r < 1. In the case r = 0 the solution ofthe considered problem was obtained in [2], therefore we assume thatr � 1.For functions f analytic in the unit disk we put(Trf)(z) := Z z0 (z � �)r�1(r � 1)! f(�) d�:Obviously, (Trf)(r) = f and consequently, Trf 2 Hr1 for all f 2 H1.From [12] the following result follows.Proposition 2. For all �1 < �1 < : : : < �n+r < 1 there exist such�1 < z1 < : : : < zn < �n+r that for the function f0 2 Hr1 of the formf0 = Pr�1 + TrB0;where Pr�1 is a polynomial of degree r�1 and B0 is a Blaschke productof degree n B0(z) = nYj=1 z � zj1 � zjz ;the equalities f0(�j) = 0; j = 1; : : : ; n+ r;



18 K. YU. OSIPENKOhold. Moreover, for all � 2 (�1; 1)supf2Hr1f(�1)=:::=f(�n+r)=0 jf(�)j = jf0(�)j:(8)By the equality (8) it immediately follows that for the error of opti-mal recovery of f(�) on the class Hr1 the equalitye(�;Hr1; I�) = jf0(�)jholds. An optimal method of recovery may be also obtained in thiscase from Theorem 1.Theorem 5. For all � 2 (�1; 1) the methodf(�) � n+rXj=1 Cj(�)f(�j )in which C1(�); : : : ; Cn+r(�) are the solutions of the system0BBBBBBB@ 1 : : : 1�1 : : : �n+r: : : : : : : : : : : : : : : : : : : : : : : : : : : :� r�11 : : : � r�1n+r(Trg1)(�1) : : : (Trg1)(�n+r): : : : : : : : : : : : : : : : : : : : : : : : : : : :(Trgn)(�1) : : : (Trgn)(�n+r)1CCCCCCCA0BB@ C1(�)C2(�)...Cn+r(�)1CCA =0BBBBBBBBB@ 1�...�r�1(Trg1)(�)...(Trgn)(�)1CCCCCCCCCA ;(9)where gm(z) = B0(z) 1 � z2(z � zm)(1� zmz) ; m = 1; : : : ; n;and the function B0 with the zeros zm is de�ned by Proposition 2, isoptimal on the class Hr1.Proof. For P = (a0; a1; : : : ; ar�1; t1; : : : ; tn) 2 Rn+r we setfP (z) := r�1Xj=0 ajzj + (TrBP )(z);where BP (z) = nYj=1 z � tj1� tjz :Let the polynomial Pr�1 from Proposition 2 has the formPr�1 = r�1Xj=0 a0jzj:



ON OPTIMAL RECOVERY METHODS 19Then for P = P0 := (a00; a01; : : : ; a0r�1; z1; : : : ; zn) the function fP0 isextremal in the problem of optimal recovery of f(�) on the classes Hr1and Hr;R1 . Put �0 := �,'j(P ) := fP (�j); j = 0; : : : ; n+ r:We have for all j = 0; : : : ; n+ r@'j@am = �mj ; m = 0; : : : ; r � 1;@'j@tm = (Trgm)(�j); m = 1; : : : ; n+ r:To obtain an optimal method on the class Hr;R1 it remains to use Theo-rem 1, checking previously that the determinant of the system (9) doesnot vanish. If we assume that this determinant vanishes, than thereexist C1; : : : ; Cn+r not all equal zero such that the functionF (z) := r�1Xj=0 Cj+1zj + nXj=1 Cj+r(Tgj)(z)vanishes at the points �1; : : : ; �n+r. Then by Rolle's theorem there existpoints �1 < �1 < : : : < �n < �n+r at which F (r) vanishes. ThusF (r) = nXj=1 Cj+rgj(�m) = 0; m = 1; : : : ; n:It was proved in [13] that the system of functions1(z � �m)(1 � �mz) ; m = 1; : : : ; n;is a Chebyshev system on the set (�1; 1) n f�1; : : : ; �ng. Consequently,g1; : : : ; gm is a Chebyshev system on the set (�1; 1) and Cr+1 = : : : =Cn+r = 0. Hence it follows that C1 = : : : = Cr = 0.The proof of optimality of the constructed method on the class Hr1is carrying out by the same scheme which was used in Theorem 2.For �xed �1 < z1 < : : : < zn < 1 setXzn+r := spanf1; z; : : : ; zr�1; (Trg1)(z); : : : ; (Trgn)(z)g:Analogously to Corollary 2 we getCorollary 3. Let �1 < �1 < : : : < �n+r < 1 and �1 < z1 < : : : <zn < �n+r are de�ned by Proposition 2. Then the function g(�) 2Xzn+r interpolated f at the points �1; : : : ; �n+r is an optimal method ofrecovery of f(�), � 2 (�1; 1), on the class Hr1 by the values at thepoints �1; : : : ; �n+r.
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