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2 K. YU. OSIPENKO AND K. WILDEROTTERThe algorithm A produces the errorEA(W; I) := supf2W jUf �A(If)j:The value E(W; I) := infA:Zn!ZEA(W; I)is called the intrinsic error of the problem. An algorithm A�, for whichEA�(W; I) = E(W; I)is said to be an optimal algorithm.The optimal information error for estimatingW in C by n linear observations isde�ned as follows:(1) in(W;C) := infL1;:::;Ln infA:Zn!C supf2W kf �A(If)kC :Any continuous linear functionals L�1; : : : ; L�n for which the in�mum is attained arecalled optimal.If we restrict the class of admissible linear observations to function values, thenwe have the valuesn(W;C) := infz1;:::;zn2[0;2�) infA:Zn!C supf2W kf �A(f(z1); : : : ; f(zn))kC ;which is called the optimal sampling error. If the in�mum is attained at the pointsz�1 ; : : : ; z�n, then these points are said to be optimal.The study of optimal recovery problems has received much attention in the lastyears. For a detailed survey we refer to the papers of Micchelli and Rivlin [8] and[9] as well as to the book of Traub and Wozniakowski [16]. The values in and snwere considered by Fisher and Micchelli [6] and [7] for the unit balls of Hilbertspaces of nonperiodic functions with simply connected domain of holomorphy.Let S� := fz 2 C : j Imzj < �g be a strip in the complex plane. For �xedinteger r � 0 let Hr1;� denote the Hardy{Sobolev class of functions f , which are2�-periodic, analytic in S� , and satisfy jf (r)(z)j � 1 in S� . Denote by Hr;R1;� thesubset of functions from Hr1;� that are real-valued on the real axis. In the caser = 0 we will omit the upper index r. The Fourier coe�cients of f are given byak(f) := 1� Z 2�0 f(x) cos kx dx; k = 0; 1; : : : ;bk(f) := 1� Z 2�0 f(x) sin kx dx; k = 1; 2; : : : :In Section 1 we �nd an optimal algorithm for approximating f(�), � 2 [0; 2�),on the basis of the information(2) If = (a0(f); a1(f); : : : ; an�1(f); b1(f); : : : ; bn�1(f));



OPTIMAL INFORMATION FOR PERIODIC ANALYTIC FUNCTIONS 3uniformly for all f 2 Hr1;�. We show that the error E(Hr1;� ; I) of an optimalalgorithm is given by k��n;rkC , where ��n;r is the r-th inde�nite integral of a periodicBlaschke product with 2n equidistant, real zeros.In Section 2 this result is applied to determine the optimal information errori2n�1(Hr;R1;�; C). We show that the Fourier coe�cients are optimal information andthat i2n�1(Hr;R1;�; C) = d2n�1(Hr;R1;�; C) = d2n�1(Hr;R1;�; C)= �2n�1(Hr;R1;�; C) = k��n;rkC ;where d2n�1, d2n�1 and �2n�1 denote the Kolmogorov, Gel'fand and linear widths,respectively. Osipenko [13] proved that a corresponding equation is valid in theeven dimensional case. Thus i2n�1(Hr;R1;�; C) = i2n(Hr;R1;�; C) and all three widthsof order 2n� 1 and 2n coincide and are equal to k��n;rkC .In the case r = 0 we �nd in addition the optimal error s2n�1(H1;�; C), whichcoincides with s2n�1(HR1;�; C). It turns out that equidistant nodes are optimal.However, s2n�1(HR1;�; C) is strictly greater than i2n�1(HR1;�; C), i.e. sampling inoptimal nodes does not yield optimal information. In particular, we calculate thevalue s2n�1(HR1;�; C)i2n�1(HR1;�; C) ;which gives a quantitative measure, how much sampling fails to be optimal. Thissituation is in a sharp contrast to the even dimensional case, where it is knownthat sampling in equidistant nodes is optimal information (cf. Osipenko [11] andWilderotter [18]). Moreover, we recall that Fisher and Micchelli [5] proved that fora simply connected domain of holomorphy sampling always yields optimal informa-tion.In Section 3 we consider the problem of optimal recovery and optimal informationfor the class Hp;�, 1 � p < 1. Here Hp;� denotes the set of all functions f , whichare 2�-periodic, analytic in S� , and satisfysup0��<�� 14� Z 2�0 (jf(t + i�)jp + jf(t � i�)jp) dt�1=p � 1:For �xed points z1; : : : ; zn 2 [0; 2�) with multiplicities �1; : : : ; �n 2 N and � 2[0; 2�) we �nd an optimal algorithm and the intrinsic error for approximating f(�),f 2 Hp;�, on the basis of the Hermite informationIf = �f(z1); : : : ; f (�1�1)(z1); : : : ; f(zn); : : : ; f (�n�1)(zn)� :We also �nd the optimal sampling error sn(Hp;�; C). It turns out that sampling inequidistant nodes is optimal for all p and all n. Moreover, for p = 2 we comparesn(H2;�; C) with the optimal information error in(H2;�; C). We show that thesequantities do not coincide and calculate the ratioss2n�1(H2;�; C)i2n�1(H2;�; C) ; s2n(H2;�; C)i2n(H2;�; C) :



4 K. YU. OSIPENKO AND K. WILDEROTTERThe nonoptimality of sampling in the even dimensional case is quite remarkable.In all examples studied so far for the imbedding of Hp;� in Lq with p � q (seeOsipenko [11], Wilderotter [19]) we found that sampling in 2n equidistant nodesyields optimal information for i2n. The present paper shows that this fails to bevalid for the imbedding of H2;� in C.Throughout the paper we use substantially elliptic function techniques. Weemphasize that pretty optimal elliptic function bounds date back already to theclassical work of N. I. Achieser [1], which in
uenced and stimulated the presentarticle. 1. Optimal Recovery from Fourier CoefficientsThis section deals with the optimal recovery of the linear functional Uf = f(�),� 2 [0; 2�), on Hr1;�, using the information (2). Of central importance for ourconsiderations is the following well known general duality formula due to Smolyak(we use here the complex version of Smolyak's result proved by Osipenko [10]):(3) E(Hr1;�; I) = supf2Hr1;�If=0 jf(�)j:Moreover, the minimal error is achieved by a linear method of the form(4) A�(If) = c0a0(f) + n�1Xj=1(cjaj(f) + djbj(f)):By an extremal function we mean any function f0 2 Hr1;� with If0 = 0 andjf0(�)j = E(Hr1;�; I).Our further strategy will be to determine explicitely an extremal function f0.For this purpose we need some auxiliary facts about periodic Blaschke products.In order to introduce periodic Blaschke products, we transfer the analysis fromthe strip S� to the annulus 
 := fw 2 C : R < jwj < R�1g, where R = e�� .The universal covering transformation w = eiz maps S� onto 
 and induces acorrespondence f(z) ! g(w) = f �1i lnw� between analytic periodic functions inS� and analytic functions in 
.A Blaschke product B of degree m on 
 is a function of the formB(w) = exp�� mXj=1(g(w;�j) + ih(w;�j))�:Here �1; : : : ; �m are points in 
, g(w;�j) is the Green's function for 
 with sin-gularity at �j and h(w;�j) is the harmonic conjugate of g(w;�j). In general B ismultiple valued. However, if we choose m = 2n and locate all points �1; : : : ; �2n onthe unit circle fw 2 C : jwj = 1g, it turns out that B is single valued. For a proofof the last fact and further details on Blaschke products we refer to Fisher [4] andWilderotter [18].In particular we may choose the 2n zeros on the unit circle to be equidistant.Let ��j = exp�i(j � 1)�n� for j = 1; : : : ; 2n andB2n(w) = exp�� 2nXj=1(g(w;��j) + ih(w;��j ))�:



OPTIMAL INFORMATION FOR PERIODIC ANALYTIC FUNCTIONS 5Finally we go back again from the annulus to our original setting of the strip andintroduce the periodic Blaschke product eB2n on S� by de�ning eB2n(z) := B2n(eiz).Blaschke products are closely related to elliptic functions. Throughout thepresent paper we will use the following terminology (see for example Achieser [2],Bateman [3]): sn(z; k), cn(z; k), and dn(z; k) denote the Jacobi elliptic functionswith modulus k (further we will note the dependence of the Jacobi elliptic functionson the modulus only in case the modulus is di�erent from k); the complementarymodulus is given by k0 = p1� k2 and the complete elliptic integrals of the �rstkind with moduli k and k0 are denoted by K and K0, respectively. We alwayssuppose that K and K0 satisfy the equation�K02K = �:With this notation eB2n can be written in the form (see Osipenko [11]):eB2n(z) = kn 2nYj=1 sn�K� z � (j � 1)Kn � :Using the �rst fundamental transformation of elliptic functions of degree 2n onecan show that eB2n(z) = �p� sn�2n�� z; �� :Here � is the complete elliptic integral of the �rst kind with modulus � determinedby the equation �0� = 2nK0K :In order to cope with the optimal recovery problem, we introduce the r-th in-de�nite integral ��n;r of � eB2n de�ned by��n;0 := � eB2n; ��n;r := Dr ���n;0; r � 1:Here Dr(t) = 2 1Xk=1 cos(kt� �r=2)kr ; r = 1; 2; : : : ;is the Bernouilli Monospline, while(f � g)(z) = 12� Z 2�0 f(z � t)g(t) dtdenotes the convolution of two periodic functions.Osipenko [13] gave the following explicit representation for ��n;r and k��n;rkC :��n;r(z) = �p��nr 1Xk=0 sin((2k + 1)nz � �r=2)(2k + 1)r sinh((2k + 1)2n�)k��n;rkC = �p��nr 1Xk=0 (�1)k(r+1)(2k + 1)r sinh((2k + 1)2n�) ; r = 0; 1; : : : :From this one can read o� that I��n;r = 0.We now are ready to formulate our �rst main result.



6 K. YU. OSIPENKO AND K. WILDEROTTERTheorem 1. For all integers r � 0 and with I de�ned by (2),E(Hr1;�; I) = k��n;rkC :Proof. We can assume without loss of generality that the �xed evaluation point inthe problem (3) is equal to � = 0. Put'(z) := ( ��n;r �z + �2n� ; r = 2k��n;r(z); r = 2k + 1:We wish to show that ' is an extremal function of the problem (3). Note thatI' = 0, j'(0)j = k��n;rkC, and ' is an even function. Suppose there exists afunction f0 2 Hr1;� with If0 = 0 and jf0(0)j > j'(0)j. After scaling f0 with thefactor exp(�i arg f0(0)), we may assume f0(0) to be real and positive. Let us de�nef1(z) := f0(z) + f0(z)2 ; f2(z) := f1(z) + f1(�z)2 :Then f2 2 Hr;R1;�, If2 = 0, and f2(0) = f0(0). Moreover, f2 is an even function. Set� := '(0)=f2(0) F := '� �f2:We claim that the function F has at least 2n+ 1 distinct zeros in [��; �). ClearlyF (0) = 0. Moreover, since both ' and f2 are even functions, F does not changeits sign in � = 0. On the other side we have IF = 0, since I' = If2 = 0. Thecondition IF = 0 means thatZ 2�0 F (x) cos kx dx = 0; k = 0; 1; : : : ; n� 1;Z 2�0 F (x) sinkx dx = 0; k = 1; 2; : : : ; n� 1:Since the trigonometric polynomials of degree at most n � 1 are a Tchebyche�system of dimension 2n� 1, it follows from Pinkus [15, Chap. III, Prop. 1.4], thatF has at least 2n cyclic sign changes. In addition F has a zero in � = 0 without signchange. Hence F has altogether at least 2n+1 zeros in [��; �). By Rolle's theoremthe same conclusion remains valid for the r-th derivative F (r) = '(r) � �f (r)2 .Transfering this result from the strip to the annulus, we see that the functionF (r)�1i lnw� is single valued and analytic in 
 and has at least 2n+1 zeros in 
.By the de�nition of ��n;r we have'(r)�1i lnw� = ( �B2n �w exp �i �2n�� ; r = 2k�B2n(w); r = 2k + 1:The boundary values of the Blaschke product B2n satisfy identically jB2n(w)j � 1on @
. Consequently we have for w 2 @
����'(r) �1i lnw�� F (r)�1i lnw����� = �����f (r)2 �1i lnw����� � j�j < 1 = ����'(r)�1i lnw����� :Since B2n has 2n zeros in 
, Rouche's theorem implies that F (r)�1i lnw� hasexactly 2n zeros in 
. This is a contradiction and the proof of Theorem 1 iscomplete. �



OPTIMAL INFORMATION FOR PERIODIC ANALYTIC FUNCTIONS 72. Optimal Information and n-Widths of Hr;R1;�In this section Theorem 1 is applied to determine the optimal information er-ror i2n�1(Hr;R1;�; C). It turns out that i2n�1(Hr;R1;�; C) coincides with certain odddimensional n-widths. Therefore we start by recalling the de�nition of the variousn-widths.Let V be a subset of a normed linear space X. The Kolmogorov n-widths arede�ned by dn(V;X) := infXn supx2V infy2Xn kx� ykX ;where Xn runs over all subspaces of X of dimension n or less.The Gel'fand n-widths are de�ned bydn(V;X) := infXn supx2Xn\V kxkX ;where Xn runs over all subspaces of codimension at most n (here we assume that0 2 V ).The linear n-widths are given by�n(V;X) := infPn supx2V kx� PnxkX ;where Pn is any linear operator of X into X of rank at most n.Much information on n-widths can be found in the book of A. Pinkus [15]. Inparticular, the following fundamental inequality holds:(5) dn(V;X) ; dn(V;X) � �n(V;X):Analogously to (1) we can de�ne the optimal information error in(V;X) forestimating V in X by n linear observations.Lemma. Assume that V is a centrally symmetric set and 0 2 V . Then(6) dn(V;X) � in(V;X) � �n(V;X):Proof. The inequality in(V;X) � �n(V;X)evidently follows from the de�nition. To prove the lower bound consider any con-tinuous linear functionals L1; : : : ; Ln. For each " > 0 there exists x" 2 V such thatL1x" = � � � = Lnx" = 0 and supx2VL1x=���=Lnx=0 kxkX � kx"kX + ":For all algorithms A we havekx" � A(0; : : : ; 0)kX + k � x" � A(0; : : : ; 0)kX � 2kx"kX :Therefore,supx2V kx� A(L1x; : : : ; Lnx)kX � kx"kX � supx2VL1x=���=Lnx=0 kxkX � " � dn(V;X) � ":Taking the in�mum over A and L1 : : : ; Ln we obtainin(V;X) � dn(V;X): �Our result reads now as follows:



8 K. YU. OSIPENKO AND K. WILDEROTTERTheorem 2. For all integer r � 0i2n�1(Hr;R1;�; C) = d2n�1(Hr;R1;�; C) = d2n�1(Hr;R1;�; C)= �2n�1(Hr;R1;�; C) = k��n;rkC :Proof. In view of (5) and (6) to establish upper bounds we may restrict ourselvesto �(Hr;R1;�; C). It follows from Theorem 1 that there exists an optimal method (4)such that jf(0) �A�(If)j � k��n;rkCfor all f 2 Hr;R1;�. Let now � be an arbitraray �xed point in the interval [0; 2�) andset (T�f)(z) := f(z + �). Sinceaj(T�f) = aj(f) cos j� + bj(f) sin j�;bj(T�f) = �aj(f) sin j� + bj(f) cos j�;we obtain that����f(�) � c0a0(f) � n�1Xj=1�(cj cos j� � dj sin j�)aj(f)+(cj sin j� + dj cos j�)bj(f)����� � k��n;rkC:This pointwise estimate holds uniformly in [0; 2�). Thus we have�2n�1(Hr;R1;�; C) � k��n;rkC :As mentioned in the introduction, Osipenko [13] proved that(7) d2n(Hr;R1;�; C) = d2n(Hr;R1;�; C) = �2n(Hr;R1;�; C) = k��n;rkC :The lower bounds follow now from the monotonicity of the n-widths. �Combining (7) with Theorem 2, we get in view of (6) that i2n�1(Hr;R1;�; C) andi2n(Hr;R1;�; C) as well as all three kinds of widths of order 2n � 1 and 2n coincideand are equal to k��n;rkC.The preceding analysis may arise the impression that the situation in odd andeven dimensions is identical. This is de�nitely not true. Although the di�er-ent values of the widths are all the same, the properties of optimal informationare substantially di�erent in odd and even dimensions. In the sequel we will re-strict ourselves to the case r = 0. Our course of proof showed that the Fouriercoe�cients (a0(f); a1(f); : : : ; an�1(f); b1(f); : : : ; bn�1(f)) are optimal informationfor i2n�1(HR1;�; C) and consequently also for i2n(HR1;�; C). However, Osipenko[11] and Wilderotter [18] proved that in the even dimensional case sampling in2n equidistant nodes yields optimal information as well, that is s2n(HR1;�; C) =i2n�1(HR1;�; C). We now try to �nd the optimal sampling error s2n�1(HR1;�; C).



OPTIMAL INFORMATION FOR PERIODIC ANALYTIC FUNCTIONS 9For this purpose we consider in a �rst step �xed sampling points z1; : : : ; z2n�1 2[0; 2�). From the results of Ovchincev [14] and Wilderotter [17] it follows thatinfA:R2n�1!C supf2HR1;� kf �A(f(z1); : : : ; f(z2n�1))kC = kn



2n�1Yj=1 sn�K� (� � zj)�



C :In a second step we minimize the righthand side of the last equation over allpossible choices of sampling points. Osipenko [11] showed in a di�erent contextthat(8) infz1;:::;zn2[0;2�) kn=2



 nYj=1 sn�K� (� � zj)�



C =p�n;where(9) �n = 4e��n� P1m=0 e�2�nm(m+1)1 + 2P1m=1 e�2�nm2�2 = 4e��n + O(e�3�n)(�n can be also de�ned as a solution of the equation �0=� = nK0=K). Moreover,equidistant nodes are the unique nodes (up to a shift), for which the in�mum in(8) is attained. Thus s2n�1(HR1;�; C) =pk�2n�1:On the other side we havei2n�1(HR1;�; C) = i2n(HR1;�; C) = s2n(HR1;�; C) = k�n;0kC =p�2n:Set z�j := (j � 1) 2�2n� 1 , j = 1; : : : ; 2n� 1,b1(z) := pk sn�K� (z � z�n+1)� ; b2(z) := kn�1=2 2n�1Yj=1 sn�K� (z � z�j )� :Using the �rst fundamental transformation of elliptic functions of degree 2n� 1 itcan be shown thatb2(z) =p�2n�1 sn�(2n� 1)�2n�1� z; �2n�1� ;where �2n�1 is the complete elliptic integral of the �rst kind with modulus �2n�1.It is easy to check thatkb1kC = �b1� �2n� 1� = pk; kb2kC = b2� �2n� 1� =p�2n�1:Consequently kb1b2kC =pk�2n�1:



10 K. YU. OSIPENKO AND K. WILDEROTTERSince equidistant nodes are unique optimal nodes in the extremal problem (8) weobtain that p�2n <pk�2n�1. Thuss2n�1(HR1;�; C) > i2n�1(HR1;�; C);i.e. sampling does not yield optimal information in odd dimensions.More precisely we may calculate the following ratio, which gives a quantitativemeasure, how much sampling fails to be optimal:s2n�1(HR1;�; C)i2n�1(HR1;�; C) = pk�2n�1p�2n = pke�=2 + O(e�4�n):For n = 1 from (9) it follows thatk = 4e�� � P1m=0 e�2�m(m+1)1 + 2P1m=1 e�2�m2 �2 :Using this equality it is easy to show thate��=2 < pk < 2e��=2:Thus 1 < pke�=2 < 2 for all � 2 (0;+1).3. Optimal Sampling and Information in Hp;�Denote by Hp;� , 1 � p � 1, the space of all 2�-periodic functions f , which areanalytic in S� and satisfykfkHp;� := sup0��<�� 14� Z 2�0 (jf(t + i�)jp + jf(t � i�)jp) dt�1=p <1; 1 � p <1;kfkH1;� := supz2S� jf(z)j <1:Let Hp;� be the closed unit ball of Hp;� . Given an evaluation point � 2 [0; 2�)consider the problem of optimal recovery of f(�), f 2 Hp;�, on the basis of theHermite informationIf = (f(z1); : : : ; f (�1�1)(z1); : : : ; f(zn); : : : ; f (�n�1)(zn)); N := nXj=1 �j;where z1; : : : ; zn 2 [0; 2�). The case p = 1 was obtained by Ovchincev [14] andWilderotter [17]. The solution of this recovery problem for 1 � p < 1 reads asfollows.Theorem 3. Set W (z) = kN=2 nYj=1 sn�j �K� (z � zj)� :



OPTIMAL INFORMATION FOR PERIODIC ANALYTIC FUNCTIONS 11Then E(Hp;�; I) = 8>>><>>>: �2K� �1=p jW (�)j; N even,�2K� �1=ppkjW (�)j; N odd.An optimal method of recovery is given by(10) f(�) � nXj=1 �j�1X�=0 cj�(�; p)f (�)(zj);where cj�(�; p) = K� W (�)�!(�j � � � 1)!� limz!zj 0BB@ (z � zj)�j
N (z) dn p�2p �K� (� � z)�W (z) sn�K� (� � z)� 1CCA(�j���1) ;
N (z) = 8>><>>: cn�K� (� � z)� ; N even,dn�K� (� � z)� ; N odd.Proof. The function b(z) = pk sn K� zis analytic in S� . Moreover, b(z + 2�) = �b(z) and jb(x+ i�)j � 1 for all x 2 R.Thus W (z) = W�1(z) for z 2 @S� .Suppose N is an even number. Consider the functiong(z) = W (z) dn2=p�K� (� � z)� :Since dn K� z is 2�-periodic and does not vanish in the strip S� , g 2 H1;�. Set� := 2K� g(�):For f 2 Hp;� consider the integralJf := �4� Z�0 g(z)jg(z)jp�2f(z) dz;where �0 := [�i�; 2�� i�][ [i�; 2�+ i�]. Using the properties of elliptic functions,we have dn�K� (x� i�)� = �icn�K� (x� i�)�sn�K� (x� i�)� :



12 K. YU. OSIPENKO AND K. WILDEROTTERThe element of integration in Jf is 2�-periodic. So we can rewrite Jf in thefollowing formJf = KW (�)� 12�i Z�" cn�K� (� � z)� dn p�2p �K� (� � z)�W (z) sn�K� (� � z)� f(z) dz;where �" is the boundary of rectangle �" � Re z � 2� � ", j Imzj � �, and " suchthat �; z1; : : : ; zn lie inside this rectangle. By the residue theorem(11) Jf = f(�) � nXj=1 �j�1X�=0 cj�(�; p)f (�)(zj):For f(z) = g(z) this equality giveskgkHp;� = � �2K �1=p :If f 2 Hp;�, then by H�older inequality we obtainjJf j � j�jkgkp=qHp;�kfkHp;� � �2K� �1=p jg(�)j; 1p + 1q = 1:In view of (11) we have E(Hp;�; I) � �2K� �1=p jg(�)j:On the other hand, g0 := g=kgkHp;� 2 Hp;� and Ig0 = 0. Consequently,E(Hp;�; I) = supf2Hp;�If=0 jf(�)j � jg0(�)j = �2K� �1=p jg(�)j:Hence E(Hp;�; I) = �2K� �1=p jg(�)jand (10) is an optimal method of recovery.For odd N the same scheme of proof is applied to Jf withg(z) = pk sn�K� (z � � + �)�W (z) dn2=p�K� (� � z)�(here we use that sn(u +K) = cnu= dnu). �Taking in account the equality (8), we have



OPTIMAL INFORMATION FOR PERIODIC ANALYTIC FUNCTIONS 13Corollary. For all 1 � p <1 and n 2 Nsn(Hp;�; C) = 8>>><>>>: �2K� �1=pp�n; n even,�2K� �1=ppk�n; n odd,where �n is de�ned by (9). Moreover, equidistant nodes are optimal.Finally we compare in the case p = 2 the optimal sampling error sn(H2;�; C)with the optimal information error in(H2;�; C). Osipenko [12] proved that�2n�1(H2;�; C) = d2n�1(H2;�; C) = 0@2 1Xj=n 1cosh 2j�1A1=2= 2p1� e�2� e��n +O(e�5�n);�2n(H2;�; C) = d2n(H2;�; C) = 0@ 1cosh 2n� + 2 1Xj=n+1 1cosh 2j�1A1=2=s21 + e�2�1� e�2� e��n + O(e�5�n):In view of (6) the same equalities hold for in(H2;�; C). Thus we obtains2n�1(H2;�; C)i2n�1(H2;�; C) = 2rkK� sinh � +O(e�4�n);s2n(H2;�; C)i2n(H2;�; C) = 2rK� tanh � +O(e�4�n):The last result is very interesting, inasmuch as it is the �rst example known so farof a periodic Hardy space imbedding, for which sampling in equidistant nodes doesnot yield optimal information in even dimensions.References1. N. I. Achieser, Vorlesungen �uber Approximationstheorie, Akademie{Verlag, Berlin, 1953.2. N. I. Achieser, Elements of the Theory of Elliptic Functions, Nauka, Moscow, 1970. (Russian)3. Bateman Manuscript Project, Higher Transcendental Functions, Vol. II, McGraw{Hill, NewYork, 1953.4. S. D. Fisher, Function Theory on Planar Domains: A Second Course in Complex Analysis,Wiley{Interscience, New York, 1983.5. S. D. Fisher and C. A. Micchelli, The n-width of sets of analytic functions, Duke Math. J. 47(1980), 789{801.6. S. D. Fisher and C. A. Micchelli, Optimal sampling of holomorphic functions, Amer. J. Math.106 (1984), 593{609.7. S. D. Fisher and C. A. Micchelli, Optimal sampling of holomorphic functions. II, Math. Ann.273 (1985), 131{147.
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