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1. INTRODUCTION
The question initially stimulating the writing of the present paper was as follows: “How best to

recover a signal from the measurements of a fixed number of its harmonics with fixed error?”
We give an answer to this question in the following case. Suppose we are given a function

x( · ) ∈ W n
2 (R) belonging to the Sobolev class of functions x( · ) ∈ L2(R) whose (n − 1)th derivative is

locally absolutely continuous and ‖x(n)( · )‖L2(R) ≤ 1; the Fourier transform of this function is known on
a measurable set Mσ of measure not greater than 2σ with accuracy up to δ > 0 in the metric of Lp(Mσ),
1 ≤ p ≤ ∞. We pose the problem of the optimal recovery of a function from W n

2 (R) and its kth derivative
(k ≤ n − 1) in the metric of L2(R) from this given data. The gist of the answer to the question posed
above is that it is best to measure the Fourier transform on a set which is a symmetric (with respect to
zero) closed interval of length 2σ0, where σ0 = min(σ, σ̂) and σ̂ is a positive number (depending on n, k,
p, and δ). Further, outside the closed interval [−σ0, σ0], information about the Fourier transform turns
out to be superfluous. We must “smooth out” the remaining (useful) data in a suitable way, take its
inverse Fourier transform, and then differentiate k times (if k ≥ 1). This procedure fully corresponds to
what occurs in practice (the high frequencies are neglected and, in view of unavoidable measurement
errors, the remaining frequencies are filtered out in one way or another).

2. STATEMENT OF THE PROBLEM AND FORMULATION OF RESULTS
Suppose that n is a natural number, W n

2 (R) is the Sobolev class of functions on R defined above,
σ > 0, and Mσ is the set of measurable subsets of the line whose measures are not greater than 2σ.
Assume that we know the Fourier transform Fx( · ) of a function x( · ) ∈ W n

2 (R) on a set Mσ ∈ Mσ

with accuracy up to δ > 0 in the metric of Lp(Mσ), 1 ≤ p ≤ ∞, i.e., we know a function y( · ) ∈ Lp(Mσ)
such that ‖Fx( · ) − y( · )‖Lp(Mσ) ≤ δ. By the problem of the optimal recovery of a function from the
class W n

2 (R) or of its kth derivative (0 ≤ k ≤ n− 1) in the metric of L2(R) from given data we mean the
determination of the quantity, called the optimal recovery error,

E(k, σ, p, δ) = inf
Mσ

inf
m

sup
x( · )∈W n

2 (R), y( · )∈Lp(Mσ)
‖Fx( · )−y( · )‖Lp(Mσ)≤δ

‖x(k)( · ) − m(y( · ))( · )‖L2(R),

*E-mail: magaril@mirea.ru
**E-mail: kosipenko@yahoo.com

51



52 MAGARIL-IL’YAEV, OSIPENKO

where the first infimum is taken over all sets Mσ ∈ Mσ and the second infimum, over all mappings
(recovery methods) m : Lp(Mσ) → L2(R) and the determination of ̂Mσ and m̂ called the optimal set
and the optimal method at which the infimum are attained.

The determination of the optimal recovery error and the optimal method for a class of elements dates
back to Kolmogorov’s paper on the widths of function classes [1]. The statement of the problem of
optimal recovery (but in a considerably simpler case) is due to Smolyak [2]. One can get an idea of
the subsequent development of problems related to those of optimal recovery from [3]–[7]. The problem
stated above for the case in which Mσ consists of one closed interval [−σ, σ] and p = 2 and ∞, was
studied in [8]. There it was proved that, in that case, if 1 ≤ p < 2, then the supremum in the definition
of E(k, σ, p, δ) is equal to infinity, so that such a case is of no interest and any method is optimal. The
case in which Mσ consists of all closed intervals of length 2σ, and p = 2, was studied in [9]. In the
present paper, we consider the general case in which 2 < p < ∞. The extreme cases p = 2 and ∞ can
be obtained by passing to the limit, but we will not go into this.

Suppose that 2 < p < ∞. Set

σ̂ =
( √

2π(n − k)1−1/p

δ
√

k + 1/2 − 1/pB1/2−1/p

)1/(n+1/2−1/p)

,

where

B = B

(

k + 1/2 − 1/p
(n − k)(1 − 2/p)

, 2
1 − 1/p
1 − 2/p

)

(2.1)

is the B-Euler function.

Theorem 1. Suppose that k and n are integers, 0 ≤ k ≤ n − 1, σ > 0, δ > 0, 2 < p < ∞, and
σ0 = min(σ, σ̂). Then

E(k, σ, p, δ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

√

δ2

2π

(

B

n − k

)1−2/p

σ2k+1−2/p +
1

σ2(n−k)
, σ ≤ σ̂,

√

n + 1/2 − 1/p
k + 1/2 − 1/p

σ̂−(n−k), σ ≥ σ̂.

The optimal set is the closed interval [−σ0, σ0]. The optimal method is of the form

m̂(y( · ))(t) =
1
2π

ˆ
|ξ|≤σ0

(iξ)k
(

1 −
(

ξ

σ0

)2(n−k))

y(ξ)eiξt dξ.

As is seen from the statements of the theorem, the knowledge of the Fourier transform outside the
closed interval [−σ̂, σ̂] is superfluous, i.e., the optimal recovery error does not decrease. The useful data
(on the closed interval [−σ0, σ0]) is smoothed.

3. PROOF OF THE THEOREM
Below we shall deal with extremal problems that have no solutions; therefore, we begin with the proof

of a statement dealing with the determination of the value of the problem in such a case. Suppose that
X is an arbitrary nonempty set, fi : X → R, i = 0, 1, . . . , N , αi ∈ R, i = 1, . . . , N , and A is a nonempty
subset X. Consider the problem

f0(x) → max, fi(x) ≤ αi, i = 1, . . . , N, x ∈ A, (3.1)

of finding admissible (i.e., satisfying the constraints of the problem) elements at which f0 attains its
maximum. The supremum of f0(x) over all admissible x is called the value of problem (3.1).

With problem (3.1) we associate the following Lagrange function:

L (x, λ) = −f0(x) +
N

∑

i=1

λifi(x),

where λ = (λ1, . . . , λN ) is the collection of Lagrange multipliers.
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Lemma 1. Suppose that there exists a collection ̂λ = (̂λ1, . . . , ̂λN ) of nonnegative Lagrange
multipliers, a number ̂L , and a sequence of admissible elements {xm} in (3.1) such that

(a) L (x, ̂λ) ≥ ̂L for all x ∈ A,

(b) lim
m→∞

L (xm, ̂λ) = ̂L ,

(c) lim
m→∞

̂λi(fi(xm) − αi) = 0, i = 1, . . . , N.

Then
N

∑

i=1

̂λiαi − ̂L

is the value of problem (3.1).

Proof of the lemma. Let S denote the value of problem (3.1). For any admissible element x in (3.1),
taking into account the fact that the ̂λi i = 1, . . . , N , are nonnegative and using condition (a), we obtain

−f0(x) ≥ −f0(x) +
N

∑

i=1

̂λi(fi(x) − αi) = L (x, ̂λ) −
N

∑

i=1

̂λiαi ≥ ̂L −
N

∑

i=1

̂λiαi,

i.e.,

S ≤
N

∑

i=1

̂λiαi − ̂L .

On the other hand, in view of conditions (b) and (c), we find that

̂L = lim
m→∞

L (xm, ̂λ) = − lim
m→∞

f0(xm) +
N

∑

i=1

lim
m→∞

̂λifi(xm)

= − lim
m→∞

f0(xm) +
N

∑

i=1

lim
m→∞

̂λi(fi(xm) − αi) +
N

∑

i=1

̂λiαi ≥ −S +
N

∑

i=1

̂λiαi,

and hence

S ≥
N

∑

i=1

̂λiαi − ̂L .

The lemma is proved.

Proof of Theorem 1. 1. The infimum for E(k, σ, p, δ). Choose Mσ ∈ Mσ and, for a given Mσ, let
E(k,Mσ , p, δ) denote the quantity under the sign of the first infimum in the definition of E(k, σ, p, δ).
Let us show that E(k,Mσ , p, δ) is not less than the value of the problem:

‖x(k)( · )‖L2(R) → max, ‖Fx( · )‖Lp(Mσ) ≤ δ, ‖x(n)( · )‖L2(R) ≤ 1. (3.2)

Indeed, suppose that x( · ) is an admissible function in (3.2) (i.e., x( · ) satisfies the constraints of the
problem). Then, obviously, the function −x( · ) is also admissible and, for any m : Lp(Mσ) → L2(R), we
have

2‖x(k)( · )‖L2(R) ≤ ‖x(k)( · ) − m(0)( · )‖L2(R) + ‖ − x(k)( · ) − m(0)( · )‖L2(R)

≤ 2 sup
x( · )∈W n

2 (R), ‖Fx( · )‖Lp(Mσ)≤δ
‖x(k)( · ) − m(0)( · )‖L2(R)

≤ 2 sup
x( · )∈W n

2 (R), y( · )∈Lp(Mσ)
‖Fx( · )−y( · )‖Lp(Mσ)≤δ

‖x(k)( · ) − m(y( · ))( · )‖L2(R).
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Passing, on the left, to the supremum over all admissible functions in (3.2) and, on the right, to the
infimum over all methods m, we obtain the required assertion.

In Fourier images, denoting u( · ) = (2π)−1/2|Fx( · )| and using Plancherel’s theorem, we find that
the square of the value of problem (3.2) is equal to the value of the following problem:ˆ

R

ξ2ku2(ξ) dξ → max,

ˆ
Mσ

up(ξ) dξ ≤ δp

(2π)p/2
,

ˆ
R

ξ2nu2(ξ) dξ ≤ 1, u( · ) ≥ 0. (3.3)

Set

â = sup{a ≥ 0 : mes{Mσ ∩ [−a, a]} = 2a}.
Obviously, zero belongs to the set given in the braces. Let us show that if â = 0, then the value of
problem (3.3) (and hence also of (3.2)) is equal to infinity. Indeed, in this case, mes{Mσ ∩ [−ε, ε]} < 2ε
for any ε > 0, and hence mes Ωε = {(R \ Mσ) ∩ [−ε, ε]} > 0. Set

uε(ξ) =

⎧

⎪

⎨

⎪

⎩

(ˆ
Ωε

τ2n dτ

)−1/2

, ξ ∈ Ωε

0, ξ /∈ Ωε.

This function is admissible in problem (3.3) and
ˆ

R

ξ2ku2
ε(ξ) dξ =

´
Ωε

ξ2k dξ´
Ωε

τ2n dτ
=

´
Ωε

ξ2nξ−2(n−k) dξ´
Ωε

τ2n dτ
≥ ε−2(n−k);

hence, since ε is arbitrary, it follows that the value of the maximized functional in (3.3) can be made
arbitrarily large.

Now suppose that â > 0. Let us find the value of problem (3.3) in this case using the lemma proved
above. Problem (3.3) has the same form as problem (3.1) (X is the set of all measurable functions u( · )
on R and A is the subset of nonnegative functions). Let us write the Lagrange function (3.3) as

L (u( · ), λ1, λ2) =
ˆ

Mσ

(−ξ2ku2(ξ) + λ1u
p(ξ) + λ2ξ

2nu2(ξ)) dξ

+
ˆ

R\Mσ

(−ξ2k + λ2ξ
2n)u2(ξ) dξ. (3.4)

Set a0 = min(σ̂, â) and ̂λ2 = a
−2(n−k)
0 . Then, for any λ1 > 0, for ξ ∈ [−a0, a0], the function

u 
→ f(u) = −ξ2ku2 + λ1u
p + a

−2(n−k)
0 ξ2nu2 on [0,∞)

attains an absolute minimum at the point

ũ(ξ) =
(

2
λ1p

)1/(p−2)

ξ2k/(p−2)

(

1 −
(

ξ

a0

)2(n−k))1/(p−2)

and, for |ξ| > a0, at zero.

Now let us choose λ1; we denote it by ̂λ1 if it satisfies the condition
ˆ a0

−a0

ũp(ξ) dξ =
(

2
̂λ1p

)p/(p−2) ˆ a0

−a0

ξ2pk/(p−2)

(

1 −
(

ξ

a0

)2(n−k))p/(p−2)

dξ =
δp

(2π)p/2
. (3.5)

Replacing η = (ξ/a0)2(n−k) in the integral and performing simple calculations, we obtain

̂λ1 =
(√

2π
δ

)p−2 2B1−2/p

p(n − k)1−2/p
a

2(k+1/2−1/p)
0 ,

where B is defined by (2.1). Obviously, ̂λ1 > 0.
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Since mes{Mσ ∩ [−â, â ]} = 2â and the function f is nonnegative outside the closed interval
[−a0, a0], it follows that, for all u( · ) ≥ 0, we haveˆ

Mσ

f(u(ξ)) dξ ≥
ˆ

Mσ∩[−ba,ba]
f(u(ξ)) dξ =

ˆ
ba

−ba
f(u(ξ)) dξ

≥
ˆ a0

−a0

f(u(ξ)) dξ ≥
ˆ a0

−a0

f(ũ(ξ)) dξ.

Further, since R \ Mσ ⊂ R \ [−â, â ] up to a set of zero measure and the function

ξ 
→ −ξ2k + a
−2(n−k)
0 ξ2n

is positive for |ξ| > a0, it follows that, for all u( · ),ˆ
R\Mσ

(−ξ2k + a
−2(n−k)
0 ξ2n)u2(ξ) dξ ≥ 0.

These relations imply that, for all u( · ) ≥ 0, the following inequality holds:

L (u( · ), ̂λ1, ̂λ2) ≥
ˆ a0

−a0

f(ũ(ξ)) dξ. (3.6)

Let us consider separately the following two cases: â < σ̂ and â ≥ σ̂.
Suppose that â < σ̂. Then a0 = â. For each m ∈ N, we set

Ωm = (R \ Mσ) ∩
((

−â − 1
m

, â

)

∪
(

â, â +
1
m

))

.

It follows from the definition of â that mes Ωm > 0 for all m. Set

um(ξ) =

⎧

⎪

⎨

⎪

⎩

ũ(ξ), ξ ∈ [−â, â ],
γm, ξ ∈ Ωm,

0 otherwise,

while γm is chosen so that
ˆ

R

ξ2nu2
m(ξ) dξ =

ˆ
ba

−ba
ξ2nũ2(ξ) dξ + γ2

m

ˆ
Ωm

ξ2n dξ = 1. (3.7)

Let us show that this is possible. Indeed, just as above, replacing η = (ξ/â)2(n−k) in the expression for
ũ( · ) and using well-known properties of the B-function, we obtain the relation

ˆ
ba

−ba
ξ2nũ2(ξ) dξ =

δ2(k + 1/2 − 1/p)B1−2/p

2π(n − k)2−2/p
â2n+1−2/p.

It follows from the definition of σ̂ that, for â = σ̂, the quantity on the right is equal to 1 and since we have
â < σ̂, this quantity is less than 1. Denoting it by C and using (3.7), we obtain

γm = (1 − C)1/2

(ˆ
Ωm

ξ2n dξ

)−1/2

.

Now let us verify that

lim
m→∞

L (um( · ), ̂λ1, ̂λ2) = lim
m→∞

ˆ
Ωm

(−ξ2k + â2(n−k)ξ2n)u2
m(ξ) dξ +

ˆ
ba

−ba
f(ũ(ξ)) dξ

=
ˆ
ba

−ba
f(ũ(ξ)) dξ. (3.8)

MATHEMATICAL NOTES Vol. 92 No. 1 2012
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Indeed, using the definitions of um( · ) and γm, we obtainˆ
Ωm

(−ξ2k + â2(n−k)ξ2n)u2
m(ξ) dξ = γ2

m

ˆ
Ωm

(−ξ2k + â−2(n−k)ξ2n) dξ

≤
(

â−2(n−k) −
(

â +
1
m

)−2(n−k))

γ2
m

ˆ
Ωm

ξ2n dξ

= (1 − C)
(

â−2(n−k) −
(

â +
1
m

)−2(n−k))

→ 0, m → ∞,

which proves (3.8).
Now we can find the value of problem (3.3) using the lemma (whose conditions (a), (b), and (c) follow,

respectively, from (3.6), (3.8), (3.5), and (3.7)) in the case where â < σ̂. This value is

δ2

2π

(

B

n − k

)1−2/p

â2k+1−2/p +
1

â2(n−k)
. (3.9)

Let us pass to the case â ≥ σ̂. Then a0 = σ̂. Suppose that ̂λ1 and ̂λ2 are defined just as above (but
with a0 = σ̂). The sequence {um( · )} is chosen constant, namely,

um(ξ) =

{

ũ(ξ), ξ ∈ [−σ̂, σ̂ ],
0 otherwise.

It follows from the definition of σ̂ thatˆ
R

ξ2nu2
m(ξ) dξ =

ˆ
bσ

−bσ
ξ2nũ2(ξ) dξ = 1.

Applying the lemma (whose other conditions are easily verified), we find that, in this case, the value of
problem (3.3) is

n + 1/2 − 1/p
k + 1/2 − 1/p

σ̂−2(n−k).

Suppose that σ < σ̂. Then, obviously, â ≤ σ < σ̂. Expression (3.9), just as the function â, decreases
on (0, σ̂] and, therefore, the value of problem (3.2) is not less than

√

δ2

2π

(

B

n − k

)1−2/p

σ2k+1−2/p +
1

σ2(n−k)
. (3.10)

Then, by what has proved above, the quantity E(k,Mσ , p, δ) is not less than the number (3.10), whci is
independent of the structure of the set Mσ. Therefore, for σ < σ̂,

E(k, σ, p, δ) ≥

√

δ2

2π

(

B

n − k

)1−2/p

σ2k+1−2/p +
1

σ2(n−k)
.

Suppose that σ ≥ σ̂. If â < σ̂, then, as proved above, the value of problem (3.2) is, necessarily, not
less than the value of expression (3.10) at the point σ = σ̂; namely, it is easy to verify that it is

√

n + 1/2 − 1/p
k + 1/2 − 1/p

σ̂−(n−k). (3.11)

But if â ≥ σ̂, then, as has already been, the value of problem (3.2) is equal to the quantity (3.11). Thus,
for σ ≥ σ̂,

E(k, σ, p, δ) ≥

√

n + 1/2 − 1/p
k + 1/2 − 1/p

σ̂−(n−k).
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2. Proof of the optimality of the set Δσ0 = [−σ0, σ0] and of the method m̂. The optimality of Δσ0 and
m̂ implies that the value of the problem (the value of the supremum in the definition of E(k, σ, p, δ))

‖x(k)( · ) − m̂(y( · ))( · )‖L2(R) → max, ‖Fx( · ) − y( · )‖Lp(Δσ0 ) ≤ δ,

‖x(n)( · )‖L2(R) ≤ 1, y( · ) ∈ Lp(Δσ0)
(3.12)

coincides with E(k, σ, p, δ).

Denoting z( · ) = Fx( · ) − y( · ) and, for brevity, γ(ξ) = (ξ/σ0)2(n−k), and using Plancherel’s theo-
rem, we find that the square of the value of problem (3.12) is equal to the value of the following problem:

1
2π

ˆ
Δσ0

ξ2k|(1 − γ(ξ))z(ξ) + γ(ξ)Fx(ξ)|2 dξ +
1
2π

ˆ
R\Δσ0

ξ2k|Fx(ξ)|2 dξ → max,

ˆ
Δσ0

|z(ξ)|p dξ ≤ δp,
1
2π

ˆ
R

ξ2n|Fx(ξ)|2 dξ ≤ 1. (3.13)

Setting u(ξ) = (2π)−1/2|z(ξ)| and v(ξ) = (2π)−1/2|Fx(ξ)|, we put (3.13) in correspondence with
the problem ˆ

Δσ0

ξ2k((1 − γ(ξ))u(ξ) + γ(ξ)v(ξ))2 dξ +
ˆ

R\Δσ0

ξ2kv2(ξ) dξ → max,

ˆ
Δσ0

up(ξ) dξ ≤ δp

(2π)p/2
,

ˆ
R

ξ2nv2(ξ) dξ ≤ 1, u(ξ) ≥ 0, v(ξ) ≥ 0,
(3.14)

whose value is, obviously, not less than that of problem (3.13). In order to find the value of problem (3.14)
again, we use the lemma. The Lagrange function of this problem is of the form

L (u( · ), v( · ), λ1 , λ2) =
ˆ

Δσ0

(−ξ2k((1 − γ(ξ))u(ξ) + γ(ξ)v(ξ))2

+ λ1u
p(ξ) + λ2ξ

2nv2(ξ)) dξ +
ˆ

R\Δσ0

(−ξ2k + λ2ξ
2n)v2(ξ) dξ.

Suppose that ξ ∈ Δσ0 . Set ̂λ2 = σ
−2(n−k)
0 and, for a fixed λ1 > 0, consider the function

(u, v) 
→ g(u, v) = −ξ2k((1 − γ(ξ))u + γ(ξ)v)2 + λ1u
p + σ−2(n−k)ξ2nv2

on [0,∞) × [0,∞). It is easy to verify that, for each u ≥ 0, the function v 
→ g(u, v) attains its absolute
minimum on [0,∞) at the point v = u, and hence g(u, v) ≥ g(u, u) for all u ≥ 0 and v ≥ 0. But
g(u, u) = f(u), where the function f was defined above, and the minimum of f is attained at the point
ũ(ξ) for a0 = σ0.

Specifying the sequence {um( · )} just as above, taking vm( · ) = um( · ), and using the lemma, we
find, in exactly the same way, that the value of problem (3.14) is

δ2

2π

(

B

n − k

)1−2/p

σ
2k+1−2/p
0 +

1

σ
2(n−k)
0

.

Therefore,

E(k, σ, p, δ) ≥

√

√

√

√

δ2

2π

(

B

n − k

)1−2/p

σ
2k+1−2/p
0 +

1

σ
2(n−k)
0

,

which proves the optimality of the closed interval Δσ0 and the optimality of the method m̂. The theorem
is proved.
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