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ABSTRACT. The problems of the optimal recovery of derivatives
of functions from the information about the Fourier transform of
these functions given inaccurately on the finite interval or on the
whole line are considered. The problem of S. B. Stechkin about
approximation of derivatives by bounded linear functionals which
is closely connected with these problems are also studied. The
exact Kolmogorov-type inequalities for derivatives corresponding
to these settings are obtained.

1. STATEMENT OF THE PROBLEMS

We begin with the formulation of concrete problems which are stud-
ied in this paper and then give the general statement of the optimal
recovery problem for functionals combining these problems. Let S be
the Schwartz space of rapidly decreasing infinitely differentiable func-
tions on R, S’ the corresponding space of distributions, F': S — S’ the
Fourier transform, n € N, and 1 < p < co. Set

Xy ={z eS| Fa() € L(R), 2"(-) € Ly(R) }
and
Cp={2() € X | e ()lrum) <11
The optimal recovery problem of x®)(7) where 0 < k < n, 7 € R,
on the class C' by the information about the Fourier transform F(-)
given on the interval A, = (—0,0), 0 < 0 < oo, with the error § > 0
in the metric L,(A,) is to find the value
(1) Ey(n,k,0,6) =inf S1p B (7) = oy ()]
¥ 2()ECE, y()ELp(As)
IF2() =yl Lp(as) <8
(where the infimum is taken over all functions ¢: L,(A,) — C), which

is called the error of optimal recovery, and a function @, delivering the
lower bound in (1), which is called an optimal method of recovery.
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In this paper we also study the problem of best approximation of
e (1), 0 < k <n, 7 €R, on the class ¢ by the information about
the Fourier transform Fu(-) given on the interval A, = (—o,0) by
linear continuous functionals on L,(A,) with the norm not greater
than some fixed positive number N. It is in finding the value

(2) ep(n. k.o, N) = inl sup [« () = (y*, Fa("))]
y* x(-)eCy

(where the lower bound is taken over all linear functionals y* on L,(A,)
such that ||y*|]] < N), and also a functional y* delivering the lower
bound in (2) which is called extremal.

If we put x(-) in (2) instead of Fx(-) then we obtain the classical
problem of S. B. Stechkin, so (2) is its generalization which we also call
the problem of Stechkin.

Now we give the general setting of the optimal recovery problem of
a linear functional on a class of elements by some information about
elements themselves. Let X be a real or complex linear space and C' a
nonempty subset (a class of elements) of X. For every element « € C
we have available the information I(x) where [ is an information map
from (' into another real or complex linear space Y. In the case when
the information is given inaccurately [ is a multivalued map. Let 2’ be
a given linear functional on X and ® a set of functions ¢: Y — R(C).
The problem of the optimal recovery of the functional ' on the class
C by the information I using functions (methods of recovery) from @
is in finding the value
(3) E(',C,I)=inl sup |(z',z) — ¢(y)],

ved z€C,
yel(x)
which is called the error of optimal recovery (of the functional 2’ on C
by the information /) and a method delivering the lower bound in (3)
which is called an optimal recovery method.

The problems (1) and (2) are contained in this general scheme. In
the first case X = X', C = C7, Y = Ly(A,), I: X} — L,(A,),
Tx(-) = Fa(-)|a, + 0BL,(A,) (BL,(A,) is the unit ball of L,(A,)),
(2 2()) = ¥ (1), and ® is the set of all functions on L,(A,).

For the second problem X = X7, €' = C}, Y = L,(A,), I: X} —
Ly(A,), Tx(-) = Fa(-)|a,, (2',2(-)) = 2®)(7), and & = NBY*, where
BY™ is the unit ball of the dual space of Y.

The problem of optimal recovery of a linear functional on a class of
elements for the case when [ is a linear map, dimY < oo, and ® is the
set of all functions from Y to R was stated by S. A. Smolyak [1]. In
this situation he proved that if C' is a convex centrally-symmetric set,
then there exists a linear method among optimal methods. Further
this problem were generalized and developed in several directions (see

21-[7])-
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The problems of optimal recovery of functions and their derivatives in
the Ly metric (that is, the problem of optimal recovery of an operator
and not a functional) by inaccurate Fourier coefficients (for periodic
functions) and by inaccurate Fourier transform (for functions defined
on the line) were studied in [8], [9]. The range of problems connected
with Stechkin’s problem was elucidated in the survey paper [10].

In the periodic case for p = oo an analogue of the problem (1) was
considered in [11].

2. STATEMENT OF THE MAIN RESULTS

In view of the translation invariance of the classes under considera-
tion throughout what follows we assume that 7 = 0. We start with the
case when p = oo.

Theorem 1. Let 6§ >0, kne€Z,0<k<n,0<o<o0,

(7204 1)(2n — 2k — 1)\ T
7= 26%(2n — k) :

and oo = min(o, 7). Then

ghtt 0 1 T 02
Eo(n,k,o,8) = 2 _
(nok000) = ==\ T T\ — 2 1 <agn+1 2n—|—1>

and the method

W =g [0 s

where

(5) S N
V2n =2k —1 \o2" 2n+41 ’

is optimal.

It follows by Theorem 1 that for ¢ > &
(6) Eo(n,k,0,8) = K& 5+
where

0 o (e 1/2)55 o —k O\
k41 m(2n — 2k — 1) '
Thus in the problem under consideration the “saturation” effect of
the optimal recovery error is occured which is in the fact that for a
fixed & > 0 the knowledge of the Fourier transform of a function from
C'? given with the error ¢ in the uniform metric on the intervals larger
than (—o,0) does not result in a decrease in the optimal recovery error.
Thus the violation of the relation
2n 4+ 1)(2n — 2k — 1)
N 5252+ < m(
() 7= 2(2n — k)
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leads to the fact that the available information turns out to be redun-
dant. This fact is apparently important in practical applications when
we have to take into account that obtaining the additional information
requires some expense.

In view of the translation invariance of the space X7 it follows from
(6) the following result.

Corollary 1. Let k,sn € Z and 0 < k < n. Then we have the sharp
inequality

2n—2k—1 2k42
le® M < KIF()L T8 I 02

where the constant K is defined by the equation (7).

We proceed now to the problem (1) for p =1. If £ > 0 and o < oo,
we sef
e 2
i 52(2n—k—1) (/1 (l’k . 1)1,—271 dl’)

(here and throughout what follows for brevity we do not give the expres-
sions for the integrals which can be explicitly calculated). Obviously,
the function ®(-) is continuous on (1, +0o0). It is not difficult to verify
that ®(¢) =+ 0 as ¢ — 1 and ®(¢) - +o0 as ¢ — +oo. Thus, for any
d > 0 the equation

(9) P(e) = &7

has a solution from the interval (1, +00).

P(e) =

Theorem 2. Let 6§ >0, k,n €N, 0 <k <n, 0 <o < oo. Set

oles, 0 <o < oo,

a= om(2n — 2k — 1) \ =T
g =00
22n —1)2n —k—1) ’ ’

9 n—k-1 [
5 <€—5> / (% —1)2™" dx, 0< o< o0,
1

ag
A= 2n—2k—1

e 2r(2n — 2k —1) \7T
T2n—2k— 1)\ (2n— )(2n — k- 1) 7T

where €5 is a solution of (9). Then

5
Ei(n,k,0,0) =X+ gak

and the method
(10) B =— [ s,

27 Jt1<o
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where
(it)", ] < a,
11 t) =
(11) ps(l) {(ia)k signt®, a < |t| < o,
is optimal. For k=0
) 1
FEi(n,0,0,6) = — +

2 gnl/2 m(2n — 1)
and the method

(12) Bl() = =

27 Jt1<o
is optimal.
For 0 = oo it follows from Theorem 2

Corollary 2. Let k,n € Z and 0 < k < n. Then the sharp inequality

2n—2k—1 2k

le POl ey < KlPOlL T e ONTE
holds, where

2n—k—1

. 1 M — 1 BT
1 =
' (2n—k—1)ﬁ 2m(2n — 2k — 1)

We proceed now to the case p = 2. If 0 < oo, then put

oh
27T0.2n—2k—1h4n—2k—1/ $2k(1—|—$2n)_2 dx
W(h) = 0

oh )
(oh)?n—2k=1 / 2R (1 4 2?2 de + (2n — 2k — 1)1
0

It is easy to verify that the function W(-) is continuous on (0, +0o0),
U(h) = 0as h — 0and ®(h) — 400 as h — +o00. Thus, for any § > 0

the equation
(13) U(h) =&
has a solution from the interval (0, +o00).

Theorem 3. Let 6 > 0, k,n € Z,0 < k < n, 0 < o < 0. If
0 < 0 < o0, then denote by hs a solution of the equation (13), and if

o = 0o, then put
(2k +1)52 \ =
hs = :
27(2n — 2k — 1)
Then

52 9 h2n ohs
Ey(n,k,o,8) = %:/52 (2/ 2(1 + 22m)72 d:z;)
2mdhy 0

1/2
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and the method

Bly()) = “”)%mww

S 2m [t]<e L+ (hst
is optimal.
For ¢ = oo we have
2n—2k—1

EQ(TL,k,OO,(S) = [(25 2n R

where

2n—2k—1

2% +1\7? 2% + 1 n
Ky = ((2k +1)si
2 <( T lsinm— > on(2n — 2k — 1)

Hence the sharp inequality

(k) ., medhol 2kl
[ iy < Bl Py 1255,

holds. In view of Parseval’s equality

[E2 () Loy = V272 ()| 2)

it can be written in the form
& 2n—2k—1 72"—2;“—1 " 2_kj;_1
le® Oy < @m) 75 Kolle Ol 1™ Ol ),
This inequality was proved by L. V. Taikov [12].

We proceed now to the Stechkin problem of approximation of the k-
th derivative of a function from the class ' by the information about
its Fourier transform on the interval A, by using linear functionals
which have the norm not greater than a fixed positive number V.

Theorem 4. Letn, k€ Z,0<k<n,0<oc<o0, N >0,

. (mv(k +1)(2n + 1)) mT |

N = 2n — k

and on = min(o,on). Then

o 1 v (o, N)
14 w(n, ko, Ny = X ’
(14)  eooln, k0, N) Jr Voo —1 " any1

where

1 TN
y(o, N) = maX{Oa(QnJr 1) (m - F)}
N

and the functional

(15) (™, Fa(-)) = % AK (it)* (1 — (o, N) (%) . ) Fa(t)dt

s extremal.
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It follows from Theorem 4 that for a fixed N for ¢ > ox we have

2n—k
—_ 2k+2 on—2k—1
eoo(n, k0, N) = 4/ 2h 12 2n —k YN
2n =2k =1 \m(k+1)(2n+1)

It means that analogously to the recovery problem in Stechkin’s prob-
lem under consideration the “saturation” effect which is in the fact
that for a fixed N the knowledge of the Fourier transform on an in-
terval larger than (—oy,on) does not result in a decrease in the error
€oo(n, k, o, N) is also observed. Here the analogue of the relation (8) is
the inequality

ohtl < m(k+1)(2n 4+ 1)
N — 2n — k ’
which in the case of violation leads to the redundancy of the obtained
information about the Fourier transform.

Theorem 5. Let n,k € N, 0 <k <n, and N > 0. Then for o < oo

1

61(7%7@07]\[):m

2k2€2n—2k—1 2€—k 5—2]6
N2 D@ —k—D@n—1) k=1 2n—1
where

g

O.k
(27TN0)1N€7 0 mlﬂ{ 5 27_[_} ’

£ =

and the functional

(16) (y*, Fa(-)) = L AK@ N )Uk(it)kF:z;(t) dt

27
+ Noi* / sign t* F'a () dt
(2mNo)/F<[t| <o

s extremal. For o = o0

_2n—2k—1

V2EQ2rN)" "2

er(n, ko0, N) = \/W(Zn —1)(2n—k—=1)(2n — 2k —1)

and the functional

27

1
U, Fa() = — it Fa(t)d
G =g [ e

+ N i*sign t* Fa(t) dt
|t]>(27N)1/%
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is extremal. If k =0, then

1
00, 0< N < —,
) ) 2m
= , N> — o<oo,
e1(n,0,0,N) 172 Ja(an = 1) 2 5o 0<00
0 N > L, o= 00,
2m
moreover, the functional
. 1
(7 Fa()) = o /| P
t|<o

s extremal.

Consider now the Stechkin problem for the case when p = 2. Set

1 /Uh 2k 2n\—2
= — T (1 +x ”) dz.
2] 2k+1 o

The function Q(h) is continuous for h € (0, 4+00). Moreover,

Q(h)

o 2k+1
lim Q(h) =
b ( 2m2(2k + 1)’
and limy,— Q(h) = 0. Therefore, for all
k+1/2
0< N < 7

T/2(2k 4+ 1)
the equation

(17) Qh) = N?
has a solution.

Theorem 6. Let n,k € Z, 0 < k < n, and N > 0. Then for all
0<o<o

~ ~ 1/2
h2n—2k—1 ochy 2(k+n) —(2n—2k-1)
eg(n,k,a,N):<N7/ (:Eidx—l— 7 ] ,
0

T 1+ a?n)? m(2n — 2k — 1

where R

~ hy, 0<N<N, < oht1/?

hN = —~ N = —_—,

0, N2=N, m/2(2k + 1)
and hy is a solution of (17). Moreover, the functional
A L (it)*

18 y*,Fl' ) = —/ EEE-~— 1) dt
(13 Foret =5 [

s extremal. For o = o0
2n—2k—1

V2k+1 2n — 2k — 1\ 2@+D
2k+1># 2w N2

n

ea(n, kyo0, N) =

<4n2 sin 7
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and the functional (18) in which
T
2n — 2k — 1
2k 4+ 1

n

hy =

mn2N2sinw

s extremal.

Note that in the case ¢ = oo the result stated in this theorem can
be obtained from the paper [12].

3. PROOFS

The arguments connected with general principals of extremum the-
ory underlie proofs of the stated theorems. The main point is in the fact
that the problems under consideration here are reduced to some convex
problems for which necessary and sufficient conditions for an admissi-
ble point to be a solution of the problem are vanishing of the derivative
(or belonging of zero to the subdifferential) of the Lagrange function
in this point. This condition is some identity. On the other hand, the
recovery problem itself is dual to the mentioned convex problems, and
therefore solving them (that is, obtaining the required identity) we also
solve in general the dual problem (see [13]-[15] for details about such
approach to the solution of various extremal problems). The following
theorem is a summarizing result of the mentioned arguments.

Theorem 7. Letn,k € Z,0<k<n, 0<o<00,6>0,1<p< o0,
and for all x(-) € X' the equlity

(19) +®(0) = @*,Fx(-»+A/]Rx<”>(t)§<n>(t) di

holds, where y* is some linear continuous functional on L,(A,), A €
Ry, and 2(-) € X7 satisfies the following conditions

() P50 lyan = 5
(i) [EOC) ey = 1
(238) (¥, F'2()) = o|[y|l-
Then

(20) Ey(n,k,0,8) = A+ 4|y

and y* is an optimal method of recovery. Moreover, for Stechkin’s prob-
lem for N = ||y||

ep(n, ko, N) =)

and y* is an extremal functional.
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Proof. Taking (19) into account we have

(21) Ep(n,k,0,6) < S1p [eM(0) = (7, y())]
2()€CT, y)ELy(A0)
120 0Ol (a0 <5

< Sup, [ (0) — (=, Fa ()| + 8|77l = A + 8 ]|77]).
z(-)eCn

On the other hand, in view of (¢) for any recovery methof ¢(y(-)) we
have

21zM(0)] < [ZM(0) = o(0)| + | = T(0) = (0)]
<2 sup [29(0) = (y()]-

2()EC7, Y()ELy(50)

120 0Ol <5

Hence E,(n,k,o,8) > [2*)(0)|. Taking (19), (i), and (i77) into account
we obtain
Ey(n,k,0,8) > [F9(0)] = [(77, FZ()) + M2 ()l oy = A+ 8]177])-
It follows from this inequality and (21) inequality (20) and the opti-
mality of the method y*

We now proceed to the Stechkin problem. As was proved in the

optimal recovery problem among all optimal methods there exists a
method defined by a linear continuous functional, therefore

E,(n,k,0,6) = inf inf sup 128(0) — (y™, y(-))]
N>0 [|y*||<N #()ECE, y()ELp(As)
1E2() =y ()l 1y (ag) <O

< inf  sup |¢™(0) — (y*, Fe())| + 0N = e,(n, k, o, N) + 6N.

llrlIsN =()ecy
Consequently, for all N > 0
(22) e(n ko, N) > FE,(n,k,0,0) — 0N
Hence from (20) for N = ||y*|| we obtain
ep(ny ko, N) > A
On the other hand, in view of (19) we have
ep(n,k,o, N) < sup |:1;(k)(0) — (", Fz())| = A

z(-)eCr
O
Proof of Theorem 1. Let us prove that for all z(-) € X2 the equality
1
(23) «®(0) = o ()% (1 — S F) Fa(t) dt
s

[t|<oo

+A/ ()M (L) dt
R
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holds, where the function Z(-) € X2 is such that

(—1)*§signth,  |t] < oo,

Fz(t) = .
R NS It > o
A2k’ =0
By the Plancherel theorem we have
1 -
(24) /R:z;(”)(t)f(”)(t) dt = RtZ”Fx(t)Ff(t) dt.
Therefore,
1
— ()" (1 = SA[t)*F) Fa(t) dt + )\/ M () ZC)(1) di
2m [t| <o R
= % . ()" (1 = SALP"=F) + AP sign tF) Fa(t) dt
t|<og
1
+ — WrFe()dt = — | (i) Fa(t)dt = 2%(0).
= MRGEROL =y KD (0)

The equality H/:I;\(”)(-)HLQ(R) = 1 is easily verified. Let us prove that
| FZ2(-)||pw(a,) = 6. For op > o it is immediately follows from the
definition of FZ(-). Let 0g < 0. Then oo = ¢ and it is not difficult
to verify that (A\g2"=%)=! = §. Thus, |FZ(t)| < § for |t| > 7. We now
verify the fulfilment of the condition (ii¢) of Theorem 7. We have
@) O = [ o)

[t| <o

s

Let us prove that 1 —§A[t|*"* > 0 for [t| < 0¢. In view of the definition
of oy we have

520_3n+12(2n _ k) S 5282n+12(2n _ k) = 7'['(271 —|— 1)(2n — 2]{ — 1)
Hence
§o2 (20 + 1) < (20 — 2k — 1)(7(2n + 1) — §%02"F)
_ 0_0—271—|—2k+1(2n i 1))\—27

that is, sAc2" ™" < 1. Thus, for |t| < oo, L=6A[t]"F > 1—=8Aa2" ™" > 0.
Consequently, the right-hand side of (25) is equal to §||y*||. To complete
the proof it remains to apply Theorem 7. O

Proof of Theorem 2. First of all, we consider the case 0 < k < n. We
prove that for all z(-) € X7 the equality

(26) =®)(0) ! /Mg(t)Fl‘(t) dt+A/x<”>(t)§<n>(t) dt
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holds, where the function Z(-) € X7 is such that

07 |t| S a?
|t|k h
Fi(t) =< (= i)" mgnt a<|t| <o,
i) [t| > o.
)\t2n7 -
Indeed, taking (24) into account we have
! ) (N FO) df = )k
— ps(Fx(t)dt+ X | ()2 (1) dt = — (it)"Fa(t)dt
27 Jt1<o R 27 J<a
1
+ — ((ia)ksigntk—l—ikﬂﬂk —ak) signtk> Fa(t)dt
27 a<|t|<o
1
— O Fe(t)dt = — [ (i) Fa(t) dt = 2P(0).
v gm [ e = o [Goppat = <o)

By direct calculations one can verify that the equations
(27) 1FZ()aan = 8 11EYC)l[zae) = 1

hold. It remains to apply Theorem 7.
Assume now that k£ = 0. If ¢ = oo, then in view of the equality

z(0) = 217T/F:1;( )dt

considering any function Z(-) satisfying the conditions || F'Z(-)||1, &) =
J, H/:I;\(”)(-)HLZ)(R) = 1, and applying Theorem 7, we obtain the assertion
of the theorem for £ =0 and o = oco.

The case £ = 0, 0 < oo requires an individual consideration. For
sufficiently small € > 0 define the function z.(-) € X7 so that

07 |t| S 57
~ 1
Fz. (1) = e €< It| < o,
C2
tQ—n, |t| 2 g.

Putting

2n—1)6 [ 1 1 \!
G = 9 s2n—1 g2n—1 g

e o\ 1/2
Cy = / 2n — 10‘”—1/2 (7‘[‘ _ (2n 1)5 ( 1 o 1 ) )

2n—1 2n—1
4 € o)
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it is not difficult to verify that for the function Z.(-) conditions (27)
hold. Similarly to the proof of Theorem 7 it can be shown that

1
Ei(n,0,0,6) > |2.(0)| = —/Ffz;}(t) dt
2 R
1 —~ 1 &0 Co (S Co
- Fr.tydt+ = | Za=2 .
27 Jit<o z(t) dt + 7T/U 12n 2 + o¥=lr(2n —1)

By tending ¢ to zero we obtain the estimate
) 1
FEi(n,0,0,0) > — + .
1 ) 2r - on=1/2y /x(2n — 1)

On the other hand, for the method defined by (12) we have

-2 [y dt\

El(n,0,0', 5) S sup I
[t|<o

z(-)€CT, y(-)eL1(As)
1F2() =y, (aq) <8

1 1)
l’(O) — % A|<U F$(t) dt‘ —|— %

< sup
z(-)eCT

) 1 [~ o 1 o < dt
= — — Faz(t)|dt < —+— 2| Fa(t)|?dt —
Iy Ml _2W+W\//U (1) \// o
) 1
<

+ .
- 27 gn—l/2 m(2n — 1)

O

The proof of Theorem 3 is carried out by the same scheme as in
Theorems 1 and 2 using the identity

1 (zt)k ——
®)(0) = —/ — Fa(t dt—l—)\/ () (Z () () dt
x x x x ,
( ) 27 lt|<o 1+ (hét)zn ( ) R ( ) ( )

1/2

p2n—k=1/2 ohs
) = % (2/ ka(l + :1;2”)_2 d:z;) ,
0

and the function Z(-) € X7 is such that

L GO L Vg

~N o 1+ (hgt)2n7 ’
Fz(t) = oy

Ttk—%, lt| > o.

Proof of Theorem 4. Denote by N(4) the norm of the linear functional
(4) (as a functional on L..(A,)). We have

1 k+1 2n+1
N =2 (1:0+1 —5>\;§+ 1) ’
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where

ag, 0<(S§(So,

707 (20 + 1) (20 — 2k — 1)\ T s
26%(2n — k) ’ “

5 gmnm1/2 m(2n 4+ 1)(2n — 2k — 1)
o 2(2n — k) '

Thus, taking (5) into account for 0 < § < dg

) _
B ohtl 1 <02”+1 2n + 1)

T | B+l @n+1)V2n —2k—1

It is not difficult to verify that for 0 < § < dp the function N(§)
monotonically decreases from N, to Vi, where

ot N, — o™ (2n — k)

Tak+1) T wmk+D(2n+ 1)

Consequently, for Ny < N < N, the equation N(J§) = N has the unique
solution

Ny

PR— m(2n 4+ 1)(2n — 2k — 1)
N (2n + 1)v2(0, N) + 2n — 2k — 1

Moreover, taking into account that for Ny < N < N,, ox = o, it

follows by Theorem 7 that an extremal functional has the form (15).
If § > &g, then

k4l
N() = <7T(2n+1)(2n—2k—1)>2"+1 on —k
B 282(2n — k) mk+1)(2n +1)
For § > 4y the function N(§) monotonically decreases from Nj to 0.
Hence for all 0 < N < N; there exists the unique solution of the
equation N(d) = N given by the equality

n

2n—k 2n41

Qn_k 2k+2 1 2k+2

oy = —k—-1/2 ——————  E——— .
=i 1B (G ()

For 0 < N < Ny, oy = oy and an extremal functional has again
the form (15). The expression for e, (n,k,0,N) for 0 < N < Ny is
obtained accordingly Theorem 7 by substitution in (5) § = dn.

Assume now that N > Ny. Then it follows from (22) that for all
d>0

€oo(n, ko, N) > Es(n, k,0,6) —dN.
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Tending § to zero we obtain

1
U”_k_l/Q\/W(Zn — 2k — 1)'

The immediate estimate of the functional (15) which for N > N, has
the form

€oo(n, k,o,N) >

1

(25) P = 5 [ (@0 Falt)a
27 Jit<o

(its norm is equal to N3) gives us

29) [o00) — (T Fa() < 5 [ et

[t]>o
1

27 S50

1
g—/ |t|2”|F:1;(t)|2dt/ [t[26=20 g
2m \ Jigze >0
1
<

- U”—k—l/Q\/W(Zn —2k—-1)

[ [Fa ()] di

O

Proof of Theorem 5. Let & > 0, 0 < 0 < 00, ¢ € (1,+00), and § is
defined by (9). Denote by N(e) the norm of the linear functional (10)
(as a functional on L1(A,)). We have

O.k

T 27k
Therefore for 0 < N < o*/(27) taking (26) into account the statement
of the theorem follows immediately from Theorem 7. If N > o%/(27),
then it follows from (22) that for all § > 0
er(n,k,o,N) > Fi(n,k,0,0) — dN.

Tending € to one (in this case § — 0) we obtain

1
o k=12, fr(2n — 2k — 1)
For N > o%/(2n) the functional (16) has the form (28). Taking into

account the estimate (29) we have

N(e)

er(n,k,o,N) >

1
U”—k—l/Q\/W(Zn — 2k — 1)'

For £ > 0 and o = oo the norm of the linear functional (10) is equal

to
1 om(2n — 2k —1) \ 7T
N =57 (52(2n—1)(2n—k—1)> '

er(n,k,o,N) <
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Therefore for all N > 0 there exists a dy for which N(dy) = N and
taking into account the identity (26) the statement of the theorem
follows from Theorem 7.

Assume now that £ = 0. Then for all 6 > 0

1
27

N) 5t !
o2\ 7 (2n — 1)'

e1(n,0,0,N) > Ei(n,0,0,0)—0N = (

Tending 4 to infinity we obtain
e1(n,0,0, N) = 0.
If N >1/(2m), then tending ¢ to zero by the same inequality we have

1
)0, 7N > .
exn, 0,9, ) o2\ /7(2n — 1)
The inverse inequality follows from (29) for k£ = 0. O

The proof of Theorem 6 is carried out by the same scheme which
was used in the proof of Theorems 4 and 5.
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