
OPTIMAL RECOVERY OF FUNCTIONS AND THEIRDERIVATIVES FROM FOURIER COEFFICIENTSGIVEN WITH AN ERRORG. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOAbstract. In the paper the problems of optimal recovery of func-tions and their derivatives from inaccurate values of Fourier coe�-cients are considered. The explicit expressions of optimal recoverymethods for classes of smooth and analytic functions de�ned onvaries compact manifolds are given.1. Statement of the problemWe begin with the general statement of the optimal recovery prob-lem. Let X be a linear space, Z a normed space, and T : X ! Z alinear operator. It is required to recover values of T on the set (class)W � X from some information about elements from this class. Moreprecisely, for every element x 2 W we have the information I(x) whereI is some mapping (which is called information) from W to a linearspace Y . An information about elements from W may be given inac-curately and therefore I, in general, is a multi-valued mapping.Every mapping ' : Y ! Z is admitted as a recovery method. Thequantity e(T;W; I; ') = supx2Wy2I(x)kTx� '(y)kZis called the error of such method. The quantityE(T;W; I) = inf' : Y!Z e(T;W; I; ')(1)is called the error of optimal recovery and a method for which thein�mum is attained is said to be an optimal method of recovery (of theoperator T on the class W from the information I).In the paper we study the situation when X is some subspace offunctions from L2(M) where M is a compact manifold (for example, acircle, d-dimensional sphere, disk in the complex plane), W � X is aclass of functions such that in particular cases it coincides with severalclasses of smooth and analytic functions (for example, the Sobolev,Hardy{Sobolev, Bergman{Sobolev classes), T : X ! M is a multipli-cator type operator which, in particular, is a di�erential operator, andthe information about x(�) 2 W is in the fact that we know all or aThis research was carried out with the �nancial support of the Russian Founda-tion for Basic Research (grant nos. 99-01-01181 and 00{15{96109).1



2 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKO�nite number of Fourier coe�cients of the function x(�) with some error(in one or another metric).When I is a linear operator (that is, the information is given ex-plicitly) the problem of optimal recovery of linear operator in Hilbertspaces was studied in [1]. In the case when the information mappingI with range of values in a Hilbert space is the sum of linear opera-tor and a ball with some radius (de�ned an error) the correspondingproblem was considered in [2] (see also [3]{[5]). In [2] it is proved, inparticular, that there exists a linear method among optimal methods ofrecovery and some algorithm for its �nding was proposed. We do notuse this result. Our approach is based on standard principles of convexoptimization which are a natural tool for solving of such kind problems(see [6]{[8] for solving of recovery problems of linear functionals fromgeneral positions of extremum theory). Such approach allows to obtainexplicit expressions for optimal methods of recovery also for those caseswhen the error of information operator is given in the uniform metric.In this paper, �rst, the recovery problems for classes of functionsde�ned on a circle are considered in detail. We prove results of rathergeneral type and derive corollaries from them for various classes ofsmooth and analytic functions. An insigni�cant modi�cation of theseresults allows to obtain analogous assertions for classes of functionsde�ned on other manifolds which is illustrated for classes of functionsde�ned on the d-dimensional sphere and unit disk of the complex plane.The list of similar examples may be continued.We go on to the explicit description of the class W , operator T , andinformation mappings I in the case when M = T. Let x(�) be from thespace L2(T) with the normkx(�)kL2(T) = � 12� ZTjx(t)j2 dt�1=2and xj = 12� ZTx(t)e�ijt dt; j 2Z;are the Fourier coe�cients of x(�). Let � = f�jgj2Zbe a sequence ofnonnegative numbers. We associate with � the following subspace inL2(T) X = X�(T) = n x(�) 2 L2(T) :Xj2Z�jjxjj2 <1oand the corresponding classW = W �(T) = n x(�) 2 X :Xj2Z�jjxjj2 � 1o:Let us give the examples of such type classes. First of all it is theSobolev class W r2 (T) consisting of 2�-periodic functions x(�) for which



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 3the (r�1)-st derivative is absolutely continuous and kx(r)(�)kL2(T) � 1.Putting X = nx(�) 2 L2(T) :Xj2Zj2rjxjj2 <1oby Plancherel's theorem we get the equivalent de�nition of the Sobolevclass W r2 (T) = n x(�) 2 X :Xj2Zj2rjxjj2 � 1o:Thus, W r2 (T) = W �(T) where � = fj2rgj2Z.Denote by H�2 (T) the Hardy space of 2�-periodic functions x(�) ana-lytically extended in the strip S� = fz 2 C : Im zj < �g and satisfyingthe conditionkx(�)kH�2 (T) = sup0<�<�� 14� ZT�jx(t+ i�)j2 + jx(t� i�)j2� dt�1=2 <1:The Bergman space A�2(T) is the set of 2�-periodic functions x(�)analytically extended in the strip S� and satisfying the conditionkx(�)kA�2 (T) = � 14�� ZTdtZ ��� jx(t+ i�)j2 d��1=2 <1:The Hardy{Sobolev classes Hr;�2 (T) and Bergman{Sobolev classesAr;�2 (T) are de�ned as the sets of 2�-periodic functions x(�) analyticallyextended in the strip S� and satisfying the condition kx(r)(�)kH�2 (T) � 1and kx(r)(�)kA�2 (T) � 1, respectively.Functions from the Hardy space H�2 (T) have boundary values almosteverywhere and the space H�2 (T) is a Hilbert space with the innerproduct(x(�); y(�))H�2 (T) = 14� ZT�x(t+ i�)y(t+ i�) + x(t� i�)y(t� i�)� dt:The Bergman space A�2(T) is also a Hilbert space with the inner prod-uct (x(�); y(�))A�2(T) = 14�� ZTdtZ ��� x(t+ i�)y(t+ i�) d�:The system of functions feij�gj2Zforms an orthogonal basis in thespaces H�2 (T) and A�2(T), moreoverkeij�k2W = 8>><>>:cosh 2j�; W = H�2 (T);1; W = A�2 (T); j = 0;sinh 2j�2j� ; W = A�2 (T); j 6= 0:



4 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOThus, x(�) 2 W = W r2 (T);Hr;�2 (T); Ar;�2 (T) if and only ifx(t) =Xj2Zxjeijtand Xj2Z�j(W )jxjj2 � 1;where �j(W ) = 8>><>>:j2r; W = W r2 (T);j2r cosh 2j�; W = Hr;�2 (T);j2r sinh 2j�2j� ; W = Ar;�2 (T):In this case the spaces X are considered as the spacesX = X�(W ) = nx(�) 2 L2(T) :Xj2Z�j(W )jxjj2 <1o:The multiplicator type operators T : X ! L2(T) which we studyhere are de�ned as follows: if y(�) = Tx(�) and fxjgj2Z, fyjgj2Zare theFourier coe�cients of x(�) and y(�), respectively, then yj = 
jxj, j 2Z,where f
jgj2Zis some sequence of numbers. For example, it is clearthat the sequence 
j = (ij)k, j 2 Z, corresponds to the di�erentialoperator of order k > 0.Finally let us describe information mappings which will be consider.1. The information Ix(�) = I�x(�) about a function x(�) 2 W is inthe fact that we have available the numbers fyjgj2Zsuch thatXj2Zjxj � yjj2 � �2;where fxjgj2Zare the Fourier coe�cients of x(�) and � > 0. Formallyit means that ifY = l2 = n z = fzjgj2Z: kzk2l2 =Xj2Zjzjj2 <1o;F : X ! Y is a linear operator such that Fx(�) = fxjgj2Z, and BY isthe unit ball of Y , then I�x(�) = Fx(�) + �BY .2. The information Ix(�) = I2N+1� x(�) about a function x(�) 2 W isin the fact that we have available the numbers fyjgjjj�N such thatXjjj�N jxj � yjj2 � �2;where fxjgjjj�N are the �rst 2N + 1 Fourier coe�cients of x(�) and� > 0. In this case I2N+1� x(�) = Fx(�) + �BY , whereY = l2N+12 = n z = fzjgjjj�N : kzk2l2N+12 = Xjjj�N jzjj2 o;Fx(�) = fxjgjjj�N .



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 53. The information Ix(�) = I2N+1� x(�) about a function x(�) 2 Wis in the fact that we have available the numbers fyjgjjj�N such thatjxj � yjj � �j, jjj � N , where fxjgjjj�N are the �rst 2N + 1 Fouriercoe�cients of x(�), � = f�jgjjj�N , and �j > 0, jjj � N . IfY = l2N+11 = n z = fzjgjjj�N : kzkl2N+11 = supjjj�N jzjjo;Fx(�) = fxjgjjj�N , andB(�) = n z = fzjgjjj�N : jzjj � �j; jjj � N o;(2)then I2N+1� x(�) = Fx(�) +B(�).With some assumptions about the sequence � = f�jgj2Zde�ned theclass W and the sequence 
 = f
jgj2Zde�ned the operator T we �ndthe error of optimal recovery and optimal recovery method for T on theclass W for the all enumerated information mappings. As corollarieswe formulate the corresponding assertions for a number of concreteclasses of smooth and analytic functions.2. Statement of main resultsLet there be given the sequences � = f�jgj2Zand 
 = f
jgj2Z. Set�j = j
j j2, j 2Z. We shall assume the following conditions are ful�lled:1) f�jgj2Zand f�jgj2Zare even sequences (that is, �j = ��j and�j = ��j , j 2Z) and �0 = �0 = 0;2) f�jgj2N, f�j��1j gj2N are positive increasing sequences and �j !1as j !1;3) for all �1; �2 > 0 the sequence f��j + �1+ �2�jgj2Z+ has at mosttwo sign changes (with changing of zero terms by arbitrary values�1).2.1. Recovery from inaccurate information of Fourier coe�-cients in l2-metric. The problem (1) in this case is written as followsE(T;W; I�) = inf' : l2!L2(T) supx(�)2W; y2l2kFx(�)�ykl2�� kTx(�)� '(y)(�)kL2(T);(3)where Fx(�) = fxjgj2Zare the Fourier coe�cients of x(�).�heorem 1. Let f�jgj2Zand f�jgj2Zbe sequences satisfying the con-ditions 1){3) and T with W are the corresponding operator and class.ThenE(T;W; I�) = 8>>>>><>>>>>:r�1�1 ; � � ��1=21 ;r�2�s + (1 � �2�s)�s+1 � �s�s+1 � �s ; ��1=2s+1 � � < ��1=2s ;s � 1:



6 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOMoreover, the methodb'(y)(�) =Xj2Z
j �1 + �j �s+1 � �s�s�s+1 � �s+1�s��1 yjeij�is optimal if ��1=2s+1 � � < ��1=2s , s � 1, and if � � ��1=21 , then b'(y)(�) =0 is an optimal method.Let us apply Theorem 1 to the optimal recovery problem of the k-thderivative (the corresponding operator we denote by Dk) of a functionfrom the class W = W r2 (T);Hr;�2 (T); Ar;�2 (T) by the information I�. Itis easy to verify that in this case the conditions 1){3) are ful�lled for�j = �j(W ) and �j = j2k (the last of these conditions follows fromthe fact that for all �1; �2 > 0 the sequence f(�1+ �2�j(W ))��1j gj2N isconvex, that is, its second di�erence is nonnegative). Thus we haveCorollary 1. For the optimal recovery error of the k-th derivative ofa function from the class W = W r2 (T);Hr;�2 (T); Ar;�2 (T) by the infor-mation I� the following equality holds:E(Dk;W; I�) = ��1=21 (W )for � � ��1=21 (W ) andE(Dk;W; I�) =s�2s2k + (1� �2�s(W )) (s+ 1)2k � s2k�s+1(W )� �s(W )for ��1=2s+1 (W ) � � < ��1=2s (W ), s � 1. Moreover, the methodb'(y)(�) = Xjjj�1(ij)k�1 + �j(W ) (s+ 1)2k � s2ks2k�s+1(W )� (s+ 1)2k�s(W )��1 yjeij�is optimal if ��1=2s+1 (W ) � � < ��1=2s (W ), s � 1, and if � � ��1=21 (W ),then b'(y)(�) = 0 is an optimal method.For recovery of functions themselves (k = 0) from classes W =W r2 (T);Hr;�2 (T); Ar;�2 (T) the following result holds:E(Id;W; I�) = �;(4)where Id is the identity operator, andb'(y)(�) =Xj2Zyjeij�(5)is an optimal method.



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 72.2. Recovery from inaccurate information of Fourier coe�-cients in l2N+12 -metric. In this case the problem (1) has the form:E(T;W; I2N+1� ) = inf' : l2N+12 !L2(T) supx(�)2W; y2l2N+12kFx(�)�ykl2N+12 �� kTx(�)� '(y)(�)kL2(T);where Fx(�) = fxjgjjj�N are the �rst 2N+1 Fourier coe�cients of x(�).�heorem 2. Let the conditions of Theorem 1 be ful�lled. Sets0 = s0(N) = min� s 2 N : �s+1 � �s�s+1 � �s � �N+1�N+1 � :(6)Then for � � ��1=2s0 E(T;W; I2N+1� ) = E(T;W; I�)and the methodb'(y)(�) = Xjjj�N 
j �1 + �j �s+1 � �s�s�s+1 � �s+1�s��1 yjeij�is optimal if ��1=2s+1 � � < ��1=2s , 1 � s � s0 � 1, and if � � ��1=21 , thenb'(y)(�) = 0 is an optimal method. For 0 < � < ��1=2s0E(T;W; I2N+1� ) =r�2�s0 + (1� �2�s0)�N+1�N+1and b'(y)(�) = Xjjj�N 
j �1 + �j �N+1�s0�N+1 � �N+1�s0��1 yjeij�is an optimal method.It is easy to see that for M � NE(T;W; I2N+1� ) � E(T;W; I2M+1� ) � E(T;W; I�):Therefore it follows from Theorem 2 that for � � �N = ��1=2s0 theextension of number of Fourier coe�cients knowing with the same error� does not lead to decrease of optimal recovery error.Thus for a �xed level of error � the minimal number of the �rstFourier coe�cients (without taking into account the zero coe�cientsince in view of the condition �0 = 0 it is not used in the optimalmethod) which we have to know for maximal precise recovery of theoperator T equals 2N0 whereN0 = minfN 2 N : �N � � g:By the obvious way the analogue of Corollary 1 for the problemof recovery of the k-th derivative of a function from the class W =



8 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOW r2 (T);Hr;�2 (T); Ar;�2 (T) by the information I2N+1� may be formulated.As to recovery of functions themselves the following result is valid:E(Id;W; I2N+1� ) =q�2 + ��1N+1(W )and b'(y)(�) = Xjjj�N �1 + �j(W )�N+1(W )��1 yjeij�is an optimal method.2.3. Recovery from inaccurate information of Fourier coe�-cients in the uniformmetric. In this case the problem (1) is writtenas follows:E(T;W; I2N+1� ) = inf' : l2N+11 !L2(T) supx(�)2W; y2l2N+11Fx(�)�y2B(�) kTx(�)� '(y)(�)kL2(T);where Fx(�) = fxjgjjj�N are the �rst 2N +1 Fourier coe�cients of x(�)and B(�) is the parallelepiped de�ned by (2).�heorem 3. Let �j; �j > 0, j 2 N, f�j��1j gj2N be an increasing se-quence, �0 = 0, f�jgj2Zand f�jgj2Zbe even sequences, and T with Wbe the corresponding operator and class. Setp0 = p0(�) = maxn p 2Z+ : Xjjj�p �j�2j < 1; 0 � p � N o:Then E(T;W; I2N+1� ) =vuut�p0+1�p0+1 + Xjjj�p0��j � �j �p0+1�p0+1� �2j ;moreover, the methodb'(y)(�) = 
0y0 + X1�jjj�p0 
j �1� �p0+1�j�p0+1�j� yjeij�is optimal.This theorem is also applied to the problem of optimal recovery offunctions and their derivatives from the classes W = W r2 (T);Hr;�2 (T),Ar;�2 (T) by the information I2N+1� . As previously in this case for thestatement of the corresponding result one must put in Theorem 3 �j =j2k, �j = �j(W ), j 2Z.



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 93. ProofsBefore the direct proof of the formulated above theorems we notetwo assertions of general nature and then describe the scheme by whichthese theorems will be proved.Lemma 1. Let in the problem (1)gr I = f (x; y) 2 X � Y : x 2 W; y 2 I(x) gbe a convex centrally symmetric set. ThenE(T;W; I) � supx2Wx2I�1(0) kTxkZ;where I�1(0) = fx 2 W : 0 2 I(x)g.Proof. For any method ' for all x 2 W such that x 2 I�1(0) we have2kTxkZ � kTx� '(0)kZ + kT (�x)� '(0)kZ � 2e(T;W; I; '):Consequently, for any method 'e(T;W; I; ') � supx2Wx2I�1(0)kTxkZfrom which the estimate being proved immediately follows.Lemma 2. Let X, Y , Z, W , T , and I be the same as in the prob-lem (1), Y0 be a linear space with the semi-inner product (�; �)Y0 andcorresponding semi-norm k � kY0 , I0 : X ! Y0, S : Y ! Y0 be linearoperators, andgr I � f (x; y) 2 X � Y : kI0x� SykY0 � 1 g:Let  : Y ! X be the mapping which associates with y 2 Y a solutionof the extremal problemkI0x� Syk2Y0 ! min; x 2 X:(7)Then for the error of the method b' = T �  the following estimatee(T;W; I; b') � supkI0xkY0�1 kTxkZholdsProof. It is easy to verify that in order that bx 2 X be a solution of (7)it is necessary and su�cient that the relation(I0bx� Sy; I0x)Y0 = 0 8x 2 X(8)holds. Let (x; y) 2 gr I (that is, x 2 W and y 2 I(x)), then by theassumption kI0x � SykY0 � 1. Since  (y) is a solution of (7), (8) isful�lled (changing bx by  (y)) and thereforekI0x� Syk2Y0 = kI0x� I0( (y))k2Y0 + kI0( (y))� Syk2Y0 :



10 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOConsequently, kI0(x�  (y))kY0 � kI0x� SykY0 � 1and hencekTx�b'(y))kZ = kTx�T ( (y))kZ = kT (x� (y))kZ � supkI0hkY0�1 kThkZ:The further scheme of the proof of theorems is the following. Thelower bound (Lemma 1) and upper bound (Lemma 2) for the errorof optimal recovery are values of extremal problems. In view of de�-nitions of the class W and operator T these problems are reduced toconvex programming problems. Using standard methods of convex op-timization we �nd the value of the problem corresponding to the lowerestimate and show that it coincides with the value of the problem cor-responding to the upper bound for some Y0, I0, and S. In view ofLemmas 1 and 2 it means that this value is the error of optimal recov-ery and the method from Lemma 2 is an optimal method of recovery(in addition it appears that it is linear).Proof of Theorem 1. 1. The lower bound. According to Lemma 1 and(3) we have to �nd a solution of the following problemkTx(�)kL2(T)! max; kFx(�)kl2 � �; x(�) 2 W:(9)Going over to Fourier transforms by virtue of Parseval equality andde�nitions of operator T and class W we obtain that this problem(changing kTx(�)kL2(T) by kTx(�)k2L2(T)) may be written in the followingway Xj2Z�j jxjj2 ! max; Xj2Zjxjj2 � �2; Xj2Z�j jxjj2 � 1:(10)Setting uj = jxjj2, j 2Z, we rewrite the problem (10) in the formXj2Z�juj ! max; Xj2Zuj � �2; Xj2Z�juj � 1; uj � 0:(11)It is a problem of convex (even linear) programming. Associate with itthe Lagrange function (u = fujgj2Z)L = L(u; �0; �1; �2) =Xj2Z(�0�j + �1 + �2�j)uj;where �0 � 0, �1; �2 � 0 are Lagrange multipliers. According to Kuhn-Tucker's theorem if bu = fbujgj2Zis a solution of the problem (11), thenthere exist such Lagrange multipliers b�0 � 0, b�1;b�2 � 0, not all equal



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 11zero that the conditions(a) minuj�0L(u;b�0;b�1;b�2) = L(bu;b�0;b�1;b�2);(b) b�1�Xj2Zbuj � �2� = 0; b�2�Xj2Z�jbuj � 1� = 0hold. If for an admissible sequence in (11) bu = fbujgj2Zthe conditions(a) and (b) are ful�lled with b�0 < 0, then bu is a solution of the problem(11).The last assertion may be easily veri�ed. Indeed, let u = fujgj2Zisan admissible sequence in (11). Then taking into account (a) and (b)we haveb�0Xj2Z�juj � b�0Xj2Z�juj + b�1�Xj2Zuj � �2�+ b�2�Xj2Z�juj � 1�(a)� b�0Xj2Z�jbuj +b�1�Xj2Zbuj � �2�+ b�2�Xj2Z�jbuj � 1� (b)= b�0Xj2Z�jbuj;that is, bu = fbujgj2Zis a solution of the problem (11).Now we present such b�1;b�2 � 0 and an admissible sequence bu =fbujgj2Zfor which the conditions (a) and (b) are ful�lled with b�0 = �1.Then by proved above bu is a solution of the problem (11). The form ofb�1, b�2, and bu follows from the analysis of relations (a) and (b). Indeed,the sequence fj = ��j+b�1+b�2�j , j 2Z, have to be nonnegative and asolution have to be concentrated at the zeros of ffjgj2Z. In view of thecondition on sign changes of this sequence (the condition 3)) positivezeros of ffjgj2Zmay be followed only in succession. These observationsmake possible to present corresponding b�1, b�2, and bu.First let 0 < � < ��1=21 . Since �j !1 as j !1 there exists s � 1for which ��1=2s+1 � � < ��1=2s . Let us �nd b�1 and b�2 from the conditionfs = fs+1 = 0. Then we obtainb�1 = �s�s+1 � �s+1�s�s+1 � �s ; b�2 = �s+1 � �s�s+1 � �s :(12)From assumptions about sequences f�jgj2Zand f�jgj2Zit follows thatb�1;b�2 > 0. With obtained b�1 and b�2 the sequence ffjgj2Z is non-negative by virtue of the condition on sign changes of this sequence.Now we �nd the sequence bu from the condition that it concentratesat the points s and s + 1 and the conditions (b) are ful�lled, that is,us + us+1 = �2 and �sus + �s+1us+1 = 1. Hence we obtain thatbus = �2�s+1 � 1�s+1 � �s ; bus+1 = 1 � �2�s�s+1 � �s(13)(bus � 0, bus+1 > 0 by virtue of the condition on �). Set buj = 0 forj 6= s; s+1. Thus bu is an admissible sequence. The conditions (a) and



12 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKO(b) are ful�lled with the obtained b�1;b�2; bu for b�0 = �1 and therefore buis a solution of the problem (11).Now let � � ��1=21 . Set b�1 = 0, b�2 = �1��11 . Then fj = 0 for jjj � 1and fj � 0 for jjj � 2. Set bu1 = ��11 and buj = 0 for j 6= 1. Sincebu1 = �1 � �2, bu is an admissible sequence. The conditions (a) and (b)are obviously ful�lled with b�0 = �1 and consequently, bu is a solutionof the problem (11).Thus a solution of the problem (11) is found for all � > 0, andthat means that we found a solution of the problems (10) and (9).Substituting bu in the maximizing functional in (11) and extractingsquare root, we obtain the value of the problem (9) which gives thelower bound for the error of optimal recoveryE(T;W; I�) � 8>>>>><>>>>>:r�1�1 ; � � ��1=21 ;r�2�s + (1 � �2�s)�s+1 � �s�s+1 � �s ; ��1=2s+1 � � < ��1=2s ;s � 1:2. The upper bound. For the obtained above b�1 and b�2 put b� =b�1�2+b�2 and b� = b�2(b�1�2+b�2)�1. For the obtained solution bu of (11)the condition (a) may be rewritten in the form (with b�0 = �1)(a1) minuj�0Xj2Z(��j + b�((1� b�)��2 + b��j))uj=Xj2Z(��j + b�((1 � b�)��2 + b��j))buj:Furthermore, it is easy to verify that the relation(b1) (1� b�)��2Xj2Zbuj + b�Xj2Z�jbuj = 1holds. By the same arguments as above these conditions are su�cientfor bu to be a solution of the problemXj2Z�juj ! max; (1� b�)��2Xj2Zuj + b�Xj2Z�juj � 1; uj � 0:(14)Thus the values of the problems (11) and (14) coincide.We show that the problem from Lemma 2 may be reduced to theproblem (14). Indeed, let Y0 = l2 � l� wherel� = � z = fzjgj2Z:Xj2Z�jjzjj2 <1�:



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 13De�ne the semi-inner product on Y0((x; z); (x0; z0))Y0 = (1� b�)��2Xj2Zxjx0j + b�Xj2Z�jzjz0j:Let the operator I0 : X ! Y0 be de�ned by the equality I0x(�) =(Fx(�); Fx(�)) and S : l2 ! Y0 be de�ned by the equality Sy = (y; 0).If x(�) 2 W and kFx(�)� ykl2 � �, that is,Xj2Z�jjxjj2 � 1; Xj2Zjxj � yjj2 � �2;then obviouslykI0x(�)� Syk2Y0 = (1� b�)��2Xj2Zjxj � yjj2 + b�Xj2Z�jjxjj2 � 1:According to Lemma 2 the squared value of the optimal recovery errordoes not exceed the value of the problemkTx(�)k2L2(T)! max; kI0x(�)k2Y0 � 1which becomes exactly the problem (14) after transition to Fouriercoe�cients (by the Parseval equality) in the maximizing functionaland changing jxjj2 by uj .3. Optimal method. It follows from Lemma 2 that an optimalmethod has the form b' = T �  where Fourier coe�cients f jgj2Zof the function  =  (y) are solutions of the extremal problem(1� b�)��2Xj2Zjxj � yjj2 + b�Xj2Z�jjxjj2 ! min; x(�) 2 X:It is easy to see that j = (1� b�)��2(1� b�)��2 + b��j yj; j 2Z:Substituting the expression for b� we obtain the required result.The lower bound in (4) follows immediately from Lemma 1 and theoptimality of the method (5) is veri�ed directly.Proof of Theorem 2. First of all, we note that the de�nition of the num-ber s0 by the equality (6) is well-de�ned since from the increase of thesequence f�j��1j gj2N follows the inequality�N+1 � �N�N+1 � �N � �N+1�N+1 :Thus 1 � s0 � N .We turn our attention only to the solution of the extremal problemkTx(�)kL2(T)! max; kFx(�)kl2N+12 � �; x(�) 2 W;(15)



14 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKObecause all other arguments largely repeat the proof of Theorem 1. Go-ing over to Fourier coe�cients and denoting the square of their moduliby uj we arrive at the equivalent problemXj2Z�juj ! max; Xjjj�N uj � �2; Xj2Z�juj � 1; uj � 0:(16)To solve this problem (just as to solve the problem (11)) it su�ces topresent such b�1;b�2 � 0 and an admissible sequence fbujgj2Zfor whichfor all uj � 0, j 2Z,(a2) Xj2Z(��j + b�1�j + b�2�j)uj �Xj2Z(��j + b�1�j + b�2�j)buj;where �j = (1; jjj � N;0; jjj > N;and moreover,(b2) b�1�Xjjj�N buj � �2� = 0; b�2�Xj2Z�jbuj � 1� = 0:Let ��1=2s+1 � � < ��1=2s and 1 � s � s0 � 1. De�ne b�1 and b�2 fromthe conditions ��s + b�1 + b�2�s = 0;��s+1 + b�1 + b�2�s+1 = 0:Then for b�1 ¨ b�2 the equalities (12) are ful�lled from which it followsthat b�1;b�2 > 0. In view of the fact that the sequence f��j + b�1 +b�2�jgj2Z+ has at most two sign changes we obtain��j + b�1 + b�2�j � 0; jjj � N:From the increase of the sequence f�j��1j gj2N and the fact that s < s0for j � N + 1 we have�j�j � �N+1�N+1 < �s+1 � �s�s+1 � �s = b�2:Hence ��j + b�2�j > 0 for jjj � N + 1. De�ning bus and bus+1 by theequalities (13) and putting buj = 0, j 6= s; s+1, we obtain that fbujgj2Zis an admissible sequence for which the conditions (a2) and (b2) areful�lled. Consequently, fbujgj2Zis a solution of the problem (16).Now let 0 < � < ��1=2s0 . Setb�1 = �s0 � �N+1�N+1 �s0 ; b�2 = �N+1�N+1 :



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 15From the de�nition of s0 we have�s0 � �s0�1�s0 � �s0�1 > �N+1�N+1 :Thus, ��j + b�1+ b�2�j � 0 for j = 0; s0� 1 and ��s0 + b�1+ b�2�s0 = 0.From the condition on sign changes we obtain that ��j+b�1+b�2�j � 0for all jjj � s0. If s0 < N , then by virtue of the de�nition of s0�s0+1 � �s0�s0+1 � �s0 � �N+1�N+1 ;that is, ��s0+1 + b�1 + b�2�s0+1 � 0. Then from the condition on signchanges ��j + b�1 + b�2�j � 0 for all jjj � N . If jjj > N , then��j + b�2�j = �j �N+1�N+1 � �j�j � �N+1�N+1� � 0:Thus it is proved that for all j 2Z��j + b�1�j + b�2�j � 0:Putting bus0 = �2; buN+1 = 1 � �2�s0�N+1 ; buj = 0; j 6= s0; N + 1;it is easy to verify that fbujgj2Zis an admissible sequence for which theconditions (a2) and (b2) are ful�lled.The case � � ��1=21 is considered in the same way as in the proof ofTheorem 1.For recovery of function itself from the class W = W r2 (T);Hr;�2 (T),Ar;�2 (T) we cannot apply formally Theorem 2 (�j = 1, j 2 Z, andhence the conditions of the theorem with respect to this sequence arenot ful�lled). Nevertheless the scheme itself of the proof remains thesame.Proof of Theorem 3. 1. The lower bound. From Lemma 1 we obtainthat the error of optimal recovery estimates from below by the valueof the problemkTx(�)kL2(T)! max; jxjj � �j; jjj � N; x(�) 2 W;where fxjgjjj�N are the �rst 2N+1 of Fourier coe�cients of the functionx(�). Putting uj = jxjj2, j 2Z, we arrive at the equivalent problemXj2Z�juj ! max; Xj2Z�juj � 1; 0 � uj � �2j ; jjj � N:(17)To �nd a solution of this problem it su�ces to �nd such b� � 0, b�j � 0,jjj � N , and an admissible sequence fbujgj2Zfor which for all uj � 0,



16 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOj 2Z,(a3) Xj2Z(��j + b��j + b�j�j)uj �Xj2Z(��j + b��j + b�j�j)buj;and (b3) b��Xj2Z�jbuj � 1� = 0; b�j(buj � �2j ) = 0; jjj � N:Put b� = �p0+1�p0+1 ,b�j = 8<:�j � �p0+1�p0+1 �j; jjj � p0;0; p0 + 1 � jjj � N:De�ne the sequence fbujgj2Zby the equalitybuj = 8>>><>>>:�2j ; jjj � p0;�2j 1�Pjkj�p0 �k�2k(�2p0+1 + �2�p0�1)�p0+1 ; jjj = p0 + 1;0; jjj > p0 + 1:It follows from the de�nition of p0 that the sequence bu = fbujgj2Zisadmissible. Moreover, ��j + b��j + b�j = 0 for jjj � p0. By virtue ofincrease of the sequence f�j��1j gj2N for jjj � p0+1 we have��j+b��j �0. Thus the condition (a3) is ful�lled. It is easily veri�ed that thecondition (b3) is also ful�lled. Thus, bu is a solution of the problem(17). Substituting bu into the maximizing functional and extracting thesquare root we obtainE(T;W �; I2N+1� ) �vuut�p0+1�p0+1 + Xjjj�p0��j � �j �p0+1�p0+1� �2j :2. The upper bound. For the obtained above b� and b�j , jjj � N , set� = b�+ Xjjj�N b�j�2j ; � = b��; �j = b�j�2j� ; jjj � N:Then the condition (a3) may be rewritten in the form(a4) Xj2Z(��j + �(��j + �j��2j �j))uj�Xj2Z(��j + �(��j + �j��2j �j))buj:



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 17Since � + Pjjj�N �j = 1 it is easy to verify that the condition(b4) �Xj2Z�jbuj + Xjjj�N �j��2j buj = 1holds. The conditions (a4) and (b4) are su�cient in order that bu be asolution of the problemXj2Z�juj ! max; �Xj2Z�juj + Xjjj�N �j��2j uj � 1; uj � 0:(18)Consequently, the values of the problems (17) and (18) coincide.Let us use now Lemma 2. Let Y0 = l2N+12 � l�. De�ne the semi-innerproduct on Y0((x; z); (x0; z0))Y0 = Xjjj�N �j��2j xjx0j + �Xj2Z�jzjz0j :De�ne the operator I0 : X ! Y0 by the equalityI0x(�) = (fxjgjjj�N ; Fx(�))and de�ne S : l2N+11 ! Y0 by the equality Sy = (y; 0). If x(�) 2 W andjxj � yjj � �j, jjj � N , thenkI0x(�)� Syk2Y0 = �Xj2Z�jjxjj2 + Xjjj�N �j��2j jxj � yjj2 � 1:According to Lemma 2 the squared value of the optimal recovery errordoes not exceed the value of the problemkTx(�)k2L2(T)! max; kI0x(�)k2Y0 � 1which coincides with the problem (18) after going over to Fourier co-e�cients and changing jxjj2 by uj. It remains to write out the optimalmethod of recovery which has the form b' = T �  where the Fouriercoe�cients f jgj2Zof the function  =  (y) are the solution of theextremal problemXjjj�N �j��2j jxj � yjj2 + �Xj2Z�j jxjj2 ! min; x(�) 2 X:It is easy to see that j =8>>><>>>:y0; j = 0;�j��2j��j + �j��2j yj; 1 � jjj � p0;0; jjj > p0:Carrying out simple calculations related to substitution of expressionsfor � and �j we obtain the required result.



18 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKO4. Some further results4.1. Recovery of functions de�ned on a sphere. LetSd = n x = (x1; : : : ; xd+1) 2 Rd+1 : d+1Xj=1 x2j = 1obe the unit d-dimensional sphere. It is known (see [9]) that L2(Sd) =P1k=0Hk where dimH0 = n0 = 1,dimHj = nj = 2j + d� 1j �j + d � 2j � 1 �; j = 1; 2; : : :(Hj is the set of spherical harmonic of order j). For the Laplace oper-ator � and any x(�) 2 Hj the equlity�x(�) = ��jx(�)holds, where �j = j(j + d � 1). Let fY jk gnjk=1 is an orthonormal basisin Hj . For � > 0 the operator (��)�=2 is de�ned by the equality(��)�=2x(�) =Xj2N��=2j njXk=1 xjkY jk (�);where xjk = (x(�); Y jk (�))L2(Sd) are the Fourier coe�cients of the func-tion x(�).Set W �2 (Sd) = fx(�) 2 L2(Sd) : k(��)�=2x(�)kL2(Sd) � 1 g:Consider the problem of optimal recovery of the operator T = (��)
=2on the class W �2 (Sd) by the following information mappings:1) the information Ix(�) = I�dx(�) about a function x(�) 2 W �2 (Sd) isgiven as numbers yjk such thatXj2Z+ njXk=1 jxjk � yjkj2 � �2;2) the information Ix(�) = INm�d x(�) about a function x(�) 2 W �2 (Sd)is given as numbers yjk, j = 0; 1; : : : ;m, k = 1; : : : ; nj, such thatmXj=0 njXk=1 jxjk � yjkj2 � �2(here Nm =Pmj=0 nj);3) the information Ix(�) = INm�d x(�) is such that there are known yjk,j = 0; 1; : : : ;m, k = 1; : : : ; nj, such thatjxjk � yjkj � �jk; j = 0; 1; : : : ;m; k = 1; : : : ; nj:In the paper [6] it is shown that for all �1; �2 � 0 the functionf(t) = �(t(t+ d � 1))
 + �1 + �2(t(t+ d� 1))�



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 19vanishes at most at two points on the set [0;+1). Hence it followsthat for � > 
 > 0 for �j = �
j and �j = ��j the conditions 1){3) fromsection 2 are ful�lled.Using the same scheme of the proof as in Theorems 1{3 we obtaintheir analogs for the considered problems. We turn our attention onlyto the statements of the corresponding results. In what follows wealways assume that � > 
 > 0.�heorem 4. The eqalityE((��)
=2;W �2 (Sd); I�d) =s�2�
s + (1� �2��s )�
s+1 � �
s��s+1 � ��sholds if ���=2s+1 � � < ���=2s , s � 1, andE((��)
=2;W �2 (Sd); I�d) = d(
��)=2;if � � ���=21 . Moreover, the methodb'(y)(�) =Xj2N�
=2j  1 + ��j �
s+1 ��
s�
s��s+1 � �
s+1��s !�1 njXk=1 yjkY jk (�)is optimal if ���=2s+1 � � < ���=2s , s � 1, and if � � ���=21 , thenb'(y)(�) = 0 is an optimal method.Put s0 = s0(m) = min( s 2 N : �
s+1 � �
s��s+1 � ��s � �
��m+1) :�heorem 5. For � � ���=2s0E((��)
=2;W �2 (Sd); INm�d ) = E((��)
=2;W �2 (Sd); I�d)and the methodb'(y)(�) = mXj=1 �
=2j  1 + ��j �
s+1 ��
s�
s��s+1 � �
s+1��s !�1 njXk=1 yjkY jk (�)is optimal if ���=2s+1 � � < ���=2s , 1 � s � s0�1, and if � � ���=21 , thenb'(y)(�) = 0 is an optimal method. For 0 < � < ���=2s0E((��)
=2;W �2 (Sd); INm�d ) =q�2�
s0 + (1 � �2��s0)�
��m+1andb'(y)(�) = mXj=1 �
=2j  1 + ��j �
m+1�
s0��m+1 � �
m+1��s0!�1 njXk=1 yjkY jk (�)is an optimal method.



20 G. G. MAGARIL-IL'YAEV, K. YU. OSIPENKOPutp0 = p0(�) = maxn p 2Z+ : 1 � pXj=0 ��j njXk=1 �2jk > 0; 0 � p � mo:�heorem 6. The equalityE((��)
=2;W �2 (Sd); INm�d ) =vuut�
��p0+1 + p0Xj=1 (�
j ���j�
��p0+1) njXk=1 �2jkholds, moreover, the methodb'(y)(�) = p0Xj=1 �
=2j  1 ���p0+1�j �
��! njXk=1 yjkY jk (�)is optimal.4.2. The Hardy{Sobolev and Bergman{Sobolev classes on theunit disk. Denote by H2(D) the space of functions x(�) analytic inthe unit disk D = fz 2 C : jzj < 1g and satisfying the conditionkx(�)kH2(D) = sup0<�<1� 12� ZTjx(�eit)j2 dt�1=2 <1:The Hardy{Sobolev class Hr2(D) is the set of functions x(�) analytic inD for which kx(r)(�)kH2(D) � 1.Denote by A2(D) the space of functions x(�) analytic in the unit diskD and satisfying the conditionkx(�)kA2(D) = �ZD jx(z)j2 d�(z)�1=2 <1;where � is the plane Lebesgue measure. The Bergman{Sobolevclass Ar2(D) is the set of functions x(�) analytic in D for whichkx(r)(�)kA2(D) � 1.Consider the problem of optimal recovery of the k-th derivative onthe classes W = Hr2 and Ar2 by the information about coe�cients offunction power series given with the error � in the norm of the spacel2. In other words, we assume that for every function x(�) 2 W suchthat x(z) = Xj2Z+ajzjthe numbers fyjgj2Z+ are known such thatXj2Z+ jaj � yjj2 � �2:



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 21We denote by I+� the corresponding information mapping. The studiedproblem of optimal recovery is written in the formE(Dk ;W; I+� ) = inf' : l2!W supx(�)2W; y2l2kF+x(�)�ykl2�� kx(k)(�)� '(y)(�)kW;where W = H2(D);A2(D) and F+x(�) = fajgj2Z+ are the coe�cientsof the power series of the function x(�).We formulate the analogue of Theorem 1 which may be obtained bythe scheme described above. Set for a �xed k and r (1 � k < r)�j(W ) = 8>>>>><>>>>>:� j!(j � k)!�2 ; j � k; W = Hr2(D);� j!(j � k)!�2 1j � k + 1 ; j � k; W = Ar2(D);0; j < k;�j(W ) = 8>>>>><>>>>>:� j!(j � r)!�2 ; j � r; W = Hr2(D);� j!(j � r)!�2 1j � r + 1 ; j � r; W = Ar2(D);0; j < r:�heorem 7. For W = Hr2 or Ar2 and all 1 � k < r for � � ��1=2r (W )the equalityE(Dk;W; I+� ) =s�2�r�1(W ) + �r(W )� �r�1(W )�r(W )holds and for ��1=2s+1 (W ) � � < ��1=2s (W ), s � r, the equalityE(Dk;W; I+� ) =s�2�s(W ) + (1 � �2�s(W ))�s+1(W )� �s(W )�s+1(W )� �s(W )holds. Moreover, the methodb'(y)(z) = 1Xj=k �1 + �j(W ) �s+1(W )� �s(W )�s(W )�s+1(W )� �s+1(W )�s(W )��1 yjzj�kis optimal if ��1=2s+1 (W ) � � < ��1=2s (W ), s � r and if � � ��1=2r (W ),then b'(y)(z) � 0 is an optimal method.The cases when only a �nite number of coe�cients of power seriesis known with an error in the mean square or uniform metric may beconsidered just in the same way as it was done for the periodic case.
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