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Abstract—The paper is concerned with sharp Carlson type inequalities of the form

‖w(·)x(·)‖Lq(T ) ≤ K‖w0(·)x(·)‖γLp(T ) max
1≤j≤n

‖wj(·)x(·)‖1−γ

Lr(T ),

where T is a cone in Rd and the weight functions wj(·), j = 1, . . . , n, are homogeneous with
some symmetry property.
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1. INTRODUCTION

Suppose that T is some nonempty set, Σ is a σ-algebra of subsets of T , and µ is a nonnegative

σ-additive measure on Σ. Denote by Lp(T, µ) the family of all Σ-measurable functions with values

in R or C for which

‖x(·)‖Lp(T,µ) =

(∫

T

|x(t)|p dµ
)1/p

< ∞, 1 ≤ p < ∞.

For T ⊂ R
d and dµ = dt, t ∈ R

d, we write Lp(T ) = Lp(T, µ).

The Carlson inequality [1]

‖x(t)‖L1(R+) ≤
√
π‖x(t)‖1/2L2(R+)‖tx(t)‖

1/2
L2(R+), R+ = [0,+∞),

was generalized by many authors (see [2–9]). In [7], a sharp constant was found in the inequality

‖w(·)x(·)‖Lq (T,µ) ≤ K‖w0(·)x(·)‖γLp(T,µ)
‖w1(·)x(·)‖1−γ

Lr(T,µ)
, (1.1)

where T is a cone in a linear space; w(·), w0(·), and w1(·) are homogeneous functions; µ is a

homogeneous measure; and 1 ≤ q < p, r < ∞ (for T = R
d, the sharp constant was obtained in [5]).

Recall that a constant K is called sharp if it cannot be replaced by a smaller value. The inequality

in this case is called sharp.
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Finding the sharp constant in inequality (1.1) is closely related to the following extremal

problem:

‖w(·)x(·)‖Lq (T,µ) → max, ‖w0(·)x(·)‖Lp(T,µ) ≤ δ, ‖w1(·)x(·)‖Lr(T,µ) ≤ 1,

where δ > 0. In the present paper, we study the extremal problem

‖w(·)x(·)‖Lq (T,µ) → max, ‖w0(·)x(·)‖Lp(T,µ) ≤ δ, ‖wj(·)x(·)‖Lr(T,µ) ≤ 1, j = 1, . . . , n, (1.2)

where the functions w(·), w0(·), and wj(·), j = 1, . . . , n, are homogeneous and the functions wj(·),
j = 1, . . . , n, satisfy some additional symmetry properties. The obtained results are used to derive

sharp Carlson type inequalities with many weights.

A series of general results concerning problem (1.2) were obtained in [9], but there the main

attention was focused on problems of optimal recovery of linear operators, and sharp Carlson type

inequalities were derived as corollaries of extremal problems arising in the construction of optimal

recovery methods. In the present paper, we obtain these inequality directly.

2. HOMOGENEOUS WEIGHT FUNCTIONS ON A CONE IN A LINEAR SPACE

Suppose that T is a cone in a linear space; µ(·) is a homogeneous measure of order d; |w(·)|
and |w0(·)| are homogeneous functions of orders θ and θ0, respectively; and |wj(·)|, j = 1, . . . , n,

are homogeneous functions of order θ1. We will assume that w(t), w0(t) 6= 0 and
∑n

j=1 |wj(t)| 6= 0

for almost all t ∈ T . If 1 ≤ q < p, r < ∞, then, for k ∈ [0, 1), the function k1/(p−q)(1 − k)−1/(r−q)

monotonically increases from 0 to +∞. Consequently, there exists a function k(·) such that

k1/(p−q)(t)

(1− k(t))1/(r−q)
=
∣∣∣ w(t)
w0(t)

∣∣∣
q(p−r)

(p−q)(r−q)
( n∑

j=1

∣∣∣wj(t)

w0(t)

∣∣∣
r
)−1/(r−q)

(2.1)

for almost all t ∈ T . Define

γ =
θ1 − θ − d(1/q − 1/r)

θ1 − θ0 + d(1/r − 1/p)
. (2.2)

Theorem 1. Let 1 ≤ q < p, r < ∞ and θ1 − θ − d(1/q − 1/r) 6= 0. Assume that

I1 =

∫

T

∣∣∣∣
w(z)

w0(z)

∣∣∣∣
pq/(p−q)

kp/(p−q)(z) dµ(z) < ∞,

Ij+1 =

∫

T

|w(z)|qr/(p−q)

|w0(z)|pr/(p−q)
|wj(z)|rkr/(p−q)(z) dµ(z) < ∞, j = 1, . . . , n,

and, in addition, I2 = . . . = In+1. Then, for all x(·) 6= 0 such that w0(·)x(·) ∈ Lp(T, µ) and

wj(·)x(·) ∈ Lr(T, µ), j = 1, . . . , n, we have the sharp inequality

‖w(·)x(·)‖Lq (T,µ) ≤ K‖w0(·)x(·)‖γLp(T,µ)
max
1≤j≤n

‖wj(·)x(·)‖1−γ
Lr(T,µ)

, (2.3)

where

K = I
−γ/p
1 I

−(1−γ)/r
2 (I1 + nI2)

1/q. (2.4)
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To prove this theorem, we will need two lemmas. The first of them is essentially the sufficient

condition of extremum from the Karush–Kuhn–Tucker theorem (see, for example, [10, p. 39]); we

give this proof because it is very simple.

Let fj : A → R, j = 0, 1, . . . , k, be functions defined on some set A. Consider the extremal

problem

f0(x) → max, fj(x) ≤ 0, j = 1, . . . , k, x ∈ A, (2.5)

and its Lagrange function

L(x, λ) = −f0(x) +
k∑

j=1

λjfj(x), λ = (λ1, . . . , λk).

Lemma 1. Assume that there exist λ̂j ≥ 0, j = 1, . . . , k, and an element x̂ ∈ A feasible in

problem (2.5) for which

(a) min
x∈A

L(x, λ̂) = L(x̂, λ̂), λ̂ = (λ̂1, . . . , λ̂k),

(b) λ̂jfj(x̂) = 0, j = 1, . . . , k.

Then x̂ is an extremal element in problem (2.5).

Proof. For any element x ∈ A feasible in problem (2.5),

−f0(x) ≥ L(x, λ̂) ≥ L(x̂, λ̂) = −f0(x̂). �

Lemma 2 is a special case of Lemma 3 from [7].

Lemma 2. For all a, b ≥ 0 such that a+b > 0 and all 1 ≤ q < p, r < ∞, there exists a unique

solution û > 0 of the equation

q + paup−q + rbur−q = 0.

Moreover, for all u ≥ 0,

−ûq + aûp + bûr ≤ −uq + aup + bur.

Proof of Theorem 1. Define

x̂(t) = |w0(t)|−p/(p−q)
(q|w(t)|q

pλ0

)1/(p−q)
k1/(p−q)(ξt),

where the parameters λ0, ξ > 0 are chosen so that

∫

T

|w0(t)|px̂p(t) dµ(t) = δp,

∫

T

|wj(t)|rx̂r(t) dµ(t) = 1, j = 1, . . . , n. (2.6)

Making the change z = ξt and using the homogeneity of the functions w(·), w0(·), and wj(·),
j = 1, . . . , n, and of the measure µ(·), we obtain

∫

T

|w0(t)|px̂p(t) dµ(t) =
( q

pλ0

)p/(p−q)
I1ξ

(θ0−θ)qp/(p−q)−d.
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Similarly, we find

∫

T

|wj(t)|rx̂r(t) dµ(t) =
( q

pλ0

)r/(p−q)
Ij+1ξ

(θ0−θ)qr/(p−q)+r(θ0−θ1)−d, j = 1, . . . , n.

Thus, equalities (2.6) have the form

( q

pλ0

)p/(p−q)
I1ξ

(θ0−θ)qp/(p−q)−d = δp,

( q

pλ0

)r/(p−q)
Ij+1ξ

(θ0−θ)qr/(p−q)+r(θ0−θ1)−d = 1, j = 1, . . . , n.

It is easy to see that these equalities are satisfied for

ξ =
(
δI

−1/p
1 I

1/r
2

)1/(θ1−θ0+d(1/r−1/p))
, λ0 =

q

p
I
1−q/p
1 ξ(θ0−θ)q−d(1−q/p)δq−p.

Consider the following extremal problem, which is equivalent to (1.2):

∫

T

|w(t)|q|x(t)|q dµ(t) → max,

∫

T

|w0(t)|p|x(t)|p dµ(t) ≤ δp,

∫

T

|wj(t)|r|x(t)|r dµ(t) ≤ 1, j = 1, . . . , n.

(2.7)

The Lagrange function for this problem has the form

L(x(·), λ) =
∫

T

L(t, x(t), λ) dµ(t), λ = (λ0, λ1, . . . λn),

where

L(t, x(t), λ) = −|w(t)|q |x(t)|q + λ0|w0(t)|p|x(t)|p + |x(t)|r
n∑

j=1

λj|wj(t)|r.

From the definition of the function x̂(·), we get

pλ0|w0(t)|px̂p−q(t) = q|w(t)|qk(ξt), (2.8)

r

n∑

j=1

|wj(t)|rx̂r−q(t) = r

n∑

j=1

|wj(t)|r|w0(t)|−p(r−q)/(p−q)
(q|w(t)|q

pλ0

)(r−q)/(p−q)
k(r−q)/(p−q)(ξt).

It follows from (2.1) and the homogeneity of the functions |w(·)|, |w0(·)|, and wj(·), j = 1, . . . , n,

that

k(r−q)/(p−q)(ξt) =
∣∣∣ w(ξt)
w0(ξt)

∣∣∣
q(p−r)/(p−q)( n∑

j=1

∣∣∣∣
wj(ξt)

w0(ξt)

∣∣∣∣
r )−1

(1− k(ξt))

= ξ(θ−θ0)q(p−r)/(p−q)−(θ1−θ0)r
∣∣∣ w(t)
w0(t)

∣∣∣
q(p−r)/(p−q)( n∑

j=1

∣∣∣wj(t)

w0(t)

∣∣∣
r)−1

(1− k(ξt)).
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Thus,

r

n∑

j=1

|wj(t)|rx̂r−q(t) = r
( q

pλ0

)(r−q)/(p−q)
ξ(θ−θ0)q(p−r)/(p−q)−(θ1−θ0)r|w(t)|q(1− k(ξt)).

Define

λ =
q

r

( q

pλ0

)−(r−q)/(p−q)
ξ(θ0−θ)q(p−r)/(p−q)+(θ1−θ0)r.

Then

rλ

n∑

j=1

|wj(t)|rx̂r−q(t) = q|w(t)|q(1− k(ξt)). (2.9)

Adding (2.8) and (2.9), we obtain

pλ0|w0(t)|px̂p−q(t) + rλ

n∑

j=1

|wj(t)|rx̂r−q(t) = q|w(t)|q. (2.10)

It follows from Lemma 2 that, for all functions x(·) feasible in (2.7) and almost all t ∈ T , the

following inequality holds with λ = (λ0, λ, . . . , λ):

L(t, x̂(t), λ) ≤ L(t, x(t), λ).

Consequently,

L(x̂(·), λ) ≤ L(x(·), λ).

Since equalities (2.6) are satisfied, we find from Lemma 1 that x̂(·) is an extremal function in

problem (2.7). Using (2.10) and (2.6), we get

sup
‖w0(·)x(·)‖Lp(T,µ)≤δ

‖wj(·)x(·)‖Lr(T,µ)≤1, j=1,...,n

‖w(·)x(·)‖qLq (T,µ)
=

∫

T

|w(t)|q|x̂(t)|q dµ(t)

= q−1

∫

T

(
pλ0|w0(t)|px̂p(t) + rλ

n∑

j=1

|wj(t)|rx̂r(t)
)
dµ(t) =

pλ0δ
p + nrλ

q

= I
1−q/p
1 ξ(θ0−θ)q−d(1−q/p)δq + n

(
pλ0

q

)(r−q)/(p−q)

ξ(θ0−θ)q(p−r)/(p−q)+(θ1−θ0)r

= I
1−q/p
1 ξ(θ0−θ)q−d(1−q/p)δq + nI

r/p−q/p
1 ξ(θ0−θ)q−d(r/p−q/p)+(θ1−θ0)rδq−r = δqγKq.

(2.11)

Let x(·) 6= 0, w0(·)x(·) ∈ Lp(T, µ), and wj(·)x(·) ∈ Lr(T, µ) for j = 1, . . . , n. Define

A = max
1≤j≤n

‖wj(·)x(·)‖Lr(T,µ), δ = A−1‖w0(·)x(·)‖Lp(T,µ).

Then it follows from (2.11) that

A−q‖w(·)x(·)‖qLq (T,µ)
≤ δqγKq.
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This implies inequality (2.3). If we assume that there exists a constant K1 < K for which (2.3)

also holds, then

sup
‖w0(·)x(·)‖Lp(T,µ)≤δ

‖wj(·)x(·)‖Lr(T,µ)≤1, j=1,...,n

‖w(·)x(·)‖qLq (T,µ)
≤ Kq

1δ
qγ < Kqδqγ ,

which contradicts (2.11).

The theorem is proved. �

The statement of Theorem 1 for n = 1 was proved in [7].

3. HOMOGENEOUS WEIGHT FUNCTIONS ON A CONE IN R
d

Assume that T is a cone in R
d, dµ(t) = dt, |w(·)| and |w0(·)| are homogeneous functions of

orders θ and θ0, and |wj(·)|, j = 1, . . . , n, are homogeneous functions of order θ1. As before, we

will assume that w(t), w0(t) 6= 0 and
∑n

j=1 |wj(t)| 6= 0 for almost all t ∈ T . Consider the spherical

coordinate system

t1 = ρ cosω1,

t2 = ρ sinω1 cosω2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

td−1 = ρ sinω1 sinω2 . . . sinωd−2 cosωd−1,

td = ρ sinω1 sinω2 . . . sinωd−2 sinωd−1.

Define ω = (ω1, . . . , ωd−1). For any function f(·) given on R
d, we introduce the notation

f̃(ω) = |f(cosω1, . . . , sinω1 sinω2 . . . sinωd−2 sinωd−1)|.

Note that if the function |f(·)| is homogeneous of order κ, then f̃(ω) = ρ−κ|f(t)|. Denote by Ω the

range of ω when t ∈ T . Since T is a cone, it follows that Ω is independent of ρ.

Assume that γ ∈ (0, 1), where γ is given by (2.2). Define a number q∗ by the formula

1

q∗
=

1

q
− γ

p
− 1− γ

r
.

It is easy to see that q∗ > q ≥ 1. In addition,

q∗ =
pqr(θ1 − θ0 + d(1/r − 1/p))

(θ1 − θ0)r(p− q)− (θ − θ0)q(p − r)
.

Define

J(ω) = sind−2 ω1 sin
d−3 ω2 . . . sinωd−2.

Theorem 2. Let 1 ≤ q < p, r < ∞ and γ ∈ (0, 1). Assume that

I =

∫

Ω

w̃q∗(ω)

w̃q∗γ
0 (ω)

(∑n
k=1 w̃

r
k(ω)

)q∗(1−γ)/r
J(ω) dω < ∞

and I ′1 = . . . = I ′n, where

I ′j =

∫

Ω

w̃q∗(ω)w̃r
j (ω)

w̃q∗γ
0 (ω)

(∑n
k=1 w̃

r
k(ω)

)q∗(1−γ)/r+1
J(ω) dω, j = 1, . . . , n.
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Then, for all x(·) 6= 0 such that w0(·)x(·) ∈ Lp(T ) and wj(·)x(·) ∈ Lr(T ), j = 1, . . . , n, the following

sharp inequality holds:

‖w(·)x(·)‖Lq (T ) ≤ K̃‖w0(·)x(·)‖γLp(T ) max
1≤j≤n

‖wj(·)x(·)‖1−γ
Lr(T ),

where

K̃ = γ−γ/p
(1− γ

n

)−(1−γ)/r( B (q∗γ/p, q∗(1− γ)/r) I

|θ1 − θ0 + d(1/p − 1/r)|(γr + (1− γ)p)

)1/q∗
; (3.1)

here B(·, ·) is the Euler B-function.

Proof. We compute the quantity I1 from Theorem 1 by passing to spherical coordinates. We

have

I1 =

∫

T

∣∣∣ w(z)
w0(z)

∣∣∣
pq/(p−q)

kp/(p−q)(z) dz

=

∫

Ω

( w̃(ω)

w̃0(ω)

)qp/(p−q)
J(ω) dω

+∞∫

0

ρ(θ−θ0)qp/(p−q)+d−1kp/(p−q)(ρ, ω) dρ.

Passing to spherical coordinates, we obtain the following equality for the function k(·):

k1/(p−q)(ρ, ω)

(1− k(ρ, ω))1/(r−q)
= ρ

(θ−θ0)q(p−r)−(θ1−θ0)r(p−q)
(p−q)(r−q)

w̃
q(p−r)

(p−q)(r−q) (ω)w̃
p/(p−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)1/(r−q)
.

Therefore,

ρ(θ1−θ0)r(p−q)−(θ−θ0)q(p−r) =
(1− k(ρ, ω))p−q

kr−q(ρ, ω)

w̃q(p−r)(ω)w̃
p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q .

Fix ω ∈ Ω. Then

dρ(θ−θ0)qp/(p−q)+d =

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ

d
(1− k)(p−q)ζ

k(r−q)ζ

= −ζ

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ
(1− k)(p−q)ζ−1

k(r−q)ζ+1
(r − q + (p− r)k) dk,

where

ζ =
(θ − θ0)qp+ d(p− q)

(p− q)((θ1 − θ0)r(p − q)− (θ − θ0)q(p− r))
=

q∗(1− γ)

r(p− q)
.

If ρ changes from 0 to +∞, then k changes from 0 to 1 for (θ1 − θ0)r(p− q)− (θ − θ0)q(p− r) < 0

and from 1 to 0 for (θ1 − θ0)r(p− q)− (θ − θ0)q(p − r) > 0. Therefore,

+∞∫

0

ρ(θ−θ0)qp/(p−q)+d−1kp/(p−q)(ρ, ω) dρ =
p− q

(θ − θ0)qp+ d(p − q)

+∞∫

0

kp/(p−q)(ρ, ω) dρ(θ−θ0)qp/(p−q)+d

=
1

|(θ1 − θ0)r(p − q)− (θ − θ0)q(p− r)|

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ
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×
1∫

0

kp/(p−q) (1− k)(p−q)ζ−1

k(r−q)ζ+1
(r − q + (p− r)k) dk

=
1

|(θ1 − θ0)r(p− q)− (θ − θ0)q(p − r)|

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ

(K1 +K2),

where

K1 = (r − q)

1∫

0

kp̂(1 − k)q̂−1 dk = (r − q)B(p̂+ 1, q̂),

K2 = (p− r)

1∫

0

kp̂+1(1− k)q̂−1 dk = (p− r)B(p̂+ 2, q̂) = (p− r)
p̂+ 1

p̂+ q̂ + 1
B(p̂+ 1, q̂),

p̂ =
(θ1 − θ)qr − d(r − q)

(θ1 − θ0)r(p− q)− (θ − θ0)q(p − r)
= q∗

γ

p
,

q̂ =
(θ − θ0)qp+ d(p− q)

(θ1 − θ0)r(p− q)− (θ − θ0)q(p− r)
= q∗

1− γ

r
.

Thus,

K1 +K2 = p
(θ1 − θ0)r(p− q)− (θ − θ0)q(p − r)

(θ1 − θ0)pr + d(p − r)
B(p̂+ 1, q̂) =

pq

q∗
B(p̂+ 1, q̂)

=
qγ

q∗

(γ
p
+

1− γ

r

)−1
B(p̂, q̂).

Hence,

I1 =
γ

pr|θ1 − θ0 + d(1/r − 1/p)|
(γ
p
+

1− γ

r

)−1
B(p̂, q̂)I.

Let us find I2. We have

I2 =

∫

T

|w(z)|qr/(p−q)

|w0(z)|pr/(p−q)
|w1(z)|r kr/(p−q)(z) dz

=

∫

Ω

w̃qr/(p−q)(ω)

w̃
pr/(p−q)
0 (ω)

w̃r
1(ω)J(ω) dω

+∞∫

0

ρ(θ−θ0)qr/(p−q)+(θ1−θ0)r+d−1 kr/(p−q)(ρ, ω) dρ.

Fix ω ∈ Ω. Then

dρ(θ−θ0)qr/(p−q)+(θ1−θ0)r+d =

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ1

d
(1− k)(p−q)ζ1

k(r−q)ζ1

= −ζ1

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ1
(1− k)(p−q)ζ1−1

k(r−q)ζ1+1
(r − q + (p− r)k) dk,

where

ζ1 =
(θ − θ0)qr + ((θ1 − θ0)r + d)(p − q)

(p − q)((θ1 − θ0)r(p− q)− (θ − θ0)q(p − r))
=

q∗(1− γ)

r(p− q)
+

1

p− q
.
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We have
+∞∫

0

ρ(θ−θ0)qr/(p−q)+(θ1−θ0)r+d−1kr/(p−q)(ρ, ω) dρ

=
p− q

(θ − θ0)qr + ((θ1 − θ0)r + d)(p − q)

+∞∫

0

kr/(p−q)(ρ, ω) dρ(θ−θ0)qr/(p−q)+(θ1−θ0)r+d

=
1

|(θ1 − θ0)r(p− q)− (θ − θ0)q(p− r)|

(
w̃q(p−r)(ω)w̃

p(r−q)
0 (ω)

(∑n
j=1 w̃

r
j (ω)

)p−q

)ζ1

(L1 + L2);

here

L1 = (r − q)

1∫

0

kp̂−1(1− k)q̂ dk = (r − q)B(p̂, q̂ + 1),

L2 = (p − r)

1∫

0

kp̂(1 − k)q̂ dk = (p− r)B(p̂+ 1, q̂ + 1) = (p− r)
p̂

p̂+ q̂ + 1
B(p̂, q̂ + 1).

Thus,

L1 + L2 = r
(θ1 − θ0)r(p− q)− (θ − θ0)q(p− r)

(θ1 − θ0)pr + d(p − r)
B(p̂, q̂ + 1) =

qr

q∗
B(p̂, q̂ + 1)

=
q(1− γ)

q∗

(γ
p
+

1− γ

r

)−1
B(p̂, q̂).

Consequently,

I2 =
1− γ

pr|θ1 − θ0 + d(1/r − 1/p)|
(γ
p
+

1− γ

r

)−1
B(p̂, q̂)I ′1.

Since I ′1 + . . .+ I ′n = I, we have I ′j = I/n, j = 1, . . . , n. Thus,

I2 =
1− γ

pr|θ1 − θ0 + d(1/r − 1/p)|
(γ
p
+

1− γ

r

)−1
B(p̂, q̂)

I

n
.

It remains to substitute the expressions for I1 and I2 into (2.4).

Theorem 2 is proved. �

For n = 1, the statement of Theorem 2 was proved in [5].

Let us give an example of weights that satisfy the conditions of Theorem 2. Let T = R
d
+,

w(t) = (t21 + . . .+ t2d)
θ/2, w0(t) = (t21 + . . .+ t2d)

θ0/2, wj(t) = tθ1j , j = 1, . . . , d. (3.2)

Assume that γ ∈ (0, 1). This is equivalent to the fact that θ1+d(1/r−1/q) > θ > θ0+d(1/p−1/q)

or θ1 + d(1/r − 1/q) < θ < θ0 + d(1/p − 1/q).

It is easy to see that w̃(·) = w̃0(·) = 1 and w̃j(ω) = t̃j
θ1
(ω), j = 1, . . . , d, where

t̃1(ω) = cosω1,

t̃2(ω) = sinω1 cosω2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t̃d−1(ω) = sinω1 sinω2 . . . sinωd−2 cosωd−1,

t̃d(ω) = sinω1 sinω2 . . . sinωd−2 sinωd−1.
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Note that

d∑

k=1

t̃2k(ω) = 1.

For the quantity I from Theorem 2, we have

I =

∫

Πd−1
+

J(ω) dω
(∑d

k=1 t̃k
rθ1

(ω)
)q∗(1−γ)/r

, Πd−1
+ = [0, π/2]d−1. (3.3)

If rθ1 ≤ 2, then
d∑

k=1

t̃k
rθ1

(ω) ≥
d∑

k=1

t̃k
2
(ω) = 1. (3.4)

In the case where rθ1 > 2, by Hölder’s inequality,

1 =

d∑

k=1

t̃k
2
(ω) ≤

( d∑

k=1

t̃k
rθ1

(ω)
)2/(rθ1)

d1−2/(rθ1).

Thus,
d∑

k=1

t̃k
rθ1

(ω) ≥ d1−rθ1/2. (3.5)

It follows from (3.4) and (3.5) that I < ∞.

For I ′j we have

I ′j =

∫

Πd−1
+

t̃j
rθ1J(ω) dω

(∑d
k=1 t̃k

rθ1
(ω)
)q∗(1−γ)/r+1

, j = 1, . . . , d.

Consider the integrals

Mj =

∫

Rd
+∩Bd

(∑d
k=1 t

2
k

)θ1q∗(1−γ)/2
trθ1j(∑d

k=1 t
rθ1
k

)q∗(1−γ)/r+1
dt, j = 1, . . . , d,

where B
d is the unit ball in R

d. If make a change of variables in the integral Mj, swapping the

variables tj and tk, then the integral Mj turns into the integral Mk. Consequently, M1 = . . . = Md.

Passing to spherical coordinates, we get Mj = I ′j/d, j = 1, . . . , d. Thus, I ′1 = . . . = I ′d.

For the case under consideration from Theorem 2, we obtain the following statement.

Corollary 1. Assume that 1 ≤ q < p, r < ∞ and one of the following inequalities holds:

θ1 + d(1/r − 1/q) > θ > θ0 + d(1/p− 1/q) or θ1 + d(1/r − 1/q) < θ < θ0 + d(1/p− 1/q). Then, for

the weights (3.2) and all x(·) for which w0(·)x(·) ∈ Lp(R
d
+) and wj(·)x(·) ∈ Lr(R

d
+), j = 1, . . . , d,

the following sharp inequality holds:

‖w(·)x(·)‖Lq (Rd
+) ≤ K̃‖w0(·)x(·)‖γLp(Rd

+)
max
1≤j≤d

‖wj(·)x(·)‖1−γ

Lr(Rd
+)
,

where the quantity K̃ is defined by equality (3.1) with I from (3.3).

We give one more result for the weights (3.2).
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Corollary 2. Let 1 ≤ q < p, r < ∞, and let the weights (3.2) be such that θ = d(1 − 1/q),

θ0 = d− (λ+ d)/p, and θ1 = d+ (µ − d)/r, where λ, µ > 0. Define

α =
µ

pµ+ rλ
, β =

λ

pµ+ rλ
.

Then, for all x(·) such that w0(·)x(·) ∈ Lp(R
d
+) and wj(·)x(·) ∈ Lr(R

d
+), j = 1, . . . , d, the following

sharp inequality holds:

‖w(·)x(·)‖Lq (Rd
+) ≤ C‖w0(·)x(·)‖pαLp(Rd

+)
max
1≤j≤d

‖wj(·)x(·)‖rβLr(Rd
+)
,

where

C =
dβ

(pα)α(rβ)β

( I

λ+ µ
B
( α

1/q − α− β
,

β

1/q − α− β

))1/q−α−β
,

I =

∫

Πd−1
+

J(ω) dω
(∑d

k=1 t̃k
r(d−1)+µ

(ω)
)β/(1/q−α−β)

.

For d = 1 and q = 1, the statement of Corollary 2 was obtained in [2].
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