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There are two basic classes of functions for which the exact values of
Kolmogorov n-widths have been calculated. They are, on the one hand,
classes of real functions defined by variation diminishing kernels and simi-
lar classes of analytic functions, and, on the other hand, classes of functions
in a Hilbert space which are elliptical cylinders or generalized octahedra
(see [1, 2]). This paper is devoted to a survey and to new results in this
second case. For n-widths of ellipsoids, elliptic cylinders, and generalized
octahedra upper bounds for the n-widths are based on the Fourier method.
The lower bounds are based on the method of “embedded balls” (see [1])
for ellipsoids, and the method of averaging for generalized octahedra. Gen-
eral theorems concerning elliptical cylinders and generalized octahedra are
proved in Section 1 and Section 2. In Section 3 various corollaries from
these general theorems are considered. Some additional problems (aver-
age n-widths, extremal spaces for an ellipsoids and octahedra, etc) are
discussed in Section 4.
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INTRODUCTION

Let H be a Hilbert space and ' C H a centrally symmetric set. For n € Z,
the Kolmogorov n-widths of €' in H are given by

d,(C,H) =infsup inf ||z —y||x,
Ln l’EC’yELn

where the left-most infimum is taken over all n-dimensional linear subspaces L,

of H.
Let r € IN and 1 < p < co. Denote by W/(T) (T = [0,27)) the Sobolev class

of 2r-periodic functions whose (r — 1)-st derivative is absolutely continuous and

2y o= ([ 1 |pdt) <1

The subject considered in this paper goes back to two papers by Kolmogorov.
In [3] Kolmogorov proved the formula

o1 (W3 (), La(T)) = don(W5(T), Ly(T)) = n".

In the paper of Kolmogorov, Petrov, Smirnov [4], which was supplemented by
Maltsev [5], the equality

N —n
d,(BIN 1Y) = 1
( 172) N 9 ()

where
l;v::{x:(:z;l,..., IRN‘H HIN:—Z|$k|p}, 1 <p < oo,
1

and BIY is the unit ball in [ was, in fact, proved. The authors of these papers
did not actually state, that they had calculated n-widths. This was noted by
Stechkin [6]). Note that the Sobolev class W} (T) is an elliptical cylinder (it
is the orthogonal sum of the one-dimensional space of constants and compact
ellipsoid) and BIY is a regular octahedra in IRN. We consider generalizations of
these two results.

1. n-WIDTHS OF ELLIPSOIDS AND ELLIPTICAL CYLINDERS

An ellipsoid is the image of a ball of a Hilbert space under a linear continuous
mapping. If H and H; are Hilbert spaces, BH is the unit ball in H, and T: H —

H; is a linear continuous operator, then T(BH) is an ellipsoid which we denote



by E(T). Let L be a finite-dimensional subspace in H;. We call the orthogonal
sum of an ellipsoid £(T') and L

EMaL={y=y+ypecH |yeET), y€L, yiLly,}

an elliptical cylinder with base E(T) and generalized axis L.

Denote by N, 0 < N < oo the dimension of span F(T'). Further we calculate
the n-widths of compact ellipsoids and elliptical cylinders with compact base.

Let T be a compact operator. By the Hilbert-Schmidt theorem (see, for
example, [7, page 231]) for the self-adjoint compact operator T"T (7" is the adjoint
operator to 1') there exists an orthonormal system of eigenvectors {ej}>1 which
corresponding to eigenvalues s3, s | 0, s, # 0, such that each element x € H
has the unique representation

v = (v, en)er + &, (2)

k>1

where £ € KerT'. (The numbers s are called the s-numbers of T'.)
The following theorem was proved by many authors (see Comments below).

THEOREM 1 (n-WIDTHS OF COMPACT ELLIPSOIDS). Let H and H; be Hil-
bert spaces, T: H — Hy a compact operator, C = E(T) & L, (dimE(T) = N,
dimL,, =m) andn € Z. Then

oo, n <m,
dn(C,Hl): {Sn-l—l—ma m<n<N+m,
0, n>N+m.

The linear, Gel’fand, and Bernstein n-widths satisfy the same equalities.

Proof. We prove the theorem for the Kolmogorov n-width. The statement of
the theorem for the cases when n < m and n > N 4 m may be easily checked. Let
n < N and for simplicity assume m = 0 (the general case easily follows from this).
The upper bound will be proved by the Fourier method. Let y € E(T') that isy =
T, |zl < L. By (2)y = Syon s ex)Ter and el = o e ex) P HIENE < 1.
Let us approximate y by S,y = >.7_,(x, ex)Ter. Then taking into account the
orthogonality of the system {T'e;}, we have

ly— Sl = 5 e el <52 X e enl < 4
k>n+1 k>n+1

The upper bound is proved. The lower bound will be proved by the method of
embedded balls. We consider the n + 1-dimensional subspace L = span{Tek}Z;
of Hy and show that the set s,.1 BH; N L lies in E(T). Let y € s,.1BH; N L.



Then y = S5t yiTer and [yl = St u2s2 < s, I = S5 yacs, then i
is clear that y = T'x and since

2 = 2 = yiSi 1 R 2.2
HxHH = Z Y = Z 3 < Z vpsy < 1,
k=1 =1 Sk Snt1 =y

we obtain that s,.;BH; N L C E(T). By the theorem on n-widths of a
ball (see, for example, [2, p. 12]) which is trivial for a Hilbert space, we have

dy (B(T), Hy) > dy (s B VL Hy ) = 5,40,

2. n-WIDTHS OF GENERALIZED OCTAHEDRA

In finite-dimensional geometry an octahedra is the convex hull of a simplex
with a vertex at the origin and simplex symmetric to it. For octahedra which are
so defined there is no known general method for calculating its n-widths. But it
is possible to calculate n-widths for octahedra in IRY which are the convex hull
of the vectors {£f;}, 1 < k < N obtained from one vector K = (ky,...,kn)
by cyclical permutation. Such octahedra may be considered as Sobolev classes
WE(Zy) consisting of functions y = (y1,...,yn) on the cyclical group of order
N defined by a convolution

Wi @Zy) = {y € RN [y = K xa, [lally <1},

where © = (21,...,2N), ¥i = Zé\f:l kiy;j_12;, and the summation is carried out
modulo N. The regular octahedra can be defined in this same way as a convolu-
tion class on the cyclical group Zy with the kernel K equal to 1 at the zero of
the group and 0 at all other elements.

It gives us the possibility to consider generalized Sobolev classes of so-called
sourcewise represented functions which are similar to generalized octahedra.

First we recall some definitions (details may be found in [8]). Let G be
a compact group with Haar measure p (u(G) = 1). Let {T%},ca (where A
is at most a countable set) be a complete system of finite-dimensional nonre-
ducible unitary representations of /. For each o € A we denote by #(-),
1,7 =1,...,n, =dimT?, the matrix elements of the representation T in some
orthonormal basis. These functions are continuous and the functions {\/n.15(-)},
a€ A i,7=1,...,n, form an orthonormal basis in Ly(G). Note that if (7 is an
Abelian group, then all representations T%, a € A, are one-dimensional. For each
ac Aand 1 <j <n,set HY =span{t3i(-) |1 =1,...,n,}. The space Ly(G) is
represented as the direct sum of those spaces which are left translation-invariant.

A set X is called a homogeneous G-space if the group i acts transitively on
X. In other words, if there exists a map G x X — X, (g,2) — gz such that
(9291)x = ga(qrx), ex = x (e is the unity element of () for all ¢g;,9, € G and
x € X and in addition for every zy,22 € X there exists a ¢ € G for which
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9 = gry. It is obvious that any group G is a homogeneous G-space with respect
to the operation (g, go) = ggo-

Let 20 € X, H ={g € G| gxo = 20} and GG/H be the set of (left) residue
classes of group G on the subgroup H. Consider the map p: X — G/H which
associates x with the residue class ¢H such that grg = x. The map p is a one-
to-one mapping. Thus any function on X may be considered as a function on G,
which is constant on the residue classes. By virtue of this fact for any topological
homogeneous G-space X with compact group & and measure v invariant with
respect to G (that is v(A) = v(gA) for any measurable subset A C X and g € ()
the structure of Ly(X) is analogous to the structure of Ly(G). More precisely
Ly(X) is a direct sum of at most an enumerable set of finite-dimensional subspaces
Hj, invariant with respect to G consisting of continuous functions.

We will need the following auxiliary result.

LEMMA 1. Let X be a topological homogeneous G-space with compact group G
and probability measure invariant with respect to G. If {ex(-)}}_, s an orthonor-
mal system of continuous functions from Lo(X) such that L, = span{ex(-)}7_;
is tnvariant with respect to G, then

Z () = .

Proof. For x € X consider the function

n

&) = 2 enl@)en(:).

k=1

If y(-) € L, then it is clear that
Let x1,29 € X and ¢ € G such that
Ty = gay. (4)

Using the invariance of the measure, (3), and (4), for every y(-) € L,, we have

(()s Eanlg)) = (wlg™" ), & () = wlg™ a) = ylx1) = (y(-), & (1))

Thus &, (g-) = &, (). Substituting here x; we obtain that

kZi: lex(z1)]? = kZi: ler(z2)|* = C.

Since the given measure is a probability measure and the system {e(-)};_; is
orthonormal we have

C:/Xg”ek(xﬂzdu(x):n. |



Let X be a topological homogeneous G-space with compact group G and
probability measure invariant with respect to (. As was mentioned, in this case
Ly(X) may be represented in the form

X):ZHk7 dimHk:nk<oo,
k>1

where the Hj are shift-invariant spaces of continuous functions. Consider the
classes of functions represented as a convolution with kernels

ZZWWGM ek] ) (5)
k>1 =1

where the {ey;(-)}7%; is an orthonormal basis for Hy of continuous functions and
vk; € € such that

>y max k5] < 0. (6)
= isisn !

The function K(-,-) induces the operator

Ax(t) = /X K(t,7)e(r) du(r).

We show that A is a continuous operator from Lq(X) into Ly(X). Indeed, by the
Cauchy—Bunyakovsky inequality for all ¢ € X

el < [ (1K@ Pe)]) " ()] 2 du(r)
< (LKA ) ROl

Squaring this inequality, integrating it, and then changing the order of integra-
tion, we obtain

TAZ ()7, x) < leCIIE, x) sup/ | K (t, 7)[* du(7)
tex JX

= |27, x)sup 1K (2 )lE, x)
tex

According to the Parseval equality for all t € X
1A (8 L x) ZZ [ ¥ exs (1)
k>15=1

By Lemma 1 37%, |e;(t)]* = ng. In view of (6) we have that ||K(t,-)||,x) < C.
Therefore A: L1(X) — Ly(X) is a continuous operator.
Set

WE(X) = {y() € Lo(X) [ y() = Az(), ()l <1}



THEOREM 2. Let X be a topological homogeneous G-space with compact group
G and probability measure invariant with respect to G. Let K: X X X — C be a
function of the form (5), where the vi; satisfy the additional condition |vyy;| = A,
1 <j <y, k>1. Assume that {\;}i>1 are in decreasing order. Then for all
n=ny+...4+n,

400 100 = (3 o)

k>s+1

Proof. Since WE(X) = clco{K(-,7)},ex it is sufficient to prove the state-
ment of the theorem for the set { K (-, 7)},ex.

The upper bound. We use the Fourier method projecting our class on the
subspace L, = span{eg;(-) | 1 <j <ng, 1 <k <s}. Then for any 7 € X using
the Parseval equality, hypothesis of the theorem, and Lemma, we have

dz(K(-,T),LmLQ(X)): Z )\znk.

k>s+1

Hence the required estimate follows.

The lower bound. We use the method of averaging. Let L, be an n-dimen-
sional subspace of Ly(X), and {f,,}" _, an orthonormal basis of L,,. Then for all
TeX

n 2

(K (7)), Lo, La(X)) = [IK(-7) Lx) / K(t,7) fu(t)dp(t)] . (7)

In view of the hypothesis of the theorem and by Lemma 1 we have

()1 ) ZZI%I |ex; (1) ZMZI% P =2 Mo (8)

k>17=1 k>1 7=1 k>1

Furthermore,

2

ZZW]@M / ek]( )fm( ) ( ) .

k>1 =1

‘/ K(t,7) fon(t) du(t)

Substituting it and (8) into (7), integrating the obtained expression and using
the Parseval equality with the hypothesis of the theorem, we obtain

[ UKC7) Ly Lo(X)) du(7)
= Y= S bl | [ ews 0T dtr)

2

E>1 m=1k>1 j=1
n g 2
=Y M- XN [ e dut) - (9)
E>1 m=1k>1 j=1 &
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For £ > 1 set
2

- ;i;ﬁiﬁ J(; exi (D) Fm (D) du(?)

j
It is easy to check that 0 < ¢ < nj and k1 ¢ =ny+ ...+ n,. Consider the
problem of linear programming

Z)\chﬁmax, 0 <er <nyg, ch:nl—l—...—l—n
k>1 k>1
The solution of this problem is evidently
c.=nk, 1 <k<s, =0, k>s+1
(we recall that Ay > Ay > ...). Thus we obtain the lower bound for the left-hand
side of (9)
c.=nk, 1 <k<s, =0 k>s+1.

Standard arguments now lead to the required estimate. |

3. COROLLARIES FROM THE GENERAL THEOREMS

We begin with n-widths of convolution classes of functions defined on a com-
pact group. Let G be a compact group and K(-) € Ly(G). The operator of
convolution is defined as

Talg) = [ K(gs™)als) du(s) (10)

It is a compact operator from Lo(G) into L2(G). Moreover, it follows from the
Minkowski inequality that (10) is a continuous operator from L;(G) into Lo(G).
Set

WEG) = {y() € La(G) | y() = Ta(), o)l <1}, p=1,2

THEOREM 3. Let GG be a compact group and K(-) € La(G) be such that its
Fourier coefficients cf; when expanded in the orthonormal basis ef(+) = \/nati(+),
a € A, 1,7 = 1,...,n,, salisfy the condition: for any a € A the malrix
C, = (cfj) “has the form A\ U, where A\, € C and U, is an unitary matriz.

irj=

Assume that {)\k/w/nk}kzl is the sequence {A,/\/Ta}taca ordered in decreasing
order. Then for all m > 1 (ng = 0)
1) for any n such thatn%—l—...—l—n?n_l <n§n%—|—...—|—nfn
A
N

2) foranyn=ni+ ...+ ni_| +nnsn,, where 1 < s, < n,,

LW, 1) = (Dl =)+ T nlme)

k>m+1

dn (W5 (G), Lo(G)) =



Proof. 1. Using properties of the matrix elements

N

12 (g192) = D t5(g0)ti(g2),  t5(g) = t5i(gY),
k=1

we have

N

Z w@es(s). (1)

Na
o a
= Z Z e (
17 1] 2]

acA 1, =1 acAi,j=1 VAL

It is easy to verify that if # = (21,...,2,,) is an eigenvector of C’C, for the
eigenvalue A, then for all 1 < k& < n, the functions 72, :L'je?k(-) are eigenfunc-
tions for T'T with eigenvalue A//n,. Consequently, s; are the s-numbers of T"7".
It remains to use Theorem 1.

2. By (11) we have

Set

e?k(g)

B (g) = :

egak(g)
Then
Kl = 5 = 3 (B (), Tubils) = X 2 S5 (Bp(o). TuBi(s))

aed Vo 21 * aea Va4 ¢

where

= Z CLZEZ
=1
There exists an unitary matrix V,, such that
"
VLUV = =:1,,
“ 0
Ve
where [7¢| =1, 7 = 1,...,n4. Set
o fir(g)
Fi(g) = Vo E(g) =: :
k()



)\oz = = )\a Na
= Fo(g), T Fo(s)) = o (VT s
3 e (B TiE), = X 2 5 @)

Using Theorem 2 we obtain the desired equality. |

COROLLARY 1. Let G be a compact Abelian group, K(-) € Lo(G), ¢, 7 > 1,
be Fourier coefficients of K in an orthonormal basis formed by characters of the
group. Assume that the ¢; are arranged in decreasing order. Then for alln € Z4

dn (W5 (G), La(G)) = [engal.

7>n+1
COROLLARY 2. For K = (ky,...,ky) set
N
cj = Z kme—QWi(j—l)m/N‘
m=1

Assume that ¢; are arranged in decreasing order. Then for alln € Z

(W3 (Zn), Lo(Zn) = |ennal,

LOVE ), 120 = (5 5 Jel?)

i>n+1

If K=(1,0,...,0), then from the last equality we obtain (1).
Let

dt1
§4 = {:1; = (21,...,Tq41) € RIH! ‘ fo = 1}
j=1
be the unit sphere. It is known (see [9]) that Ly(8%) = 2%, H where

d+ k d+k—1
djnl]{k:: ne = ( -Z ) — ( Z; 9 )

(Hy, is the set of spherical harmonics of the order k). Let {Y}7%, be an orthonor-
mal basis of Hy. For the Laplace operator A and any x(-) € Hj the equality

Ar() = =z ()

10



holds where A\, = k(k 4+ d —1). For a > 0 the operator (—A)*/? is defined by
0 nk
(=8) () = N 2 e V),
k=1 7=1

where 2(+) € Ly(8%) and z(-) = 352, 0%, v V().
Set
W3 (") = {a() € La(8Y) [ I(=2)" 22 () sty < 1}

It is easy to check that this class can be represented in the form
W3 (5%) = {a() € Lao(57) [ e(-) = e+ Ty(-), c € R, y(-) € Lo(87), y(-) L1},

where for y(-) = Y232, 2275y V()
Ty() = 3 3 Ay,
k=1j=1
COROLLARY 3. Letng+...+npy <n<ng+...+ng. Then
du (W5 (87), La(81) = A%,
The class W($%) for d = 1 and o = r € Z, coincides with the Sobolev class
WE(T) = {a(-) € Lo(T) | 2U7D(-) abs. cont., [ ()|, <13

In this case A\, = k2, ng = 1, n;, = 2, k > 1. Thus we obtain

COROLLARY 4. For alln € Z

dzn-1(W3(T), La(T)) = daa(W3(T), Lo(T)) = —.
One does not obtain results similar to those obtained in Corollary 3 and 4
for the classes W ($%) and W[ (T). The reason for this is the additional condi-
tion y(-)L1 which does not permit us to apply Theorem 2. Some estimates of

d,(W7(T), Ly(T)) may be found in [2, p. 101].

4. AVERAGE WIDTHS

In this section we calculate exact values of average Kolmogorov widths for
some classes of functions defined on IR? and Z* in the Ly metric. We begin with
the definition of the average dimension of subspace. Let G = IR? or Z% and u¢
be the Lebesgue measure on G if G = R, and discrete measure if G = Z%. Let
A(G) be the set of positive numbers if G = IR? and the set of natural numbers

11



for G = Z°%. Assume that A is a subset of L,(G) (1 <p<oo)and a € AG).
Denote by A, the restriction of A to the set

Op={t=(tr,....ta) €G ||t <a, j=1,....d}.

Let L be a subspace of L,(G). For every ¢ > 0 and o € A(() consider the
value

K.(a, L, L,(G)) = min{n € Zy | dy (L0 BL(G))a, L,(0.)) < 2},

where BL,(() is the unit ball of L,(G). It is clear that K. (o, L, L,(G)) is the
minimal dimension of a subspace of L,(0,) which approximates the set (L N
BL,(G))s to within e. It is easy to check that for every ¢ > 0 the function
a — K.(a,L,L,(G)) does not decrease, and obviously for every o« > 0 the
function € — K. (o, L, L,((G)) does not increase.

The average dimension of L in L,(G) is defined as

__ K.(a,L,L
Tim (L, L,(G)) = limlim inf 2o (@ L Lol @)
e—0 a—oo MG(Da)

It is clear that dim (L, Lp(Zd)) < 1.

We shall formulate here one result about average dimension of functional
spaces which we later need. Let G* be RY for ¢ = IR? and T (a d-dimensional
torus) for G = Z". Let pug- be the Lebesgue measure on G divided by (27)%.
(The last condition is connected with the fact that y¢ is the natural Haar measure
on (G as on a locally compact Abelian group and pgs is just the Haar measure
associated with it on the dual group G*.)

Let A be a subset of G* and 1 < p < oo. Set

Bap(G) = {a(-) € Ly(G) | supp () C A},

where supp Z(-) is the support of Fourier transform of x(-) (x(-) is considered as
an distribution). It is clear that B4 ,(G) is a subspace of L,(G).

Recall that a set A C G* is called Jordan measurable if its characteristic
function is integrable in the sense of Riemann. The following two theorems
(Theorem 4 and 5) were proved in [10, 11] for ¢ = IR*. In a general case these
theorems may be proved in much the same way.

THEOREM 4 (ABOUT AVERAGE DIMENSION). Let G = IR* or Z%, A be a
Jordan measurable subset of G* with finite measure and 1 < p < oo. Then

dim (B4,,(G), Ly(G)) = e (A).

12



The notion of average dimension leads at once to the corresponding analogue
of Kolmogorov n-width. Let C be a centrally symmetric subset of L,(G) and
v > 0. The Kolmogorov average v-width of C' in L,(G) is defined as follows

d, (C, Ly(G)) = inf sup inf [lo(-) = y()llL, ()
L 2()eCy()el

where the first infimum is taken over all subspaces L of L,(G) such that
dim (L, L,(G)) < v. Any subspace for which this infimum is attained we call
an extremal subspace for d, (C, L,(G)).

The following analogue for average widths of the theorem about widths of a

ball holds.

THEOREM 5 (ABOUT WIDTHS OF A BALL). Let A C G* be a Jordan mea-
surable set, v >0, and pe«(A) > v. then

d, (Ba,(G)N BL,(G), L,(G)) = 1.

We calculate the exact value of the average width in Ls for the set €' which is
a convolution class of functions defined on G. If K'(-) € Ls((), then the operator
of convolution with this kernel z(-) — (K #* x)(+) is obviously a linear continuous
operator from Ly(G) into La(G). Set

Wy (G) = {y() € La(G) | y() = (K *2)(), le( )o@y < 13-

Denote by Z(-) the Fourier transform of the function z(-) € L2(G).

THEOREM 6. Let K(-) € Li(G)N Ly(G), v >0 if G =R, and 0 < v < 1 if
G =7Z% Then B , -
d, (W(G), Lo(G)) = K*(v),

where [?*() is the non-decreasing permutation_of f() Moreover, the space
By 2(G), where A(v) = {1 € G* | |[K(7)| > K*(v)} is an extremal space for
d (WH(G), LaAG)).

Proof. The lower bound. We use the method of “embedded balls”. For every

v > 0 consider the set A(y) = {r € G* | K(7)] > ~}. Since [&() € L1(G) the

function [?() is continuous and ]&( ) = 0 as |7| = oo if G’ = IR". Therefore the

set A(y) is open and bounded. Thus it is Jordan measurable, as is easy to check.
We prove that

Bty alC) N BL(G) C WE(G), (12

Indeed, let y(-) belong to the left-hand side of (12). Assume that x(:) € Ly(G)
is defined by the condition: #(7) = 0 almost everywhere if 7 ¢ A(y) and Z(7) =

13



ﬁ_l(r)g(r) almost everywhere if 7 € A(y). Thus y(-) = (K * 2)(-) and we have
to show that ||(-)||7, < 1. By the Plancherel theorem

ﬁ—l(r)yf(r)f dr

12Nz =

K ()| dr = |

A()

<97 [ P <Ol < 1

G

that is, y(-) € Wi (G).
Now v > 0 is such that ug«(A(y)) > v. By Theorem 4

dim (Bagy) 2(G), La(G)) = pige (A()) > v.

Then by Theorem 5 (taking into account the obvious property of homogeneity of
these widths) we obtain

d, (Bapa(G) Ny BLAG), La(G)) = 7.
From this and (12), using the monotonicity of widths it follows that
d, (W3(G), La(G)) > .

Passing to the supremum in this inequality over all 4 > 0 for which pex (A(7)) > v
(in view of the continuity of [?() this is equivalent to passage to the supremum
over all ¥ > 0 for which pg« (A(y)) > v) we obtain the required lower bound.
The upper bound is based on the approximation of W (G) by the Fourier
method. Let v = ~v(v) be such that pugs (A(y)) = v (it is clear that in this

case v = *(1/)) By Theorem 4 dim (BA (G)7L2(G)) = v. With every
y(-) = ([& x 2)(-) € WE(G) associate the functlon n(-) € Bay),2(G) such that
N() = Xa@)(-)y(+) where x 4(,)(+) is the characteristic function of the set A(7). |

The next result is the analogue of (1) for average widths.
THEOREM 7. Let 0 <v < 1. Then
d, (BL(Z"), (Z")) = VT =v.

Proof. The arguments do not depend on the dimension d so for simplicity we
consider the case d = 1.

The lower bound. Let L be a subspace of Iy(Z), dim(L,l5(Z)) < v, and

e > 0. Assume that {N;} is a subsequence of natural numbers such that

lim inf K. (N7L7l2(z)) — lIim K. (Nk7L7l2(Z))
N—oo 2N + 1 k—o0 2N+ 1

(13)

14



By the definition of average dimension, for every k there exists a subspace M C
2V such that

d (L0 BI(Z))k, My, 5V < e, (14)
dim My, < K. (Ny., L. 1,(Z)) . (15)

Let = € BN Extending 2 by zero to Z we obtain 2 € Bly(Z) and
consequently @ € Bly(Z). Let y € L and z € M}, be such that

|y — ZHliNk+1 =d (y, M;., l%Nk-H) . (16)

Then using the triangle inequality, (16), (14), and again the triangle inequality,
we have

lr = ylle@ = lle = yllames 2 e = zllamen = lly = 2llzwen
> d (0, My, 3M) = d (y, My, YY) > d (2, My, 54 = ellyliz

> d (2, My, ) = el|a = yll@) — ellzlln@).

Consequently,
(L4 )z = yllu@) > d (2, My, 3V ) — 2.

Hence,

(1+¢)d (BL(Z), L, 1(Z)) > d (BIFV My, 5V e (17)

From (13) (taking into account (15)) it follows that for every 0 < § < 1 — v
there exists kg such that for all & > kg

dim My < K. (Ny, L, 15(Z)) < (v + §)(2N, + 1).

Put N(k) = 2N, + 1 and n(k) = [(v +0)(2Ng + 1)]. Then dim M < n(k) <
N(k). Taking into account these inequalities, (17), and (1) we have

(1+2)d (BLW(Z), L, 1o(Z)) > dogey (B, 15V) —

n(k) N aa
1—N(k)—5: l—(v+46)—e.

In view of the arbitrariness of ¢, ¢, and I we obtain the required lower bound.
The upper bound. Let ¢ > 0 and the numbers n, N € IN be chosen so
that n < N and (n/N) < v < (n/N) +e. Denote by L, n a subspace of [

with dimension at most n which is extremal for d, (Bl{v, lév) We consider this

subspace as a subspace of functions on Z with support on {0,1,..., N —1}. Let
e(-),1=1,...,N, be a basis for L, n. If & € Z, then the functions e;(- + kN),
t = 1,...,N, form a basis in the space of all functions from L, n shifted by
EN. Denote by L the set of functions y(-) defined on Z which have the form
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y(1) = Ypez b, wrie(- + EN) where 37 Y0 @7, < oo. It is clear that L is a
subspace of [5(Z).

We show that dim (L,l5(Z)) < v. Indeed, denote by L,, the restriction of L
to {—mN,....,mN}. It is easy to see that dim L,, < 2mn + 1 and therefore

dim (L, 15(Z)) < 1%1£fm = <.

Denote by My the restriction of L to Ay ={kN,...,(k+1)N —1}.

Now let @ € BIi(Z) and x; be the restriction of x to Aj. Since x; €
H:z:kHl{vBl{V and My = L, n (if L,y is considered as a set of functions defined on
Ay) there exists y, € My, for which

ek = yrlliy < /1= (/N [zl (18)

Let y € L be a function such that the restriction of y to Ay equals yi. Then
using (18) and the mean inequality we have

1/2 1/2
n
Il = yll@) = (Z [l — kaf;v) <yl-x (Z Hl’kH?y)

keZ keZ
n n n
1= % T el = /1 - el < /1 - % < VI—v e
keZ

In view of the arbitrariness of ¢ we obtain the required estimate. |

We note here one general fact which in particular enables us to obtain at once

a series of extremal spaces for the widths d, (B, 1)) and EU(Bll(Zd), lz(Zd)).
Let G be a locally compact Abelian group (LCAG), G* be the dual group
to GG (that is, the group of all continuous characters on (), and ch(g, ¢*) be the
value of ¢* € GG* at the element g € G. We define by p¢ (pe+) the Haar measure
on G (G*).
For every x(-) € L1(G) the function Z(-) defined on G* which is given by the
formula

i(g) = [ (g) ch(=g.9")duc (19)

is called the Fourier transform of x(-). By (19) it follows that Z(-) is a continuous
function and

1Z()le@sy < Nz i) (20)

The Fourier transform can be extended up to an isometric operator from Lq(G)
onto Lo(G*) (this extension we define by the same symbol Z(-)). Thus we have
the Parseval equality

(o) = 12C) | Lo(er)- (21)
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If GG is a discrete group, then the dual group G* is compact and we shall usually
assume that pe«(G*) = 1.
Let A be a nonempty subset of G* and p =1 or 2. Set

Bap(G) =Az() € Ly(G) [ supp2(-) C A},

where supp Z(-) is the support of Z(-). It is clear that B4 ,(() is a subspace of
L,(G).

PROPOSITION 1. Let G be a discrete LOCAG and A a measurable subset of
G*. Then L1(G) is embedded in Ly(G) and

d(BL1(G), Bas(G), Ly(G)) < /1 — pg(A).

Proof. Let x(-) € BL1(G) and the function y(-) € Ly(G') be such that y(-) =
Xa()Z(+) (xa(+) is the characteristic function of A). It is clear that y(-) € Ba2(G).
Using (21) and (20), we have

2 _ S0 %\ |2 ~ 2

< NI, @ (1 = pe+(A)) < 1= pg=(A).

If we take here z(-) € Li(G) and y(-) = 0, then we obtain that ||z(-)||1,) <
|#(-)||,(). This means that L;(G) is continuously embedded in Ly(G).

We apply this result to the mentioned above problems.

1. The space l]])V, 1 < p < oo, can be considered as L,(G) where G = Zn =
{0,1,..., N — 1} is a finite discrete Abelian group with the operation of addition
modulo N. Characters of this group are the functions & — exp(27kl/N), k € Zy,
where 0 < { < N —1. Therefore we can identify the dual group Z with Zy. Let
n < Nand A= {l;,...,[;,} CZy. Itis clear that uzs (A) = n/N. Consider
the space L, = span{exp(2wil;, - /N),...,exp(2mil;, - /N)}, dim L, = n. From
Proposition 1 and (1) it follows that L, is an extremal subspace for d,(BIY, I)Y).

2. Let A C T? be Jordan measurable, pugpa(A) = v, 0 < v < 1. Con-
sider the space L, = {x(-) € l,(Z")|supp #(-) C A}. By Theorem 4 we have
dim(L,, lg(Zd)) = v. Now from Proposition 1 and Theorem 4 it follows that L,
is an extremal subspace for EU(Bll(Zd), lz(Zd)).

5. COMMENTS

Various statements which are equivalent to Theorem 1 were proved by many
authors (see [12, 13, 14, 15, 2]). Of course this result was known to Kolmogorov
who considered in [3] only particular cases of elliptical cylinders.
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In a finite-dimensional space n-widths of regular octahedra were in fact ob-
tained in two papers [4] (the upper bound) and [5] (the lower bound). It is
interesting to note that Kolmogorov in 1948 did not take into consideration that
in these papers d,(BIY, [)Y) were calculated. This fact was noted by Stechkin [6]
who used it to find asymptotic values of n-widths for functional classes.

There is one more type of octahedra for which it is possible to calculate exact
values of widths. They are octahedra with different axes

N
Bl{v(a)::{xE]RN‘Zg_ﬂgl}, a, > ...>an.
k=1 k

For the dual case Smolyak [16] found the exact values of the linear (A,) and
Gel'fand (d") n-widths
MBI (@).1X) = d"(BI (), 1) = max [ <.
Y k= O
For the Kolmogorov n-width d,(Bli(a),l3) the exact result was obtained by Sof-
man [17, 18] (see also [19]).

In the continuous case estimates for the n-widths of generalized octahedra and
even more general sets (images of compacts under continuous transformation in
the Hilbert space) can be obtained using results such as a theorem of Ismagilov
[20] which is based on the method of averages (we demonstrated this method in
the proof of Theorem 2). Ismagilov cited Obukhov [21] as a predecessor in using
the method of averages. Several statements of a similar type which are used for
calculating exact values of n-widths for classes of analytic functions can be found
in [22, 23, 24]. In those papers the dual situation is considered and the exact
values of linear, Gel'fand, and Bernstein widths of W (X) in C(X) are found.
In the dual case using the Hilbert space structure it is possible to calculate the
exact values of n-widths for W2 ($%) and W} (T).

The concept of average dimension takes the beginning from the definition
of “average entropy” for stochastic signals with bounded spectrum which was
offered by Shannon [25]. Further Kolmogorov modified this definition for deter-
mined functions. Then Tikhomirov [26] defined the notion of average dimension
replacing entropy by Kolmogorov widths. The definition of the average dimen-
sion used in the paper is a modification of Tikhomirov’s definition. The notion
of the Kolmogorov average widths is due to Magaril-II'yaev.
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