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Optimal recovery in weighted spaces
with homogeneous weights

K. Yu. Osipenko

Abstract. The paper concerns problems of the recovery of operators
from noisy information in weighted Lq-spaces with homogeneous
weights. A number of general theorems are proved and applied to problems
of the recovery of differential operators from a noisy Fourier transform.
In particular, optimal methods are obtained for the recovery of powers of
the Laplace operator from a noisy Fourier transform in the Lp-metric.
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§ 1. General statement

Let T be some nonempty set, Σ be a σ-algebra of subsets of T , and µ be a nonneg-
ative σ-additive measure on Σ. We let Lp(T, µ) denote the class of all Σ-measurable
functions with values in R or in C such that

∥x( · )∥Lp(T,µ) =


(∫

T

|x(t)|p dµ
)1/p

<∞, 1 ⩽ p <∞,

vraisup
t∈T

|x(t)| <∞, p = ∞.

We set
W =

{
x( · ) ∈ Lp(T, µ) : ∥φ( · )x( · )∥Lr(T,µ) <∞

}
and

W =
{
x( · ) ∈ W : ∥φ( · )x( · )∥Lr(T,µ) ⩽ 1

}
,

where 1 ⩽ p, r ⩽ ∞ and φ( · ) is some function on T .
Consider the problem of the recovery of the operator Λ: W → Lq(T, µ),

1 ⩽ q ⩽ ∞, given by Λx( · ) = ψ( · )x( · ), where ψ( · ) is some function on T . The
recovery is effected on the class W from a function x( · ) ∈ W known with error
on T (we assume that the functions φ( · ) and ψ( · ) are such that the operator Λ
maps the space W into Lq(T, µ)).

It is assumed that, for each function x( · ) ∈ W , one knows a function y( · ) ∈
Lp(T, µ) such that ∥x( · )−y( · )∥Lp(T,µ) ⩽ δ, δ > 0. It is required to recover the func-
tion Λx( · ) from y( · ). As methods of recovery, we consider all possible mappings
m : Lp(T, µ) → Lq(T, µ).
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The error of a method m is defined by

epqr(m) = sup
x( · )∈W, y( · )∈Lp(T,µ)
∥x( · )−y( · )∥Lp(T,µ)⩽δ

∥Λx( · )−m(y)( · )∥Lq(T,µ).

The quantity
Epqr = inf

m : Lp(T,µ)→Lq(T,µ)
epqr(m) (1.1)

is known as the error of optimal recovery ; a method on which the infimum is
attained is called an optimal method.

The above problem is a particular case of the general problem of the recovery of
a linear operator Λ, which acts from a linear space X into a normed linear space Z,
on a set W ⊂ X from the values of a linear operator I acting from X into a normed
linear space Y and given with some error δ. In problem (1.1),

X = W, Z = Lq(T, µ), Y = Lp(T, µ)

and the operator I : W → Lp(T, µ) is defined by Ix( · ) = x( · ).
The original general recovery problem, which appeared as a generalization of Kol-

mogorov’s problem of the best quadrature formula (see [1]), was posed by Smolyak
(see [2]). In this statement, Λ is a linear functional, I consists of a finite num-
ber of precisely given (δ = 0) linear functionals, and, in contrast to the problem
of best quadrature formulae, the class of recovery methods consists of all possible
(not necessarily linear) methods of approximation. Smolyak proved that for convex
symmetric sets W the set of optimal methods contains a linear method.

Bakhvalov proposed to extend this setting to the case when linear functionals
are not known exactly, but only approximately, with some error. It was found out
that a similar result also holds in this case (see [3]).

The problem of recovery was given its most general form in the paper [4], which
was concerned with the recovery of linear operators in the infinite-dimensional
setting. Problems of the existence of a linear optimal method in the problem of
recovery of a linear functional were examined in [4]–[6]. The most general result in
this direction was obtained in [7], and a final (in a certain sense) criterion for the
existence of a linear optimal method, in [8].

A linear method in the problem of the recovery of linear operators may fail to
exist — this is a difference from the problem of the recovery of linear functionals.
For a corresponding example, see [9], where, in particular, conditions are given for
a set of optimal methods to contain linear ones and for the error of optimal recovery
to be equal to that of the dual extremal problem

sup
{
∥Λx∥Z : x ∈W, ∥Ix∥Y ⩽ δ

}
. (1.2)

The quantity (1.2) is frequently called the modulus of continuity of the operator Λ
on the classW (with respect to the operator I). The study of this quantity has great
value to the derivation of a number of sharp inequalities like Carlson’s inequalities,
Landau-Kolmogorov type inequalities for derivatives, in the Stechkin problem and
so on. Carlson’s inequality itself was found to be closely related to inequalities for
derivatives; for example, Taikov’s inequality (see [10]) can be easily derived from
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the generalized Carlson inequality (see [11]), which was put forward by Levin [12]
already in 1948. For more details on the relations of the quantity (1.2) to the
Stechkin problem and to recovery problems, see [13], [14].

We also point out a series of papers by Arestov [15]–[18] dealing with differenti-
ation operators on the real line. His results are pretty close to those considered in
our paper. For similar multivariate problems, see [19] and [20].

The method of construction of an optimal method of recovery for linear oper-
ators, as proposed in [9], can only be used in the case when all the metrics in
problem (1.1) are Euclidean. For non-Euclidean metrics, under the condition that
at least two of them are the same, a method was proposed in [21], which is also
used in the present paper. This method consists of two stages. In the first stage,
the error of optimal recovery is estimated from below in terms of the value of the
extremal problem (1.2). Note that, in order to abbreviate the proof, there is no need
to write down the solution (1.2), because (since we are concerned with estimates
from below) it suffices to show a ‘correctly’ chosen admissible function (though, as
a rule, this ‘correctly’ chosen function is found as a result of solving the extremal
problem (1.2) itself). The upper estimate is given in the second stage. To this end,
one considers a method consisting of a recovery operator, which would be applied
with precise information and which involves some smoothing factor. The error
of this method is estimated by employing either the Cauchy-Bunyakovskii-Schwarz
inequality or Hölder’s inequality with some weights. Next, weights and a smoothing
factor are chosen so that the upper estimate coincides with the lower one.

The case when all three parameters p, q and r in problem (1.1) are distinct was
considered in [11], where the scheme of construction of an optimal recovery method
also involves upper and lower estimates, but first one requires a more subtle analysis
of the Lagrange functions for the extremal problem (1.2) and for the extremal
problem for the error of the estimated recovery method. This approach, which was
implemented in [11], was shown to be capable of not merely delivering an optimal
recovery method, but also of producing a sharp Carlson-type inequality in a fairly
general form. In the case of homogeneous weights, the inequality thus obtained
implies the one derived previously in [22].

In this paper we solve problem (1.1) for homogeneous weights φ( · ) and ψ( · )
with (p, q, r) ∈ P1 ∪ P2, where

P1 =
{
(p, q, r) : 1 ⩽ q = r < p <∞

}
and P2 =

{
(p, q, r) : 1 ⩽ q = p < r <∞

}
.

The case when (p, q, r) ∈ P = {(p, q, r) : 1 ⩽ q < p, r < ∞} was considered in [11].
The main results in this paper, which are based on the solution of problem (1.2),
provide, in the multivariate case, optimal recovery methods for linear operators
defined, in terms of Fourier images, by multiplication by a homogeneous weight,
on classes of functions defined in terms of similar-type operators, in the L2(Rd)-
and L∞(Rd)-metrics from information about a noisy Fourier transform in Lp(Rd)
(Theorems 3 and 5). Based on these general results, we obtain methods for the
optimal recovery of powers of the Laplace operator (−∆)k/2 and the differentiation
operators Dα of orders α = (α1, . . . , αd) ∈ Rd+. Similar results were obtained pre-
viously only for powers of the Laplace operator with p = 2,∞ in the L2(Rd)-metric
(see [23] and [24]) and p = ∞ in the L∞(Rd)-metric (see [25]). In our paper, in the
first case we obtain results for 2 < p <∞, and in the second case, for 1 ⩽ p <∞.
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§ 2. Optimal recovery with homogeneous weights for two equal metrics

Denote

a+ =

{
a, a ⩾ 0,
0, a < 0.

We require the following result from [21].

Theorem 1. 1. Let (p, q, r) ∈ P1 . If λ̂2 is a solution of the equation(∫
T

(
|ψ(t)|q − λ̂2|φ(t)|q

)p/(p−q)
+

dµ(t)
)1/p

= δ

(∫
T

|φ(t)|q
(
|ψ(t)|q − λ̂2|φ(t)|q

)q/(p−q)
+

dµ(t)
)1/q

> 0, (2.1)

λ̂1 =
q

p
δq−p

(∫
T

(
|ψ(t)|q − λ̂2|φ(t)|q

)p/(p−q)
+

dµ(t)
)(p−q)/p

,

then

Epqq =
(
p

q
λ̂1δ

p + λ̂2

)1/q

,

and the method
m̂(y)(t) =

(
1− λ̂2

|φ(t)|q

|ψ(t)|q

)
+

ψ(t)y(t) (2.2)

is optimal.
2. Let (p, q, r) ∈ P2 . If λ̂1 is the solution of the equation(∫

T

|φ(t)|pr/(p−r)
(
|ψ(t)|p − λ̂1

)p/(r−p)
+

dµ(t)
)1/p

= δ

(∫
T

|φ(t)|pr/(p−r)
(
|ψ(t)|p − λ̂1

)r/(r−p)
+

dµ(t)
)1/r

> 0, (2.3)

λ̂2 =
p

r
δp−r

(∫
T

|φ(t)|pr/(p−r)
(
|ψ(t)|p − λ̂1

)p/(r−p)
+

dµ(t)
)(r−p)/p

,

then

Eppr =
(
λ̂1δ

p +
r

p
λ̂2

)1/p

,

and the method
m̂(y)(t) = α(t)ψ(t)y(t),

where

α(t) = min
{

1,
λ̂1

|ψ(t)|p

}
,

is optimal.

We apply this result to the case when T is a cone in a linear space, |ψ( · )| and
|φ( · )| are homogeneous functions of orders k ⩾ 0 and n > 0, respectively (k and n
are not necessarily integers) and µ( · ) is a homogeneous measure of order d > 0.
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Corollary 1. 1. Let (p, q, r) ∈ P1 , k ⩾ 0, n > k , and let

I1 =
∫
T

(
|ψ(ξ)|q − |φ(ξ)|q

)p/(p−q)
+

dµ(ξ) <∞

and
I2 =

∫
T

|φ(ξ)|q
(
|ψ(ξ)|q − |φ(ξ)|q

)q/(p−q)
+

dµ(ξ) <∞.

Then
Epqq = I

− 1
p

n−k
n+d(1/q−1/p)

1 I
− 1

q
k+d(1/q−1/p)
n+d(1/q−1/p)

2 (I1 + I2)1/qδ
n−k

n+d(1/q−1/p) ,

and the method

m̂(y)(t) =
(

1−
(
δ
I
1/q
2

I
1/p
1

) (n−k)q
n+d(1/q−1/p) |φ(t)|q

|ψ(t)|q

)
+

ψ(t)y(t) (2.4)

is optimal.
2. Let (p, q, r) ∈ P2 , k > 0, n > k + d(1/p− 1/r), and let

J1 =
∫
T

|φ(ξ)|pr/(p−r)
(
|ψ(ξ)|p − 1

)p/(r−p)
+

dµ(ξ) <∞

and
J2 =

∫
T

|φ(ξ)|pr/(p−r)
(
|ψ(ξ)|p − 1

)r/(r−p)
+

dµ(ξ) <∞.

Then

Eppr = J
− 1

p
n−k−d(1/p−1/r)

n−d(1/p−1/r)
1 J

− 1
r

k
n−d(1/p−1/r)

2 (J1 + J2)1/pδ
n−k−d(1/p−1/r)

n−d(1/p−1/r) ,

and the method

m̂(y)(t) = min
{

1,
(
J

1/p
1

δJ
1/r
2

) kp
n−d(1/p−1/r) 1

|ψ(t)|p

}
ψ(t)y(t) (2.5)

is optimal.

Proof. 1. Consider equation (2.1). We seek λ̂2 in the form λ̂2 = a(k−n)q, a > 0.
Substituting t = aξ into (2.1) we obtain

akq/(p−q)+d/pI
1/p
1 = δan+kq/(p−q)+d/qI

1/q
2 .

As a result,

a =
(
I
1/p
1

δI
1/q
2

) 1
n+d(1/q−1/p)

.

Using the same substitution we obtain

λ̂1 =
q

p
δq−paq(k+d(1/q−1/p))I

(p−q)/p
1 .

It remains to plug the resulting quantities into the expressions for the error of
optimal recovery and for the optimal method.
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2. Consider equation (2.3). We seek λ̂1 in the form λ̂1 = akp, a > 0. Substituting
t = aξ into (2.3) we obtain

anr/(p−r)+d/pJ
1/p
1 = δanp/(p−r)+d/rJ

1/r
2 .

Hence

a =
(
J

1/p
1

δJ
1/r
2

) 1
n+d(1/r−1/p)

.

The same substitution gives

λ̂2 =
p

r
δp−rar(−n+kp/r+d(1/p−1/r))J

(r−p)/p
1 .

Now the required result follows if we plug the resulting quantities into the expres-
sions for the density of optimal recovery and for the optimal method.

§ 3. Homogeneous weights in RRRRRRRd

Let T be a cone in Rd, dµ(t) = dt, and let |ψ( · )| and |φ( · )| be homogeneous
functions of orders k ⩾ 0 and n > 0, respectively, φ(t) ̸= 0 and ψ(t) ̸= 0 for almost
all t ∈ T . Consider the spherical coordinate system

t1 = ρ cosω1,

t2 = ρ sinω1 cosω2,

. . . . . . . . . . . . . . . . . . . . .

td−1 = ρ sinω1 sinω2 · · · sinωd−2 cosωd−1,

td = ρ sinω1 sinω2 · · · sinωd−2 sinωd−1.

We set ω = (ω1, . . . , ωd−1),

ψ̃(ω) = ρ−k|ψ(ρ cosω1, . . . , ρ sinω1 sinω2 · · · sinωd−2 sinωd−1)|,
φ̃(ω) = ρ−n|φ(ρ cosω1, . . . , ρ sinω1 sinω2 · · · sinωd−2 sinωd−1)|.

(3.1)

Let Ω be the range of ω as t runs over T . Since T is a cone, it follows that Ω is
independent of ρ. We set

J(ω) = sind−2 ω1 sind−3 ω2 · · · sinωd−2.

For 1 ⩽ q < p, r, the function κr−q(1 − κ)−(p−q) is monotone increasing from 0
to +∞ for κ ∈ [0, 1). Hence for all t ∈ T we can define the function κ(t) by

κr−q(t)
(1− κ(t))p−q

=
|ψ(t)|q(p−r)

|φ(t)|r(p−q)
.

For q = r we set

κ(t) =
(

1− |φ(t)|q

|ψ(t)|q

)
+

,

and for q = p we define
κ(t) = min

{
1, |ψ(t)|−p

}
.
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Consider the quantity

γ =
n− k − d(1/q − 1/r)
n+ d(1/r − 1/p)

.

Let k > d(1/p− 1/q) and n > k+ d(1/q− 1/r). It is easily checked that γ ∈ (0, 1).
In this case we define the number q∗ by

1
q∗

=
1
q
− γ

p
− 1− γ

r
.

Theorem 2. Let k > d(1/p−1/q), n > k+d(1/q−1/r) and (p, q, r) ∈ P ∪P1∪P2 .
Assume that

I =
∫

Ω

ψ̃q
∗
(ω)

φ̃q∗(1−γ)(ω)
J(ω) dω <∞.

Then Epqr = Cδγ , where

C = γ−γ/p(1− γ)−(1−γ)/r
(
B

(
q∗γ/p+ 1, q∗(1− γ)/r

)
I

r(n− k − d(1/q − 1/r))

)1/q∗

,

and B( · , · ) is the Euler beta function. Moreover, the method

m̂(y)(t) = κ
(
ξ

1
n+d(1/r−1/p)
1 t

)
ψ(t)y(t),

where
ξ1 = δ

(
γq−r(1− γ)p−qC(p−r)q)q∗/(pqr),

is optimal.

Proof. The case (p, q, r) ∈ P is covered by Theorem 3 in [11] (in that paper, the
answer is given in terms of the beta function with arguments q∗γ/p and q∗(1−γ)/r,
but it is more convenient for our purposes to change to q∗γ/p+ 1 and q∗(1− γ)/r;
this can easily be effected by using properties of the beta function). It remains to
consider the following two cases: (p, q, r) ∈ P1 and (p, q, r) ∈ P2.

1. Let (p, q, r) ∈ P1. We use Corollary 1 and change to the spherical coordinates
in the integral I1. Then we have

I1 =
∫ +∞

0

ρd−1 dρ

∫
Ω

(
ρkqψ̃q(ω)− ρnqφ̃q(ω)

)p/(p−q)
+

J(ω) dω

=
∫

Ω

ψ̃qp/(p−q)(ω)J(ω) dω
∫ +∞

0

ρkqp/(p−q)+d−1

(
1− ρ(n−k)q φ̃

q(ω)

ψ̃q(ω)

)p/(p−q)
+

dρ.

For a fixed ω, substituting

t = ρ(n−k)q φ̃
q(ω)

ψ̃q(ω)
(3.2)
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into the second integral, we have

I1 =
1

(n− k)q

∫
Ω

ψ̃qp/(p−q)(ω)
(
ψ̃(ω)
φ̃(ω)

) kqp
(p−q)(n−k)+

d
n−k

J(ω) dω

×
∫ 1

0

t
kp

(p−q)(n−k)+
d

(n−k)q
−1(1− t)p/(p−q) dt

=
I

(n− k)q
B

(
q∗γ

p
+ 2,

q∗(1− γ)
q

)
.

A similar analysis for I2 shows that

I2 =
∫ +∞

0

ρnq+d−1 dρ

∫
Ω

φ̃q(ω)
(
ρkqψ̃q(ω)− ρnqφ̃q(ω)

)q/(p−q)
+

J(ω) dω

=
∫

Ω

φ̃q(ω)ψ̃q
2/(p−q)(ω)J(ω) dω

×
∫ +∞

0

ρnq+kq
2/(p−q)+d−1

(
1− ρ(n−k)q φ̃

q(ω)

ψ̃q(ω)

)q/(p−q)
+

dρ.

Making the same change (3.2) we obtain

I2 =
1

(n− k)q

∫
Ω

φ̃q(ω)ψ̃q
2/(p−q)(ω)

(
ψ̃(ω)
φ̃(ω)

) nq
n−k + kq2

(p−q)(n−k)+
d

n−k

J(ω) dω

×
∫ 1

0

t
n

n−k + kq
(p−q)(n−k)+

d
(n−k)q

−1(1− t)q/(p−q) dt

=
I

(n− k)q
B

(
q∗γ

p
+ 1,

q∗(1− γ)
q

+ 1
)
.

We set
B1 = B

(
q∗γ

p
+ 1,

q∗(1− γ)
r

)
.

Hence, from the properties of the beta function we have

I1 =
q∗γ/p+ 1

q(n− k)(q∗γ/p+ 1 + q∗(1− γ)/q)
B1I

and
I2 =

q∗(1− γ)/q
q(n− k)(q∗γ/p+ 1 + q∗(1− γ)/q)

B1I.

In the case under consideration (for r = q)

1
q∗

= γ

(
1
q
− 1
p

)
and γ =

n− k

n+ d(1/q − 1/p)
.

Hence q∗γ/p+ 1 = q∗γ/q. As a result,

I1 = γ
B1I

q(n− k)
and I2 = (1− γ)

B1I

q(n− k)
.
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From Corollary 1 we find that

Epqq = I
−γ/p
1 I

−(1−γ)/q
2 (I1 + I2)1/qδγ

= γ−γ/p(1− γ)−(1−γ)/q
(

B1I

q(n− k)

)γ(1/q−1/p)

δγ = Cδγ .

The method (2.4) can be written as

m̂(y)(t) = κ
(
b

1
n+d(1/r−1/p) t

)
ψ(t)y(t),

where

b = δ
I
1/q
2

I
1/p
1

= δγ−1/p(1− γ)1/q
(

B1I

q(n− k)

)1/q−1/p

= δγ−1/p(1− γ)1/qC1/γγ1/p(1− γ)(1−γ)/(qγ)

= δ(1− γ)1/(qγ)C1/γ = δ
(
(1− γ)Cq

)1/(qγ) = δ
(
(1− γ)Cq

) q∗
q ( 1

q−
1
p )

= δ
(
(1− γ)Cq

)q∗(p−q)/(pq2) = ξ1.

2. Let (p, q, r) ∈ P2. We employ Corollary 1 again. Changing to the spherical
coordinates in J1 we obtain

J1 =
∫ +∞

0

ρd−1 dρ

∫
Ω

ρnpr/(p−r)φ̃pr/(p−r)(ω)
(
ρkpψ̃p(ω)− 1

)p/(r−p)
+

J(ω) dω

=
∫

Ω

φ̃pr/(p−r)(ω)J(ω) dω
∫ +∞

0

ρnpr/(p−r)+d−1
(
ρkpψ̃p(ω)− 1

)p/(r−p)
+

dρ.

For a fixed ω, substituting
t = ρkpψ̃p(ω) (3.3)

into the second integral, we have

J1 =
1
kp

∫
Ω

φ̃
pr

p−r (ω)ψ̃−
npr

(p−r)k
− d

k (ω)J(ω) dω

×
∫ +∞

1

t
nr

(p−r)k
+ d

kp−1(t− 1)p/(r−p) dt

=
I

kp

∫ 1

0

s
nr

(r−p)k
− p

r−p−
d

kp−1(1− s)p/(r−p) ds =
I

kp
B

(
q∗γ

p
+ 1,

q∗(1− γ)
r

+ 1
)
.

A similar analysis for J2 shows that

J2 =
∫ +∞

0

ρd−1 dρ

∫
Ω

ρnpr/(p−r)φ̃pr/(p−r)(ω)
(
ρkpψ̃p(ω)− 1

)r/(r−p)
+

J(ω) dω

=
∫

Ω

φ̃pr/(p−r)(ω)J(ω) dω
∫ +∞

0

ρnpr/(p−r)+d−1
(
ρkpψ̃p(ω)− 1

)r/(r−p)
+

dρ.
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Making the same change (3.3) yields

J2 =
1
kp

∫
Ω

φ̃pr/(p−r)(ω)ψ̃−
npr

(p−r)k
− d

k (ω)J(ω) dω
∫ +∞

1

t
nr

(p−r)k
+ d

kp−1(t− 1)r/(r−p) dt

=
I

kp

∫ 1

0

s
nr

(r−p)k
− r

r−p−
d

kp−1(1− s)r/(r−p) ds =
I

kp
B

(
q∗γ

p
,
q∗(1− γ)

r
+ 2

)
.

We set

B2 = B

(
q∗γ

p
,
q∗(1− γ)

r
+ 1

)
.

Hence, from the properties of the beta function we obtain

J1 =
q∗γ/p

kp(q∗γ/p+ q∗(1− γ)/r + 1)
B2I

and

J2 =
q∗(1− γ)/r + 1

kp(q∗γ/p+ q∗(1− γ)/r + 1)
B2I.

In the case under consideration (for q = p),

1
q∗

= (1− γ)
(

1
p
− 1
r

)
and γ =

n− k − d(1/p− 1/r)
n− d(1/p− 1/r)

.

Hence q∗(1− γ)/r + 1 = q∗(1− γ)/p. As a result,

J1 = γ
B2I

kp
, J2 = (1− γ)

B2I

kp
.

From Corollary 1 we have

Eppr = J
−γ/p
1 J

−(1−γ)/r
2 (J1 + J2)1/pδγ

= γ−γ/p(1− γ)−(1−γ)/r
(
B2I

kp

)(1−γ)(1/p−1/r)

δγ .

From the properties of the beta function we find that

B2 =
q∗(1− γ)/r
q∗γ/p

B1 =
kpB1

r(n− k − d(1/q − 1/r))
.

Therefore,

Eppr = γ−γ/p(1− γ)−(1−γ)/r
(

B1I

r(n− k − d(1/q − 1/r))

)1/q∗

δγ = Cδγ .

The method (2.5) can be written as

m̂(y)(t) = κ
(
c

1
n−d(1/p−1/r) t

)
ψ(t)y(t),
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where

c = δ
J

1/r
2

J
1/p
1

= δγ−1/p(1− γ)1/r
(
B2I

kp

)1/r−1/p

= δγ−1/p(1− γ)1/rC−1/(1−γ)γ−γ/(p(1−γ))(1− γ)−1/r

= δγ−1/(p(1−γ))C−1/(1−γ) = δ(γCp)−1/(p(1−γ))

= δ(γCp)(p−r)q
∗/(p2r) = ξ1.

It follows from [21] and [11] that, in all cases under consideration,

Epqr = sup
x( · )∈W

∥x( · )∥Lp(T,µ)⩽δ

∥Λx( · )∥Lq(T,µ). (3.4)

As a result, we easily obtain the following sharp inequality:

∥Λx( · )∥Lq(T,µ) ⩽ C∥x( · )∥γLp(T,µ)∥φ( · )x( · )∥1−γLr(T,µ).

§ 4. Recovery of differential operators from a noisy Fourier transform

Let T = Rd, dµ(t) = dt, and let, as before, |ψ( · )| and |φ( · )| be homogeneous
functions of orders k ⩾ 0 and n > 0, respectively, φ(t) ̸= 0 and ψ(t) ̸= 0 for almost
all t ∈ Rd. We set

Xp =
{
x( · ) ∈ L2(Rd) : φ( · )Fx( · ) ∈ L2(Rd), Fx( · ) ∈ Lp(Rd)

}
,

where Fx( · ) is the Fourier transform of x( · ),

Fx(ξ) =
∫

Rd

x(t)e−i⟨ξ,t⟩ dt, ⟨ξ, t⟩ = ξ1t1 + · · ·+ ξdtd.

Let the operator D be defined by

Dx( · ) = F−1
(
φ( · )Fx( · )

)
( · ).

Assume that ψ( · )x( · ) ∈ L2(Rd) for all x( · ) ∈ Xp. We set

Λx( · ) = F−1
(
ψ( · )Fx( · )

)
( · ).

Consider the problem of the optimal recovery of values of the operator Λ on the
class

Wp =
{
x( · ) ∈ Xp : ∥Dx( · )∥L2(Rd) ⩽ 1

}
from the noisy Fourier transform of the function x( · ). We assume that, for each
x( · ) ∈Wp, one knows a function y( · )∈Lp(Rd) such that ∥Fx( · )− y( · )∥Lp(Rd) ⩽ δ,
δ > 0. It is required to recover the function Λx( · ) from y( · ). Assume that
Λx( · ) ∈ Lq(Rd) for all x( · ) ∈ Xp. As recovery methods we consider all possible
mappings m : Lp(Rd) → Lq(Rd). The error of a method m is defined by

epq(Λ, D,m) = sup
x( · )∈Wp, y( · )∈Lp(Rd)
∥Fx( · )−y( · )∥

Lp(Rd)⩽δ

∥Λx( · )−m(y)( · )∥Lq(Rd).
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The quantity
Epq(Λ, D) = inf

m : Lp(Rd)→Lq(Rd)
epq(Λ, D,m) (4.1)

is called the error of optimal recovery, and the method on which the infimum is
attained, an optimal method.

4.1. Recovery in the metric L2(RRRRRRRd). By Plancherel’s theorem,

∥Λx( · )−m(y)( · )∥L2(Rd) =
1

(2π)d/2
∥Λ̃x( · )− F (m(y))( · )∥L2(Rd),

where
Λ̃x( · ) = ψ( · )Fx( · ).

Moreover,

∥Dx( · )∥L2(Rd) =
1

(2π)d/2
∥φ( · )Fx( · )∥L2(Rd).

So, the problem under consideration coincides, up to a factor of (2π)−d/2, with
problem (1.1) for q = r = 2 with φ( · ) replaced by (2π)−d/2φ( · ).

We set
γ̃ =

n− k

n+ d(1/2− 1/p)
, q̃ =

1
γ̃(1/2− 1/p)

and

Cp(n, k) = γ̃−γ̃/p(1− γ̃)−(1−γ̃)/2
(
B(q̃γ̃/p+ 1, q̃(1− γ̃)/2)

2(n− k)

)1/q̃

.

Theorem 3. Let k ⩾ 0, n > k , 2 < p ⩽ ∞,

I =
∫

Πd−1

ψ̃q̃(ω)
φ̃q̃(1−γ̃)(ω)

J(ω) dω <∞ and Πd−1 = [0, π]d−2 × [0, 2π].

Then
Ep2(Λ, D) =

1
(2π)dγ̃/2

Cp(n, k)I1/q̃δγ̃ .

Moreover, the method

m̂(y)( · ) = F−1

((
1− β

∣∣∣∣φ(ξ)
ψ(ξ)

∣∣∣∣2)
+

ψ(ξ)y(ξ)
)

( · ), (4.2)

where

β =
k + d(1/2− 1/p)
n+ d(1/2− 1/p)

C2
p(n, k)

(
δI1/2−1/p

(2π)d/2

) 2(n−k)
n+d(1/2−1/p)

,

is optimal.

Proof. The case 2 < p < ∞ is secured by Theorem 2. Consider the case p = ∞.
From a well-known upper estimate (see, for example, [21]) we have

E∞2(Λ, D) ⩾ sup
x( · )∈W∞

∥Fx( · )∥
L∞(Rd)⩽δ

∥Λx( · )∥L2(Rd). (4.3)
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Let x̂( · ) be such that

Fx̂(ξ) =

{
δ, |ψ(ξ)| > λ|φ(ξ)|,
0, |ψ(ξ)| ⩽ λ|φ(ξ)|,

where λ > 0 is selected from the condition

1
(2π)d

∫
Rd

|φ(ξ)|2 |Fx̂(ξ)|2 dξ = 1.

Now λ > 0 should be chosen from the condition

δ2
∫
|ψ(ξ)|>λ|φ(ξ)|

|φ(ξ)|2 dξ = (2π)d.

Changing to the spherical coordinates we obtain

δ2
∫

Πd−1

φ̃2(ω)J(ω) dω
∫ Φ1(ω)

0

ρ2n+d−1 dρ = (2π)d,

where

Φ1(ω) =
(
ψ̃(ω)
λφ̃(ω)

)1/(n−k)

.

Hence
δ2

2n+ d
λ−(2n+d)/(n−k)I = (2π)d.

Therefore,

λ =
(

δ2I

(2π)d(2n+ d)

)(n−k)/(2n+d)

.

It is easily checked that

C2
∞(n, k) =

1
2k + d

(2n+ d)(k+d/2)/(n+d/2).

As a result, λ2 = β. Hence by (4.3),

E2
∞2(Λ, D) ⩾ ∥Λx̂( · )∥2L2(Rd) =

δ2

(2π)d

∫
|ψ(ξ)|>λ|φ(ξ)|

|ψ(ξ)|2 dξ

=
δ2

(2π)d

∫
Πd−1

ψ̃2(ω)J(ω) dω
∫ Φ1(ω)

0

ρ2k+d−1 dρ

=
δ2

(2k + d)(2π)d
λ−(2k+d)/(n−k)I =

1
(2π)dγ̃

C2
∞(n, k)I2/q̃δ2γ̃ . (4.4)

We estimate the error of the method (4.2). We set

a(ξ) =
(

1− β
|φ(ξ)|2

|ψ(ξ)|2

)
+

.
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Taking the Fourier transform we obtain

∥Λx( · )− m̂(y)( · )∥2L2(Rd) =
1

(2π)d

∫
Rd

|ψ(ξ)|2
∣∣Fx(ξ)− a(ξ)y(ξ)

∣∣2 dξ.
We set z( · ) = Fx( · )− y( · ) and note that

∥z( · )∥L∞(Rd) ⩽ δ and
1

(2π)d

∫
Rd

|φ(ξ)|2 |Fx(ξ)|2 dξ ⩽ 1.

Hence

∥Λx( · )− m̂(y)( · )∥2L2(Rd) =
1

(2π)d

∫
Rd

|ψ(ξ)|2
∣∣(1− a(ξ))Fx(ξ) + a(ξ)z(ξ)

∣∣2 dξ.
The integrand can be written as∣∣∣∣ |ψ(ξ)|(1− a(ξ))

√
β|φ(ξ)|Fx(ξ)√

β|φ(ξ)|
+

√
a(ξ)

√
a(ξ) |ψ(ξ)|z(ξ)

∣∣∣∣2.
Using the Cauchy-Bunyakovskii-Schwarz inequality

|ab+ cd|2 ⩽ (|a|2 + |c|2)(|b|2 + |d|2)

we obtain the estimate

∥Λx( · )− m̂(y)( · )∥2L2(Rd)

⩽ vraisup
ξ∈Rd

S(ξ)
1

(2π)d

∫
Rd

(
β|φ(ξ)|2 |Fx(ξ)|2 + a(ξ)|ψ(ξ)|2 |z(ξ)|2

)
dξ,

where

S(ξ) =
|ψ(ξ)|2 |(1− a(ξ))2

β|φ(ξ)|2
+ a(ξ).

If |ψ(ξ)|2 ⩽ β|φ(ξ)|2, then a(ξ) = 0 and S(ξ) ⩽ 1. If |ψ(ξ)|2 > β|φ(ξ)|2, then
S(ξ) = 1. So we have

e2∞2(Λ, D, m̂) ⩽
1

(2π)d

∫
Rd

(
β|φ(ξ)|2 |Fx(ξ)|2 + a(ξ)|ψ(ξ)|2 |z(ξ)|2

)
dξ

⩽ β +
δ2

(2π)d

∫
|ψ(ξ)|>λ|φ(ξ)|

(
|ψ(ξ)|2 − β|φ(ξ)|2

)
dξ

= β +
δ2

(2π)d

∫
|ψ(ξ)|>λ|φ(ξ)|

|ψ(ξ)|2 dξ − β
1

(2π)d

∫
Rd

|φ(ξ)|2 |Fx̂(ξ)|2 dξ

=
δ2

(2π)d

∫
|ψ(ξ)|>λ|φ(ξ)|

|ψ(ξ)|2 dξ ⩽ E2
∞2(Λ, D).

It follows that the method m̂(y)( · ) is optimal. Moreover, by (4.4) we have

E2
∞2(Λ, D) =

δ2

(2π)d

∫
|ψ(ξ)|>λ|φ(ξ)|

|ψ(ξ)|2 dξ =
1

(2π)dγ̃
C2
∞(n, k)I2/q̃δ2γ̃ .
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For d = 1 (in this case I = 2), D = dn/dtn and Λ = dk/dtk, the conclusion of
Theorem 3 was obtained in [26].

We define the operator (−∆)n/2, n ⩾ 0, by

(−∆)n/2x( · ) = F−1
(
|ξ|nFx(ξ)

)
( · ), |ξ| =

√
ξ21 + · · ·+ ξ2d.

We set

I0 =
2πd/2

Γ(d/2)
. (4.5)

Corollary 2. Let k ⩾ 0, n > k and 2 < p ⩽ ∞. Then

Ep2
(
(−∆)k/2, (−∆)n/2

)
=

1
(2π)dγ̃/2

Cp(n, k)I
1/q̃
0 δγ̃ .

The method
m̂(y)( · ) = F−1

(
(1− β|ξ|2(n−k))+|ξ|ky(ξ)

)
( · ), (4.6)

where

β =
k + d(1/2− 1/p)
n+ d(1/2− 1/p)

C2
p(n, k)

(
δI

1/2−1/p
0

(2π)d/2

) 2(n−k)
n+d(1/2−1/p)

,

is optimal.

Proof. In the case under consideration, ψ̃(ω) = φ̃(ω) = 1, and so

I =
∫

Πd−1

J(ω) dω =
2πd/2

Γ(d/2)
= I0.

Now it suffices to employ Theorem 3.

For p = ∞, the conclusion of the corollary was proved in [24].
The expression for E22((−∆)k/2, (−∆)n/2) and the corresponding optimal

method were obtained in [23].
Note that the optimal method (4.6) employs information on the noisy Fourier

transform of the function x( · ) which is only measured in the ball

|ξ| < β−1/(2(n−k)).

Moreover, the larger the error δ in the original information, the smaller the ball
containing the ‘useful’ information.

Consider another example. Let α = (α1, . . . , αd) ∈ Rd+. We define the operator
Dα (the derivative of order α) as follows:

Dαx( · ) = F−1((iξ)αFx(ξ))( · ),

where (iξ)α = (iξ1)α1 · · · (iξd)αd . The function |(iξ)α| is a homogeneous function of
order k = α1 + · · ·+ αd. Consider problem (4.1) with Λ = Dα and D = (−∆)n/2.
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Corollary 3. Let n > k , 2 < p ⩽ ∞. Then

Ep2(Dα, (−∆)n/2) =
1

(2π)dγ̃/2
Cp(n, k)I1/q̃δγ̃ ,

where
I = 2

Γ((α1q̃ + 1)/2) · · ·Γ((αdq̃ + 1)/2)
Γ((kq̃ + d)/2)

.

The method

m̂(y)( · ) = F−1

((
1− β

|ξ|2n

|ξ2α|

)
+

(iξ)αy(ξ)
)

( · ), (4.7)

where

β =
k + d(1/2− 1/p)
n+ d(1/2− 1/p)

C2
p(n, k)

(
δI1/2−1/p

(2π)d/2

) 2(n−k)
n+d(1/2−1/p)

,

is optimal.

Proof. From Dirichlet’s well-known formula we have∫
ξ1⩾0,...,ξd⩾0
ξ21+···+ξ2d⩽1

ξp1−1
1 · · · ξpd−1

d dξ1 · · · dξd =
Γ(p1/2) · · ·Γ(pd/2)

2dΓ(p1/2 + · · ·+ pd/2 + 1)
,

p1, . . . , pd > 0. Therefore,∫
ξ21+···+ξ2d⩽1

|ξ1|p1−1 · · · |ξd|pd−1 dξ1 · · · dξd =
Γ(p1/2) · · ·Γ(pd/2)

Γ(p1/2 + · · ·+ pd/2 + 1)
.

Changing to the spherical coordinates we obtain∫
Πd−1

Φ(ω, p1, . . . , pd)J(ω) dω
∫ 1

0

ρp1+···+pd−1 dρ =
Γ(p1/2) · · ·Γ(pd/2)

Γ(p1/2 + · · ·+ pd/2 + 1)
,

where

Φ(ω, p1, . . . , pd) = |cosω1|p1−1 · · · |sinω1 sinω2 · · · sinωd−2 sinωd−1|pd−1.

As a result, ∫
Πd−1

Φ(ω, p1, . . . , pd)J(ω) dω = 2
Γ(p1/2) · · ·Γ(pd/2)

Γ(p1/2 + · · ·+ pd/2)
.

So, for the quantity I in Theorem 3 we have

I =
∫

Πd−1

|cosω1|α1q̃ · · · |sinω1 sinω2 · · · sinωd−2 sinωd−1|αdq̃J(ω) dω

=
∫

Πd−1

Φ(ω, α1q̃ + 1, . . . , αdq̃ + 1)J(ω) dω

= 2
Γ((α1q̃ + 1)/2) · · ·Γ((αdq̃ + 1)/2)

Γ((kq̃ + d)/2)
. (4.8)

Now the conclusion of the corollary follows from Theorem 3.
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Consider the case p = 2. The situation here is fairly close to that considered
in [27] and [28], even though here the class on which the operator Dα is recovered
is different.

Theorem 4. Let n > k > 0. Then

E22(Dα, (−∆)n/2) =
αα/2

kk/2

(
δ

(2π)d/2

)1−k/n

, (4.9)

and all the methods

m̂(y)( · ) = F−1(a(ξ)(iξ)αy(ξ))( · ), (4.10)

where a( · ) are measurable functions satisfying the condition

|ξ2α|
(
|1− a(ξ)|2

λ2|ξ|2n
+

|a(ξ)|2

(2π)dλ1

)
⩽ 1 (4.11)

in which

λ1 =
αα(n− k)
(2π)dkkn

(
δ2

(2π)d

)−k/n
and λ2 = λ1

k

n− k
δ2,

are optimal.

Proof. Given ε > 0, we set

ξ̂ =
1√
k

(
(2π)d

δ2

)1/(2n)

(
√
α1, . . . ,

√
αd), ξ̂ε = ξ̂

(
1− ε

|ξ̂|

)
,

Bε = {ξ ∈ Rd : |ξ − ξ̂ε| < ε}.

Consider a function xε( · ) such that

Fxε(ξ) =


δ√

mesBε
, ξ ∈ Bε,

0, ξ /∈ Bε.

We have ∥Fxε( · )∥2L2(Rd) = δ2 and

∥(−∆)n/2xε( · )∥2L2(Rd) =
δ2

(2π)d mesBε

∫
Bε

|ξ|2n dξ ⩽
δ2

(2π)d
|ξ̂|2n = 1.

From an estimate similar to (4.3) we have

E2
22(D

α, (−∆)n/2) ⩾ sup
∥(−∆)n/2x( · )∥

L2(Rd)⩽1

∥Fx( · )∥
L2(Rd)⩽δ

∥Dαx( · )∥2L2(Rd)

⩾ ∥Dαxε( · )∥2L2(Rd) =
δ2

(2π)d mesBε

∫
Bε

|ξ2α| dξ

=
δ2

(2π)d
|ξ2α0 |,
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where ξ0 is some point in Bε. Letting ε→ 0 we obtain the estimate

E2
22(D

α, (−∆)n/2) ⩾
δ2

(2π)d
|ξ̂2α| = αα

kk

(
δ2

(2π)d

)1−k/n

. (4.12)

The optimal methods will be sought among the methods of the form (4.10).
Passing to the Fourier transform we have

∥Dαx( · )− m̂(y)( · )∥2L2(Rd) =
1

(2π)d

∫
Rd

|ξ2α|
∣∣Fx(ξ)− a(ξ)y(ξ)

∣∣2 dξ.
We set z( · ) = Fx( · )− y( · ) and note that∫

Rd

|z(ξ)|2 dξ ⩽ δ2 and
1

(2π)d

∫
Rd

|ξ|2n |Fx(ξ)|2 dξ ⩽ 1.

Hence

∥Dαx( · )− m̂(y)( · )∥2L2(Rd) =
1

(2π)d

∫
Rd

|ξ2α|
∣∣(1− a(ξ)

)
Fx(ξ) + a(ξ)z(ξ)

∣∣2 dξ.
We write the integrand as

|ξ2α|
∣∣∣∣ (1− a(ξ))

√
λ2|ξ|nFx(ξ)√

λ2|ξ|n
+

a(ξ)
(2π)d/2

√
λ1

(2π)d/2
√
λ1z(ξ)

∣∣∣∣2.
Applying the Cauchy-Bunyakovskii-Schwarz inequality we obtain the estimate

∥Dαx( · )− m̂(y)( · )∥2L2(Rd)

⩽ vraisup
ξ∈Rd

S(ξ)
1

(2π)d

∫
Rd

(
λ2|ξ|2n |Fx(ξ)|2 + (2π)dλ1|z(ξ)|2

)
dξ,

where

S(ξ) = |ξ2α|
(
|1− a(ξ)|2

λ2|ξ|2n
+

|a(ξ)|2

(2π)dλ1

)
.

If we assume that S(ξ) ⩽ 1 for almost all ξ, then by (4.12),

e222(D
α, (−∆)n/2, m̂)

⩽
1

(2π)d

∫
Rd

(
λ2|ξ|2n |Fx(ξ)|2 + (2π)dλ1|z(ξ)|2

)
dξ

⩽ λ2 + λ1δ
2 =

αα

kk

(
δ2

(2π)d

)1−k/n

⩽ E2
22(D

α, (−∆)n/2). (4.13)

This proves (4.9) and shows that the methods under consideration are optimal.
It remains to verify that the set of functions a( · ) satisfying (4.11) is nonempty.

Condition (4.11) can be rewritten in an equivalent form:∣∣∣∣a(ξ)− (2π)dλ1

(2π)dλ1 + λ2|ξ|2n

∣∣∣∣2
⩽

(2π)dλ1λ2|ξ|2n

|ξ2α|((2π)dλ1 + λ2|ξ|2n)2
(−|ξ2α|+ (2π)dλ1 + λ2|ξ|2n).
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Hence it suffices to show that, for all ξ ∈ Rd,

−|ξ2α|+ (2π)dλ1 + λ2|ξ|2n ⩾ 0. (4.14)

From the theorem of the arithmetic and geometric means (see [29]) it follows
that

|ξ2α| ⩽ αα

kk
|ξ|2k.

Consider the function y(s) = sk/n, s ⩾ 0. The tangent to this function at any point
s0 > 0 has the form

y =
k

n
s
k/n−1
0 s+

n− k

n
s
k/n
0 .

The function y( · ) is concave, hence for all s ⩾ 0,

sk/n ⩽
k

n
s
k/n−1
0 s+

n− k

n
s
k/n
0 .

Setting s0 = |ξ̂|2n and s = |ξ|2n we find that

|ξ2α| ⩽ αα

kk
|ξ|2k ⩽

αα

kk

(
k

n
|ξ̂|2(k−n)|ξ|2n +

n− k

n
|ξ̂|2k

)
.

It is easily checked that

λ1 =
αα(n− k)
(2π)dkkn

|ξ̂|2k and λ2 =
αα

kk−1n
|ξ̂|2(k−n).

As a result, we obtain
|ξ2α| ⩽ (2π)dλ1 + λ2|ξ|2n,

which is equivalent to (4.14).

4.2. Recovery in the metric L∞(RRRRRRRd). We set

γ1 =
n− k − d/2

n+ d(1/2− 1/p)
, q1 =

1
1/2 + γ1(1/2− 1/p)

,

C̃p(n, k) = γ
−γ1/p
1 (1− γ1)−(1−γ1)/2

(
B

(
q1γ1/p+ 1, q1(1− γ1)/2

)
2(n− k − d/2)

)1/q1

.

(4.15)

For 1 < p <∞ let the function κ1( · ) be defined by

κ1(t)
(1− κ1(t))p−1

=
|ψ(t)|p−2

|φ(t)|2(p−1)
,

for p = 1 by
κ1(t) = min{1, |ψ(t)|−1},

and, for p = ∞, by

κ1(t) =
(

1− |φ(t)|2

|ψ(t)|

)
+

.
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Theorem 5. Let k ⩾ 0, n > k + d/2, 1 ⩽ p ⩽ ∞, k + p > 1,

I =
∫

Πd−1

ψ̃q1(ω)
φ̃q1(1−γ1)(ω)

J(ω) dω <∞ and Πd−1 = [0, π]d−2 × [0, 2π].

Then
Ep∞(Λ, D) =

1
(2π)d(1+γ1)/2

C̃p(n, k)I1/q1δγ1 .

Then the method

m̂(y)( · ) = F−1
(
κ1

(
ξ

1
n+d(1/2−1/p)
1 ξ

)
ψ(ξ)y(ξ)

)
( · ),

where

ξ1 = δ

(
(1− γ1)p−1

γ1

)q1/(2p)( C̃p(n, k)I1/q1

(2π)d(1+γ1)/2

)q1(1/2−1/p)

,

is optimal.

Proof. Using an estimate similar to (4.3) we have

Ep∞(Λ, D) ⩾ sup
x( · )∈Wp

∥Fx( · )∥
Lp(Rd)⩽δ

∥Λx( · )∥L∞(Rd).

Assume that x( · ) ∈Wp and ∥Fx( · )∥Lp(Rd) ⩽ δ. If x̂( · ) is such that

Fx̂(ξ) = ε(ξ)e−i⟨t,ξ⟩Fx(ξ),

where

ε(ξ) =


ψ(ξ)Fx(ξ)
|ψ(ξ)Fx(ξ)|

, ψ(ξ)Fx(ξ) ̸= 0,

0, ψ(ξ)Fx(ξ) = 0,

then we obtain x̂( · ) ∈Wp, ∥Fx̂( · )∥Lp(Rd) ⩽ δ and∣∣∣∣∫
Rd

ψ(ξ)Fx̂(ξ)ei⟨t,ξ⟩ dξ
∣∣∣∣ =

∫
Rd

|ψ(ξ)Fx(ξ)| dξ.

Hence
Ep∞(Λ, D) ⩾

1
(2π)d

sup
x( · )∈Wp

∥Fx( · )∥
Lp(Rd)⩽δ

∫
Rd

|ψ(ξ)Fx(ξ)| dξ. (4.16)

Let 1 ⩽ p <∞. It follows from (3.4) that

Ep∞(Λ, D) ⩾ Ep12,

where, in the problem of the evaluation of Ep12, the function φ( · ) should be
replaced by the function (2π)−d/2φ( · ), and the function ψ( · ) by (2π)−dψ( · ). From
Theorem 2 we obtain

Ep∞(Λ, D) ⩾ Ep12 =
1

(2π)d(1+γ1)/2
C̃p(n, k)I1/q1δγ1 .
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Another appeal to Theorem 2 shows that∫
Rd

∣∣∣∣ 1
(2π)d

ψ(ξ)Fx(ξ)−m(y)(ξ)
∣∣∣∣ dξ ⩽ Ep12,

where
m(y)(ξ) =

1
(2π)d

κ1

(
ξ

1
n+d(1/2−1/p)
1 ξ

)
ψ(ξ)y(ξ).

Therefore,∣∣∣∣ 1
(2π)d

∫
Rd

ψ(ξ)Fx(ξ)ei⟨t,ξ⟩ dξ −
∫

Rd

m(y)(ξ)ei⟨t,ξ⟩ dξ
∣∣∣∣

⩽
∫

Rd

∣∣∣∣ 1
(2π)d

ψ(ξ)Fx(ξ)−m(y)(ξ)
∣∣∣∣ dξ ⩽ Ep12 ⩽ Ep∞(Λ, D).

It follows that the method m̂(y)( · ) is optimal, and the error of optimal recovery
coincides with Ep12.

Now consider the case when p = ∞. We set

s(ξ) =


ψ(ξ)
|ψ(ξ)|

, ψ(ξ) ̸= 0,

1, ψ(ξ) = 0.

Let x̂( · ) be a function such that

Fx̂(ξ) =


δs(ξ), |ψ(ξ)| ⩾ λ|φ(ξ)|2,
δ

λ

ψ(ξ)
|φ(ξ)|2

, |ψ(ξ)| < λ|φ(ξ)|2.

We choose λ > 0 such that ∥Dx̂( · )∥L2(Rd) = 1. Now, to find λ we have the equation

δ2

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

|φ(ξ)|2 dξ +
δ2λ−2

(2π)d

∫
|ψ(ξ)|<λ|φ(ξ)|2

|ψ(ξ)|2

|φ(ξ)|2
dξ = 1.

Changing to the spherical coordinates we obtain

δ2

(2π)d

∫
Πd−1

φ̃2(ω)J(ω) dω
∫ Φ2(ω)

0

ρ2n+d−1 dρ

+
δ2λ−2

(2π)d

∫
Πd−1

ψ̃2(ω)
φ̃2(ω)

J(ω) dω
∫ +∞

Φ2(ω)

ρ−2n+2k+d−1 dρ = 1,

where

Φ2(ω) =
(

ψ̃(ω)
λφ̃2(ω)

)1/(2n−k)

.

This gives us the equation

δ2

(2π)d
λ−(2n+d)/(2n−k) 4n− 2k

(2n+ d)(2n− 2k − d)
I = 1.
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As a result,

λ =
(

δ2(4n− 2k)
(2π)d(2n+ d)(2n− 2k − d)

I

)(2n−k)/(2n+d)

.

From (4.16) we find that

E∞∞(Λ, D) ⩾
1

(2π)d

∫
Rd

|ψ(ξ)||Fx̂(ξ)| dξ

=
δ

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

|ψ(ξ)| dξ +
δ

λ(2π)d

∫
|ψ(ξ)|<λ|φ(ξ)|2

|ψ(ξ)|2

|φ(ξ)|2
dξ

=
δ

(2π)d

∫
Πd−1

ψ̃(ω)J(ω) dω
∫ Φ2(ω)

0

ρk+d−1 dρ

+
δ

λ(2π)d

∫
Πd−1

ψ̃2(ω)
φ̃2(ω)

J(ω) dω
∫ +∞

Φ2(ω)

ρ−2n+2k+d−1 dρ

=
δλ−(k+d)/(2n−k)

(2π)d(k + d)
I +

δ

λ(2π)d(2n− 2k − d)
λ(2n−2k−d)/(2n−k)I

=
δ(2n− k)λ−(k+d)/(2n−k)I

(2π)d(k + d)(2n− 2k − d)
= ν, (4.17)

where

ν =
(n+ d/2)(k+d)/(2n+d)

k + d

(
(2n− k)I

(2π)d(2n− 2k − d)

)(2n−k)/(2n+d)

δ(2n−2k−d)/(2n+d).

Let us prove that, for all x( · ) ∈ X∞,

Λx(t) =
1

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(
ψ(ξ)− λs(ξ)|φ(ξ)|2

)
Fx(ξ)ei⟨t,ξ⟩ dξ

+
λ

δ(2π)d

∫
Rd

|φ(ξ)|2Fx(ξ)Fx̂(ξ)ei⟨t,ξ⟩ dξ. (4.18)

Indeed,

1
(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(
ψ(ξ)− λs(ξ)|φ(ξ)|2

)
Fx(ξ)ei⟨t,ξ⟩ dξ

+
λ

δ(2π)d

∫
Rd

|φ(ξ)|2Fx(ξ)Fx̂(ξ)ei⟨t,ξ⟩ dξ

=
1

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(
ψ(ξ)− λs(ξ)|φ(ξ)|2

)
Fx(ξ)ei⟨t,ξ⟩ dξ

+
1

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

λs(ξ)|φ(ξ)|2Fx(ξ)ei⟨t,ξ⟩ dξ

+
1

(2π)d

∫
|ψ(ξ)|<λ|φ(ξ)|2

ψ(ξ)Fx(ξ)ei⟨t,ξ⟩ dξ

=
1

(2π)d

∫
Rd

ψ(ξ)Fx(ξ)ei⟨t,ξ⟩ dξ = Λx(t).
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We estimate the error of the method

m(y)(t) =
1

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(
ψ(ξ)− λs(ξ)|φ(ξ)|2

)
y(ξ)ei⟨t,ξ⟩ dξ.

We have

|Λx(t)−m(y)(t)|

=
∣∣∣∣ 1
(2π)d

∫
Rd

ψ(ξ)Fx(ξ)ei⟨t,ξ⟩ dξ

− 1
(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(
ψ(ξ)− λs(ξ)|φ(ξ)|2

)
y(ξ)ei⟨t,ξ⟩ dξ

∣∣∣∣
⩽

∣∣∣∣ 1
(2π)d

∫
Rd

ψ(ξ)Fx(ξ)ei⟨t,ξ⟩ dξ

− 1
(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(
ψ(ξ)− λs(ξ)|φ(ξ)|2

)
Fx(ξ)ei⟨t,ξ⟩ dξ

∣∣∣∣
+

1
(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

|ψ(ξ)− λs(ξ)|φ(ξ)|2| |Fx(ξ)− y(ξ)| dξ.

For x( · ) satisfying

∥Fx( · )− y( · )∥L∞(Rd) ⩽ δ,
1

(2π)d

∫
Rd

|φ(ξ)|2 |Fx(ξ)|2 dξ ⩽ 1,

in view of (4.18) we have

|Λx(t)−m(y)(t)| ⩽ λ

δ(2π)d

∫
Rd

|φ(ξ)|2|Fx(ξ)||Fx̂(ξ)| dξ + µ ⩽
λ

δ
+ µ,

where

µ =
δ

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

(|ψ(ξ)| − λ|φ(ξ)|2) dξ.

It was found above that

δ

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

|ψ(ξ)| dξ =
δλ−(k+d)/(2n−k)

(2π)d(k + d)
I

(see the first term in (4.17)). Next,

δλ

(2π)d

∫
|ψ(ξ)|⩾λ|φ(ξ)|2

|φ(ξ)|2 dξ

=
δλ

(2π)d

∫
Πd−1

φ̃2(ω)J(ω) dω
∫ Φ2(ω)

0

ρ2n+d−1 dρ

=
δλ−(k+d)/(2n−k)

(2π)d(2n+ d)
I,
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and so

µ =
δλ−(k+d)/(2n−k)(2n− k)

(2π)d(k + d)(2n+ d)
I.

It is easily checked that λ/δ + µ = ν, and therefore

e∞∞(Λ, D,m) ⩽ ν ⩽ E∞∞(Λ, D).

It follows that m(y)( · ) is an optimal method, and the error of optimal recovery
is ν. It is straightforward that, for p = ∞,

1
(2π)d(1+γ1)/2

C̃∞(n, k)I1/q1δγ1 = ν.

We evaluate ξ1 for p = ∞. We have

ξ1 = δ(1− γ1)q1/2
(
C̃∞(n, k)I1/q1

(2π)d(1+γ1)/2

)q1/2
= λ(n+d/2)/(2n−k). (4.19)

The method m(y)( · ) can be written as

m(y)( · ) = F−1

((
1− λ

|φ(ξ)|2

|ψ(ξ)|

)
+

ψ(ξ)y(ξ)
)

( · ).

In view of (4.19) we have

m(y)( · ) = F−1
(
κ1(ξ

1/(n+d/2)
1 ξ)ψ(ξ)y(ξ)

)
( · ) = m̂(y)( · ).

Corollary 4. Let k ⩾ 0, n > k , 1 ⩽ p ⩽ ∞ and k + p > 1. Then

Ep∞

(
dk

dtk
,
dn

dtn

)
=

1
(2π)(1+γ1)/2

C̃p(n, k)21/q1δγ1 ,

where γ1 , q1 and C̃p(n, k) are defined by (4.15) for d = 1. The method

m̂(y)( · ) = F−1
(
κ1

(
ξ

1
n+1/2−1/p

1 ξ
)
(iξ)ky(ξ)

)
( · ),

where

ξ1 = δ

(
(1− γ1)p−1

γ1

)q1/(2p)( C̃p(n, k)21/q1

(2π)(1+γ1)/2

)q1(1/2−1/p)

,

is optimal.

The result of Corollary 4 for p = 1, 2,∞ was obtained in [30] where the case
when p = 1 and k = 0 was also examined.

Corollary 5. Let k ⩾ 0, n > k + d/2, 1 ⩽ p ⩽ ∞ and k + p > 1. Then

Ep∞((−∆)k/2, (−∆)n/2) =
1

(2π)d(1+γ1)/2
C̃p(n, k)I

1/q1
0 δγ1 ,
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where I0 is defined by (4.5). Then the method

m̂(y)( · ) = F−1
(
κ1

(
ξ

1
n+d(1/2−1/p)
1 ξ

)
|ξ|ky(ξ)

)
( · ),

where

ξ1 = δ

(
(1− γ1)p−1

γ1

)q1/(2p)( C̃p(n, k)I1/q1
0

(2π)d(1+γ1)/2

)q1(1/2−1/p)

,

is optimal.

The result of Corollary 5 for p = ∞ was obtained in [25].
Let us now apply Theorem 5 to the operators Λ = Dα and D = (−∆)n/2.

Corollary 6. Let k = α1 + · · ·+ αd > 0, n > k + d/2, 1 ⩽ p ⩽ ∞. Then

Ep∞(Dα, (−∆)n/2) =
1

(2π)d(1+γ1)/2
C̃p(n, k)I1/q1δγ1 ,

where
I = 2

Γ((α1q1 + 1)/2) · · ·Γ((αdq1 + 1)/2)
Γ((kq1 + d)/2)

. (4.20)

The method
m̂(y)( · ) = F−1

(
κ1

(
ξ

1
n+d(1/2−1/p)
1 ξ

)
(iξ)αy(ξ)

)
( · ),

where

ξ1 = δγ
−q1/(2p)
1 (1− γ1)

q1
2 (1−1/p)

(
C̃p(n, k)I1/q1

(2π)d(1+γ1)/2

)q1(1/2−1/p)

,

is optimal.

Proof. In the case under consideration the quantity I in Theorem 5 has the form

I =
∫

Πd−1

|cosω1|α1q1 · · · |sinω1 sinω2 · · · sinωd−2 sinωd−1|αdq1J(ω) dω.

Taking (4.8) into account we arrive at (4.20). Now the conclusion of the corollary
follows directly from Theorem 5.
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