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2 K. Yu. Osipenkoof analytic functions on [0; 2�) from the Sobolev class fW r1 are the same as forfW r1.For q =1 the n-widths of the class ~h1;� were obtained by V. M. Tikhomirov[11]. For 1 � q � 1 the exact values of the even n-widths of the classes ~h1;� andeH1;� were determined in [9] and [7]. In the nonperiodic case for the functionswhich are analytic on the open unit disk, real-valued on (�1; 1), and whichsatisfy the restriction jf (r)(z)j � 1, the n-widths were obtained in [4]. The resultsconcerning the n-widths of the classes of analytic functions of several variableswhose rth radial derivative is bounded may be found in [3] and [8].1. Exact n-Widths of ehr1;�If f 2 ~h1;� , then (see [1, p. 269])f(z) = 12� Z 2�0 K�(z � t)Re f(t + i�) dt;where K�(z) = 1 + 2 1Xk=1 cos kzcosh k� :Set (f � g)(z) := 12� Z 2�0 f(z � t)g(t) dt;Dr(t) := 2 1Xk=1 cos(kt � �r=2)kr ; r = 1; 2; : : : :Using the representationf(z) = 12� Z 2�0 f(t) dt + (Dr � f (r))(z);for r � 1 we have~hr1;� = f a+Gr;� � h : khk1 � 1; h?1; a 2 IRg ;where Gr;� := Dr �K�.We say that a real, 2�-periodic, continuous function G satis�es Property B(cf. [10, p. 129]) if for every choice of 0 � t1 < : : : < tm < 2� and each m, thesubspace Xm := 8<: b+ mXj=1 bjG(� � tj) : mXj=1 bj = 09=;



Exact n-Widths of Hardy{Sobolev Classes 3is of dimension m, and for every f 2 X2m+1, f 6� 0, the number of cyclic signchanges Sc(f) � 2m.Set �2n := f � : � = (�1; : : : ; �2n); 0 � �1 < : : : < �2n < 2� g :For each � 2 �2n we de�neh�(t) := (�1)j ; t 2 [�j�1; �j); j = 1; : : : ; 2n+ 1;where �0 := 0, �2n+1 := 2�. Denote by hn(t) the function h� for �j = (j�1)�=n,j = 1; : : : ; 2n.To calculate the exact n-widths of ~hr1;� we need the following theorem ofA. Pinkus [10, p. 180, 182].Theorem1. Let G satisfy Property B. SeteB1 := f a+G � h : khk1 � 1; h?1; a 2 IRg :Then:(i) d2n�1( eB1; L1) = �2n�1( eB1; L1) = d2n�1( eB1; L1) = kG � hnk1;(ii) for each 1 � q �1d2n( eB1; Lq) = �2n( eB1; Lq) = d2n( eB1; Lq) = kG � hnkq:We say that a real, 2�-periodic, continuous function K 2 NCVD (nondegen-erate cyclic variation diminishing) if Sc(K � f) � Sc(f) for all real, 2�-periodic,piecewise continuous functions f , anddimspan fK(t1 � �); : : : ;K(tn� �) g = nfor every choice of 0 � t1 < : : : < tn < 2� and all n. It is known (see [10, p. 128,133]) that K� 2 NCVD and for each r � 2, Dr satis�es Property B (D1(x) alsosatis�es all conditions of Property B except that it is not continuous at x = 0).Therefore, Gr;� satis�es Property B for every r � 1.The Euler perfect splines are de�ned by'n;r(t) := 4�nr 1Xk=0 sin((2k + 1)nt� �r=2)(2k + 1)r+1 ; r = 0; 1; : : : :Several properties of this splines may be found, for example, in [6, p. 104]. Inparticular, 'n;0 = hn; 'n;r = Dr � hn; r = 1; 2; : : : :Put '�n;r(t) := (K� � 'n;r)(t) = 4�nr 1Xk=0 sin((2k + 1)nt� �r=2)(2k + 1)r+1 cosh((2k + 1)n�) :



4 K. Yu. OsipenkoIt was proved in [9] that'�n;0(t) = (K� � hn)(t) = 4� arctan�p� sn�2n�� t; ��� ;(1.1)where � is the complete elliptic integral of the �rst kind with modulus� = 4e�2�n� P1k=0 e�4�nk(k+1)1 + 2P1k=1 e�4�nk2�2 :(1.2)By analogy to the Euler perfect splines it can be shown thatK�n;r := k'�n;rk1 = 4�nr 1Xk=0 (�1)k(r+1)(2k + 1)r+1 cosh((2k + 1)n�) :For r � 1, '�n;r = Gr;� � hn. Thus from Theorem 1 (r � 1) and Theorems 4.8and 4.9 of [10, p. 179, 180] (r = 0) we obtain the following result.Theorem2. Let r � 0. Then:(i) d2n�1(~hr1;� ; L1) = �2n�1(~hr1;�; L1) = d2n�1(~hr1;�; L1) = K�n;r;(ii) for each 1 � q � 1d2n(~hr1;�; Lq) = �2n(~hr1;� ; Lq) = d2n(~hr1;�; Lq) = k'�n;rkq :For integer r � 1 denote by fW r1 the class of real, 2�-periodic functions whose(r � 1)st derivative is absolutely continuous and whose rth derivative satis�esthe condition jf (r)(t)j � 1. Let eAr1 be the set of functions from fW r1 which areanalytic on [0; 2�).Theorem3. Let r � 1. Then:(i) d2n�1( eAr1; L1) = �2n�1( eAr1; L1) = d2n�1( eAr1; L1) = Krnr ;(1.3)where Kr := 4� 1Xk=0 (�1)k(r+1)(2k + 1)r+1 ;(ii) for each 1 � q � 1d2n( eAr1; Lq) = �2n( eAr1; Lq) = d2n( eAr1; Lq) = k'n;rkq:(1.4)Proof. For the class fW r1 the equations analogous to (1.3) and (1.4) are awell-known fact (the details and references may be found in [10] and [6]). SinceeAr1 � fW r1 it is su�cient to prove the lower bound. For all � > 0, ~hr1;� � eAr1.Therefore, the lower bound follows from Theorem 2 and the obvious equationslim�!0K�n;r = Krnr ; lim�!0 k'�n;rkq = k'n;rkq:The theorem is proved. ut



Exact n-Widths of Hardy{Sobolev Classes 52. Exact n-Widths of fHr1;�To calculate the exact n-widths of eHr1;� we shall need some preliminary results.Proposition4. Let ' be a continuous, odd, and strictly increasing functionde�ned on [�1; 1]. Put�'2n := f � 2 �2n : '(K� � h�)?1 g :Theninf f ka+Dr � '(K� � h�)k1 : a 2 IR; � 2 �'2n g = kDr � '(K� � hn)k1:Proof. Let � 2 �'2n. Setf� := Dr � '(K� � h�); fn := Dr � '(K� � hn):Suppose that there exists an a 2 IR and a � 2 �'2n for which ka+f�k1 < kfnk1.As fn(t+ �=n) = �fn(t) there exist at least 2n points 0 � t1 < : : : < t2n < 2�such that fn(tj) = "(�1)jkfnk1; j = 1; : : : ; 2n;where " = 1 or �1. Denote by Z(f) the number of distinct zeros of a function fon [0; 2�). We have Z�fn(�+ �)� a� f�(�)� � 2nfor every � 2 IR. By Rolle's TheoremSc�f (r)n (�+ �)� f (r)� (�)� = Sc�' ((K� � hn)(�+ �))� ' ((K� � h�)(�))� � 2n:Since ' is an odd and strictly increasing function,Sc�(K� � hn)(�+ �)� (K� � h�)(�)� � 2n:From the fact that K� 2 NCVD it follows thatSc�hn(�+ �)� h�(�)� � 2n:Using Lemma 4.1 of [10, p. 170], we obtain the existence of an � 2 IR and " = 1or �1 for which Sc�hn(�+ �)� "h�(�)� � 2(n� 1):This contradiction proves the proposition. ut



6 K. Yu. OsipenkoSet '0(z) := tan �4 z,��n;0 := '0(K� � hn); ��n;r := Dr � '0(K� � hn); r = 1; 2; : : : :In view of (1.1) and the representation (see [2, p. 266])sn�2n�� t; �� = ��� 1Xk=0 sin((2k + 1)nt)sinh((2k + 1)2n�)we have��n;r(t) = �p��nr 1Xk=0 sin((2k + 1)nt� �r=2)(2k + 1)r sinh((2k + 1)2n�) ; r = 0; 1; : : : :It also follows from (1.1) that��n;0(t) = p� sn�2n�� t; �� :Using the same arguments as for '�n;r, we obtaink��n;rk1 = �p��nr 1Xk=0 (�1)k(r+1)(2k + 1)r sinh((2k + 1)2n�) :Put t(j)n;r := ( �(j�1)n ; r = 2m,�(j�1)n + �2n ; r = 2m + 1, j = 1; : : : ; 2n:It is easily seen that ��n;r(t(j)n;r) = 0, j = 1; : : : ; 2n.Proposition5. For all t 2 [0; 2�) and r � 0supn jf(t)j : f 2 eHr1;�; f(t(j)n;r) = 0; j = 1; : : : ; 2no = j��n;r(t)j:Proof. Suppose there exists a t� 2 [0; 2�) and a function f0 2 eHr1;� for whichf0(t(j)n;r) = 0, j = 1; : : : ; 2n, and jf0(t�)j > j��n;r(t�)j. Set� := ��n;r(t�)=f0(t�); F := ��n;r � �f0:The function F has at least 2n+1 distinct zeros at the points t(j)n;r, j = 1; : : : ; 2n,and t�. By Rolle's TheoremF (r)(t) = p� sn�2n�� t; ��� �f (r)0 (t)has at least 2n+ 1 zeros on [0; 2�).



Exact n-Widths of Hardy{Sobolev Classes 7Denote by H1(��) the set of functions which are analytic on the annulus�� := � z 2 C : e�� < jzj < e� 	and which satisfy the condition jf(z)j � 1, z 2 ��. If f(z) 2 eH1;�, thenf(1i log z) 2 H1(��). It is easy to check that the functionG(z) := p� sn�2n��i log z; ��has exactly 2n zeros on ��. Since on @����G(z)� F (r)�1i log z��� = ���f (r)0 �1i log z��� � j�j < 1 � jG(z)j;Rouche's Theorem implies that F (r)(t) has 2n or fewer zeros on [0; 2�). We thusreach a contradiction, which proves the proposition. utTheorem6. For all integers r � 0d2n( eHr1;�; L1) = �2n( eHr1;�; L1) = d2n( eHr1;�; L1)= �p��nr 1Xk=0 (�1)k(r+1)(2k + 1)r sinh((2k + 1)2n�) ;where � is the complete elliptic integral of the �rst kind with modulus � de�nedby (1:2).Proof. The case r = 0 follows from [7] where the equalitiesd2n( eH1;�; Lq) = �2n( eH1;�; Lq) = d2n( eH1;�; Lq) = k��n;0kq; 1 � q � 1;were proved. So we shall assume that r � 1.We shall �rst prove the lower bound for the Kolmogorov widths. SetS2n := ( x = (x1; : : : ; x2n+1) 2 IR2n+1 : 2n+1Xk=1 jxkj = 2�) ;�0(x) := 0; �j(x) := jXk=1 jxkj; j = 1; : : : ; 2n+ 1:For each x 2 S2n putgx(t) := signxj; �j�1(x) � t < �j(x); j = 1; : : : ; 2n+ 1;fx := Dr � '0(K� � gx):Let X2n be any 2n-dimensional subspace of Lq, 1 < q <1, such that 1 2 X2n.Suppose that X2n = spanff1; : : : ; f2ng and f1(t) � 1. Let a1(x); : : : ; a2n(x) be



8 K. Yu. Osipenkothe coe�cients of f1; : : : ; f2n, respectively, in the best approximation to fx fromX2n. The mapping A(x) := (b(x); a2(x); : : : ; a2n(x));where b(x) := Z 2�0 '0�(K� � gx)(t)� dt;is a continuous map of S2n into IR2n. By Borsuk's Theorem there exists anx� 2 S2n for which A(x�) = 0. As the function '0(z) = tan �4 z maps the stripjRe zj < 1 conformally onto the open unit disk, for all x 2 S2n, fx 2 eHr1;�.Thus, supf2eHr1;� infg2X2n kf � gkq � supx2S2n infg2X2n kfx � gkq � kfx� � a1(x�)kq(2.5) � inf f ka+Dr � '0(K� � h�)kq : a 2 IR; � 2 �'02n g :If 1 =2 X2n, then the left-hand side of (2.5) is equal to +1. Hence,d2n( eHr1;�; Lq) � inf fka+Dr � '0(K� � h�)kq : a 2 IR; � 2 �'02n g :By passing to the limit q!1 we obtaind2n( eHr1;�; L1) � k��n;rk1:Let us now prove the lower bound for the Gel'fand widths. Suppose thatX2n := f f 2 L1 : hlj ; fi = 0; j = 1; : : : ; 2n; lj 2 L01 g :If hlj ; 1i = 0, j = 1; : : : ; 2n, thensupf2eHr1;�\X2n kfk1 =1:Assume that hl1; 1i 6= 0. SetLj := lj � hlj ; 1ihl1; 1i l1; j = 2; : : : ; 2n:For each x 2 S2n denote by A1 the mappingA1(x) := (b(x); hL2; fxi; : : : ; hL2n; fxi):Since A1:S2n ! IR2n is an odd and continuous map, by Borsuk's Theorem thereexists an x� for which A1(x�) = 0. Thenf� := fx� � hl1; fx�ihl1; 1i 2 X2n:



Exact n-Widths of Hardy{Sobolev Classes 9Consequently,supf2eHr1;�\X2n kfk1 � kf�k1� inf f ka+Dr � '0(K� � h�)k1 : a 2 IR; � 2 �'02n g� k��n;rk1:Thus, d2n( eHr1;�; L1) � k��n;rk1:Now let us prove the upper bound for the linear widths. We shall use a mod-i�cation of the proof for the nonperiodic case from [4]. Denote by Ep the set offunctions 2�-periodic and analytic on S� which satisfykfkEp := sup0<�<1� 14� Z� jf(�z)jpjdzj�1=p <1; 1 � p <1;kfkE1 := supz2S� jf(z)j <1; p =1;where � := [2�+i�; i�][[�i�; 2��i�]. If the 2�-periodic functions !(z); !1(z) 2C(� ) then, using the mapping z = 1i logw, it can be proved (see [5]) that for all1 < p � 1sup� ��� 14� Z� f(z)!(z) dz��� : kfkEp � 1; Z� f(z)!1(z) dz = 0�(2.6) = inf (� 14� Z� j!(z)� c!1(z) � �(z)jqjdzj�1=q : c 2 C; � 2 Eq )= k!kLq(� )=Eq;1 ;where 1=p+1=q = 1, Eq;1 := Eqj� +spanf!1g, and Eqj� is the space of boundaryvalues on � of functions from Eq.By the same mapping z = 1i logw and the Residue Theorem we obtainf(t) = 12� Z� f(z)eizeiz � eit dz; t 2 S� ;(2.7)for all f 2 E1. For x; t1 2 [0; 2�) we de�neK(z; x) := 1� Z 2�0 Dr(x� t)eizeiz � eit dt; V (z; x) := K(z; x)�K(z; t1):From (2.7) it follows that all functions 2�-periodic and analytic on S� whose rthderivative lies in E1 satisfy the following equationf(x) � f(t1) = 14� Z� V (z; x)f (r)(z) dz:(2.8)



10 K. Yu. OsipenkoSet !1(z) := � 1; z 2 [2�+ i�; i�],0; z 2 [�i�; 2� � i�].Then the condition f?1 can be written in the formZ� f(z)!1(z) dz = 0:For distinct points t1; t2; : : : ; t2n 2 [0; 2�) putDq(x) := infc2;:::;c2nV (�; x)� 2nXj=2 cjV (�; tj)Lq(� )=Eq;1 :Since Lq(� )=Eq;1 is uniformly convex for 1 < q < 1 there are continuousfunctions on [0; 2�], c2(x); : : : ; c2n(x), such thatDq(x) = V (�; x)� 2nXj=2 cj(x)V (�; tj)Lq(� )=Eq;1 :It follows from (2.6) and (2.8) thatsupx2[0;2�]Dq(x)= sup8<: 14� Z��V (z; �)� 2nXj=2 cj(�)V (z; tj)�f(z) dz1 : kfkEp � 1; f?19=;� supkf(r)kE1�1 14� Z��V (z; �)� 2nXj=2 cj(�)V (z; tj)�f (r)(z) dz1� supf2eHr1;�f(�)� f(t1) � 2nXj=2 cj(�)(f(tj)� f(t1))1 � �2n( eHr1;�; L1):The function Dq is continuous on [0; 2�], 1 � q < 1, and Dq & D1 uniformlyas q & 1. Letting q decrease to 1, we obtain�2n( eHr1;�; L1) � supx2[0;2�]D1(x)=  infc2;:::;c2n supkf(r)kE1�1��� 14� Z��V (z; �)� 2nXj=2 cjV (z; tj)�f (r)(z) dz���1= supx2[0;2�]�(x);



Exact n-Widths of Hardy{Sobolev Classes 11where �(x) := sup� ��� 14� Z� V (z; x)f (r)(z) dz��� : kf (r)kE1 � 1;(2.9) Z� V (z; tj)f (r)(z) dz = 0; j = 2; : : : ; 2n� :Using the same methods as in [5], it can be shown that the solution of (2.9) isunique up to a factor ei�, � 2 IR. By (2.8) we have�(x) = supn jf(x)� f(t1)j : kf (r)kE1 � 1; f(tj )� f(t1) = 0; j = 2; : : : ; 2no :Therefore, if f�(z) is a solution of (2.9), then f�(�z) is also a solution of (2.9).Consequently, there exists an extremal function which is real on IR. Thus,�(x) = infc2;:::;c2n supf2eHr1;����f(x) � f(t1)� 2nXj=2 cj(f(tj )� f(t1))���:Put �1(x) := infc1;:::;c2n supf2eHr1;����f(x) � 2nXj=1 cjf(tj)���:Obviously, �1(x) � �(x). On the other hand, ifP2nj=1 cj 6= 1, thensupf2eHr1;� ���f(x) � 2nXj=1 cjf(tj )��� � supc2IR���c�1� 2nXj=1 cj���� =1:Hence, �1(x) = �(x). Now we have�2n( eHr1;�; L1) � supx2[0;2�]�1(x)= supx2[0;2�] supn jf(x)j : f 2 eHr1;�; f(tj) = 0; j = 1; : : : ; 2no :For tj = t(j)n;r, j = 1; : : : ; 2n, it follows from Proposition 5 that�2n( eHr1;�; L1) � k��n;rk1:Since �2n � d2n and �2n � d2n we obtaind2n( eHr1;�; L1) = �2n( eHr1;�; L1) = d2n( eHr1;�; L1) = k��n;rk1:The theorem is proved. utAcknowledgment. The research was supported in part by Grant 93{01{00237from Russian Foundation of Fundamental Research and by Grant MP 1300 fromthe ISF&RG.
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