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Abstract The paper is concerned with recovery problems of linear functionals
and operators from precise and noisy information. We present several basic results
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0 Introduction

In this paper, we give a short history of optimal recovery problems and some gen-
eral results. There are several surveys and monographs devoted to the theory of optimal
recovery!'"0. Here, we try to pay special attention to the construction of optimal recovery
methods.

One of the first example of optimal recovery problems is the problem of the best quadra-
ture. Let W be some class of functions integrable on the interval [a,b]. The problem is to

find

b
Lf= / f(z)ds,

knowing the information about function values at the system of knotsa < 1 < --- <z, <b.

Thus, using the vector
If = (f('rl)? e 7f(xn)),
we have to give an approximate value of Lf. Any linear method of approximation

o(If) = ijf(ilfj)

is called the quadrature formula.

The quadrature formula

Jj=1
is called the best quadrature formula if
sup |[Lf —@(If)]= inf su ’L — if(z)]. 1
sup [Lf = UIf)| = nf  sup |Lf ;pgf( 7) (1)

The first setting of such problems were given by Sard[”) and Nikol’skiil®). The develop-
ment of these problems may be found in [9].

(10]

Smolyak!'" considered the following generalization of (1). Let X be a linear space and

L be a linear functional on X. Put

Iz = (hhz, - ,lpx), z€X,
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where l;, j = 1,--- ,n, are linear functionals on X. For W C X, we consider the problem
of the optimal recovery of L on W by the information operator /. Any method of recovery

is a mapping ¢: R™ — R. For a given method ¢, we define the error of this method by

e(vau‘[?SD) = Sup |L.’II - (p(I:E”
zeW

We want to find the optimal error of recovery

E(L,W,I)= inf e(L,W,I,¢),

@: R —R

and an optimal method @ for which
e(L,W,1,p) = E(L,W,I).

(10]

Theorem 1 If W is a convex and centrally-symmetric set, then among all optimal

methods, there exists a linear optimal method and

E(L,W,I)= sup |LX]|. (2)
zeW
Iz=0
Thus, if W is a convex and centrally-symmetric set, then there exist py,--- ,p, such that

the method

is an optimal method of recovery.
Any element xg € W for which Ixzg = 0 and
|L$0| = sup |L{E|,

zeW
Ixz=0

we call extremal. The problem of finding an extremal element often turns out more simple
than the problem of finding an optimal recovery method.
Let us consider a simple example. Let H% be the space of functions analytic in the

unit disk
D:={zeC:|z| <1},

bounded, and real in the interval (—1,1). As the set W, we consider HX which is the set of

functions from HY satisfying the condition

sup | f(z)| < 1.
z€D
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For the problem of optimal recovery of functions from HE at the point 7 € (—1,1)
by their values at zero, the dual problem (2) may be solved immediately using the Schwarz
lemma,

sup 1(r)] = [l

feHE,
f(0)=0

Thus, the function fy(z) = z is extremal for the considered problem. However, the problem

of finding an optimal method of recovery is not so evident.

1 Method of parametrization

In [11], we offer an approach allowing to obtain an optimal method of recovery using
some parametrization of extremal element.

Theorem 2[11

Let X be a real linear space, W a convex centrally symmetric set from
X, and zy an extremal element in the problem of optimal recovery of a linear functional
L on the set W by the values of linear functionals l1x,--- ,l,x. Assume that for all M =
(t1,-- ,t,) € R™ from some neighborhood of Mye R", there exists (M) € W such that
x(Moy) = xo. Then, if the functions w(M) = Lz(M), w;(M) = Ljz(M), j =1,--- ,n, have
continuous partial derivatives with respect to all variables in a neighborhood of My and the

determinant of the matrix

Owy Own,
J(M) = : :
OJwq Own,

does not vanish at My, then the method

P(Ix) = Cjlyx, (3)
j=1
where C1, - -+, C, are solutions of the system
Ow
o oz, (Mo)
J(MO) = )
Ow
C, -
Itn (Mo)

is the unique linear optimal method of recovery.

It is sometimes convenient to use another form of the optimal method of recovery.
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Corollary 1 Let the conditions of Theorem 2 are fulfilled. Then, the unique linear

optimal method of recovery is

n

N Ow
P(lz) = Zy‘j%(MO%
j=1 J

where y1,- -+, y, are the solutions of the system
Zyj%(Mo):lkx, k=1,--,n. (4)
j=1 J
Proof For
ai by
a= , b= ,
an by
put

(a, b) = Z ajbj.
j=1

Set
ow
or, M) b
a = ' y z =
ow
= (M, lpz
o (Mo)

Then, the optimal method (3) has the form
PUz) = (J7H(Mo), 2) = @, (J T (Mo)) ™" 2)-

Put y = (JT(Mp))~'2. Then, the coordinates of y = (y1,--- ,yn)" satisfy the system (4).
Now, let us construct the optimal recovery method of functions from HX at the point

7 € (—1,1) by their values at zero. Put

z+1t
t) = .
h(z1) 14tz

It is easy to see that fi(z,t) € HY for all t € (—1,1). Moreover, f1(2,0) = fo(z) = =
and f1(0,t) = t. Thus, here M =t € R, My = 0, z(t) = f1(z,t), w(t) = f1(7,t), wi(t) =
f1(0,t) = t.

From Corollary 1, we obtain that the unique linear optimal method of recovery has the

form @(f(0)) = y1¢'(0), where y; satisfies the equality y;w](0) = £(0). Consequently, it has

the form

510 = (220.0)) " L (r,07(0) = (1 - 7)5(0),

More general results concerning the considered problem may be found in [12] and [13] (they

also can be obtained by the proposed method).
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2 Optimal interpolation of smooth functions

Denote by W2 [—1,1], r € N, the Sobolev class of functions z(t), t € [—1, 1], for which

("1 is absolutely continuous on [—1, 1] and

ess sup |z (1) < 1.
te[—1,1]

Let
1<t < <tp <1, v;eN, 1<y, j=1,--n, m=uvi+ -+, 27 (5)
Assume that for any z € WZ_([—1,1]), we know
Fo = (x(ty), - ,;v(”l‘l)(tl),--- Lx(ty), - ,:v(”n‘l)(tn)). (6)

Consider the problem of optimal recovery of z(7), 7 € [-1,1], x € WZ (-1, 1]), by the
information Fz. In other words, we would like to interpolate a function x € W7_(|—1,1]) at
the point 7 using values of x and its derivatives at some system of points t1,--- ,t,. In this
case, we put

E(r,W.([-1,1]),F) = inf sup |z(7) — p(Fx)|.
@ RVN=Rzewr ([-1,1])

To obtain the solution of this optimal recovery problem, we recall some definitions and

results about splines.

A perfect spline of degree r € N with knots s; < -+ < sy is a function of the form

N
s =pra®)+ %(tr +2) (~1Y(t - Sa‘)i),
' j=1

where p,_1 is a polynomial of degree r — 1, « = —1 or « = 1, and
t, t>0,
t_;,_ =
0, t<O.

A polynomial spline of degree r — 1, r € N, with N knots s1 < --- < sy is a function

of the form
r—1 ) N
St = aith +> bi(t—s;) "
=0 j=1

Suppose that conditions (5) are fulfilled. Then, it is known (see, for example, [14]) that

there exists a perfect spline s of degree r with m — r knots

—1<s < < Spp <1 (7)
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such that
sV(t)=0, v=01,--,0;—1, j=1,---,n.

Moreover, for any z;,, v =0,1,--- ,v; —1, j = 1,--- ,n, there exists the unique polynomial
spline S of order r — 1 with knots (7) for which

S(V)(tj):,fju, V:0717"'77/j_17 j=1,---,n.

[15-16]

Theorem 3 Assume that conditions (5) are fulfilled and s1 < -+ < $y,—, are

the knots of a perfect spline s such that
sW(t;)=0, v=01,---,05;—1, j=1,---,n.
Then, for any 7 € [—1,1],
E(r, WL ([=1,1]), F) = [s(7)], (8)

and the unique linear optimal recovery method is the polynomial spline S of order r — 1

with knots s1,- - , $;—r satisfying conditions
SW(t))=aW(t;), v=0,1,--,v5,—1, j=1,---,n. (9)

We give a simple proof of this theorem using the method of parametrization which was
described in the previous section. Moreover, using this method, we can prove the uniqueness
of the linear optimal method (which was not done in [15] and [16]).

Proof It follows from (2) that

E(r,W,([-1,1]),F) = sup |2(7)]-

cew (-1.1])
Fax=0

Assume that there exists © € W2 ([—1,1]) such that F'Z = 0 and |Z(7)| > |s(7)|. Put

V)]

=s—px = (7)
y=s—p% P=z05

8

Then, y has m + 1 zeros with multiplicities, and consequently, y(") has at least m — r +
1 sign changes. On the other hand, taking into account that |p| < 1 on every interval
(=1,51),(51,82), » (8m—r, 1), we can get that the function ") has the same sign as s(")(-).
Thus, ") has exactly m — r sign changes. The obtained contradiction proves (8).

Assume that the perfect spline s has the form

r—1 m—r
s()) =Yt + S (1 +2 3 (-1 (=)L ).
=0 ' =1
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For points M = (bg, -+ ,by—1,u1, "+ , Um—r) € R™ sufficiently close to the point My =

(ag, "+ ,ar—1,81, " » Sm—r) € R™ consider functions

r—1
t) = bt + (t’“+2z ) (t — u, +)
§=0

It is clear that sy € Wi ([-1,1]) for all M from sufficiently small neighborhood of Mj.

Moreover, sy, = s. We have

s (t) S
= tJ — . —1
ab] ’Mo ) J ‘ 07 y T )
Ospr(t) ~ 2a(—1)7H!

- t— g )1 =1 —r
8’[1,]' ’Mo (T—l)' ( S‘])Jr ’ J ! M r

Putting

r—1 m—r
S t) = Zyjt] —+ Z yj(t — Sj)iil,
7=0 7j=1

we obtain that the system (4) has the same form as (9). Thus, by Corollary 1, the value of

the interpolation spline S at the point 7 is the unique linear optimal method of recovery.

3 Optimal recovery of linear functionals from inaccu-

rate information

Let X be a linear space, L be a linear functional on X, Iz = (liz, - ,l,z), v € X,
where I, 7 = 1,--- ,n, are linear functionals on X, and W C X. Now, assume that for
all z € W instead of exact values of Iz, we know approximate values y € R™ such that
[[Hx — y|| < 6, where || - || is any norm in R™, and 6 > 0 is the error of approximate values.

In this case, the error of a recovery method ¢ is defined as follows:

G(L,W,I,(S, <P) = sup |L$—(p(y)|
zEW,yeR™
Tz—yll<s

Again, we are interested in the optimal error of recovery

E(L,W,I,6)= inf e(L,W,1,6¢)

@:R*—R

and in an optimal method @ for which
e(L7 W’ I, 57 @) = E(L7 W’ I, 5)'

It was proved in [17] an analog of Smolyak’s result.



No. 4 Osipenko K Yu: Optimal recovery of linear functionals and operators 467

Theorem 417 If W is a convex and centrally-symmetric set, then among all optimal

methods, there exists a linear optimal method, and

E(L,W,I,6)= sup |Lzx|.
zeEW
12 <5

We consider a more general problem of optimal recovery. Let X and Y be linear spaces,
L be a linear functional on X, and W C X. Let F': W — Y be a multivalued mapping. It
means that for any z € W, F(z) is a subset of Y. The problem is to recover Lz, v € W
by the information F'(z). The multivalued mapping F' is modeling inaccurate information.
Usually, F' has the form

Flo) ={y e Y :|[lx—y| <4}, (10)

where I : X — Y is a linear operator, Y is a normed linear space, and § > 0. In this case,
we speak about optimal recovery of L on W by inaccurate values of the operator I.

For any recovery method ¢ : Y — R, we define the error of the method ¢ by

e(L,F,p) = sup |[Lz—o(y)l, (11)
(z,y)€grF

where
gri'={(z,y) :x € W,y € F(z)}.
The optimal error of recovery is defined as follows:

E(L,F)= nfRe(L,F, ©). (12)

i
p:Y —

Let A C X. Denote by bco A the convex centrally-symmetric hull of A
bco A = {x tr = Z)\jxj,xj € A’Z|/\j| <l,ne N}.
j=1 j=1

For any multivalued mapping F': W — Y, we define the convex centrally-symmetric multi-
valued mapping bco F' : bcoW — Y by
beo F(x) ={y €Y : (z,y) € bco gr F'}.
Let y € F(W). The value

r(L,F,y) =inf sup |Lz — ¢
CGRIGF—l(y)

is called the Chebyshev radius of the set L(F~!(y)). The value

R(L,F)= sup r(L,F,y)
yeF (W)
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is called the radius of information in problem (12).

(18]

Theorem 5 For the existence of the linear optimal recovery method in (12), it is

necessary and sufficient that
R(L,F) = R(L,bco F).
Moreover, in this case,

E(L,F)= sup |Lx|.
z€(bco F)~1(0)

For F defined by (10), we put
e(L, F,p) =e(L,W,1,0,¢), E(L,F)=E(LW,IJ).

If W is a convex and centrally-symmetric set, then bco F' = F'. Consequently, from Theorem

5, we immediately obtain that Theorem 4 holds in this general multi-dimensional case.

4 Optimal recovery methods for inaccurate information

Consider the problem (12) for F defined by (10).
Theorem 6 Let W be a convex and centrally-symmetric set and Y be a normed linear
space. Assume that there exist such linear continuous functionals @ and T € W that
(i) sup |La — p(I2)| = L — 3(I7),
zeW
(i) p(1z) = 6[|2ll,
(i) [|17] < 6.

Then, ¢ is an optimal method of recovery and
E(L,W,1,6) = LZ. (13)
Proof It follows from generalization of Theorem 4 that

E(L,W,1,6)= sup |La| > |L3| = La.
zeW

[REI(

On the other hand, using the conditions (i)~(iii), for all z € W and y € Y such that
[Tz — y|| < 3§, we have

|Lz — p(y)| = |Lz — p(Iz) + p(Iz — y)|
< Lz —(Iz) + ||p)|6 = LT

|Lx — p(1z)| + |p(Iz — y)|
E(L,W,1,6).

NN

Thus,

e(L,W,1,6,%) < Lz < E(L,W,1,0) < e(L,W,1,6,9).
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Consequently, ¢ is an optimal method of recovery and (13) holds.
We apply this result to optimal recovery of function values from their Fourier coeffi-
cients. Let Lo(T) be the space of 27 periodic functions defined on the interval T = [—7, 7]

with identified endpoints with the norm

Joll = (3 [ letopar) ",

Denote by W7 (T) the Sobolev class of 27 periodic functions defined on T with absolutely
continuous 2"~V and ||z || < 1. For any 2 € WJ(T) and all ¢ € T, we have

M8

x(t) = % + ) (ay coskt + by sin kt).

b
Il

1

We consider the problem of optimal recovery of z(7), 7 € T, on the class W3 (T) from
the information about inaccurate values of Fourier coefficients ax, k € A, and by, k € B,
where A and B are some finite subsets of Z, = {0,1,---}. More precisely, instead of a,
k € A, and by, k € B, we know dy, bg, such that

la —ag| <6, keA, |bp—0by <8, keB.
Set N = card A + card B and
Fapx = ({ar}rea, {br}treB).
Denote by ¥ the space of vectors y = (y1,--- ,yn) with the norm

lyllin = 1g}€a<xN|yk|-

Thus, for every x € W3 (T), we know the vector
y = ({@k}rea, {bitren)
such that
[ Fapr —yllixy <9
In accordance with (11) and (12), we put

e(Wg(T)7FA,3757 SD) = sup |(E(T) - QO(y)l,
zeWS(T),yell]
”FA,BZ*HHL& <8

EW3(T),FaB,0) = li]{rlf Re(WQ’”(T),FAB,é, ®).
ol —
We say that @ is the optimal method of recovery if

E(WQT(T)v FA,B? 5) = G(WQT(T), FA,B, 55 @)
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It is easy to show that if 0 ¢ A, then E(W3(T), Fa p,0) = oo (for the proof, it suffices
to consider only constant functions from W3 (T)). Therefore, in what follows, we assume
that 0 € A. Set A = A\{0} and consider the vector

({Cc]):%}keﬁ’ {Si/?#}ke]a)'

Let

Vol = = |y (14)

be the modules of the elements of this vector, sorted in a descending order. If ~, =
k2" cos ks, then the corresponding index will be denoted by ks(A), and if vs = k; 2" sin k7,
then the corresponding index will be denoted by ks(B). For every 2 < s < N, we denote by
As and Bj the subsets of indexes ka2 (C), -+, ks(C) for C = A and C' = B, respectively. For
convenience, we put A1 = B; = @. We also assume that the sum over the empty set equals
0.

Put

PZP(&:maX{s:yg(l_g? Z k2r)

keA;UB;
2 .2
9 cos“ kT o sin® kT
>0 3 S 0 Y S 2<s<N |
kEN\As kZEN\Bs

(we assume that p = 1, if the set of such s is empty),

cos? kT sin? k7 \ 1/
Z k27‘ + Z k27‘
y o | EEnA kEN\B,
1— 52 Z k2r ’
keA,UB,

and

i SN 3 C = A7
Ao = K2 (O) (] = A8), & = T8Ik
sign Ysbr,(c), C = B.

Theorem 7 For all § > 0,

5 p
E(W;(T), Fap.0) = 5 + 5D A+ A,
s=2

and the method

~ p
~ ao ~
Py) ==+ ; AsCs (15)
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is the optimal method of recovery.

Proof We define the sequences ar and gk as follows:

0 signcoskr, ke A,U0; 0 signsinkr, k € By;
ar = ¢ coskr by = sinkr
W, k%APUO W, k¢Bp

It is easy to check that the following equality:

oo

S TE(@ +b7) =1 (16)
k=1
holds.
Put
N a S ~
Z(t) = 70 + Z(ak cos kt + by sin kt).

el
Il

1
It follows from (16) that [|2(")| = 1. Thus, Z € WJ(T).

We will apply Theorem 6. It suffices to check conditions (i)~(iii). We begin with the
condition (iii). Let us show that [[F4 pZ[;x < 0. In other words, we should show that
G| < 6 for all k € A and [by| < 6 for all k € B. If p = N, then it is obvious. Let p < N.
If for some k£ > 0 and k € A\A,, the inequality |ax| > ¢ holds or for some k € B\B,, the
inequality |bk| > § holds, then there exists 7;, p < s < N, for which

72 > 5202
In view of (14), it implies that
Vo1 > 67N (17)
Assume that
2= cos? kp1(A)T
” ki (A)

Then, (17) may be written in the form

(g > )

p+1 k€EA,UB,
2 . 2
cos® kT sin® kT
> 52 E + 62 E .
k2r k2r
kEN\A, kEN\B,

Since Apt1 = A, U{kp41}, and Byy1 = By, the last inequality may be rewritten in the form

cos? kpy1(A)T

2 eV (= 82 E k2T
4r

karl(A) ( k€Ap+1UBp41 )

2 -2

9 cos“ kT o sin” kT

>0 Y St Y e
kGN\Ap+1 kEN\Bp+1
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However, this contradicts the definition of p. The case when

o2 ~ sin’ky 1 (B)T
T ka(B)

may be considered analogously.

Let us prove that for all sequences {ax}, k =0,1,---, and {bx}, k = 1,2, -, such that

Zk%(az +b?) < oo,
k=1
the equality
%) P %) N
Z(ak cos kT + by sinkr) = Z AsCs + A Z k%" (Gpap + brby) (18)
k=1 s=2 k=1

holds, where

C. — Sign Vsaks(c)u C= Au
° sign vsbi_(c), C = B.

Indeed, we have

p 0 P p
S TNCaA N B (@par+bebr) = > k2 |k, les— A Y ke
s=2 =2

s=2 k=1

P .
o o9 COS kKT o SIN kT
+A6 E kics+A E k VEL ap+A g k oo by,
5=2 kEN\ A, keN\B,

(ax cos kT + by sin k7).

M

el
Il

1
It follows from (18) that for any z € W3 (T),
(1) — B(Fapr) = XY k¥ (akax + biby).
k=1
Using the Cauchy-Schwarz inequality, we obtain

-ty (et ) (£ e )
k=1 k=1

On the other hand,
[B(r) = B(Fap®)| = A k(@ +57) = A
k=1

Consequently, the condition (i) holds.
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It follows from the definition of p that A, > 0. In view of (14), we obtain that As > 0
forall s=2,--- ,p—1. We have

B(Eas) = 5(5+ 300 =17l

s=2
It means that the condition (ii) is fulfilled. Now, the assertion of the theorem follows from
Theorem 6.

The case when the Fourier coefficients are known with different errors, that is,
|ak—a;€| 6k, kEA, |bk—bk| 51@7 keB

may be considered in a similar way (see [19]).

5 Optimal recovery of linear operators

Let Yy, Y1, -+, Y, be normed linear spaces and I; : X — Y}, 5 =0,1,---,n, be linear

operators. We consider the problem of optimal recovery of the operator I on the set
W={zeX:|Lzlly, <§,0;20,j=1,--- ,k},

where 0 < k < n, from inaccurate values of Iyy1,---,L, (if & = 0, we set W = X).
More precisely, we assume that for every x € W, we know a vector y = (Yx41, " ,Yn) €
Y1 X - x Yy such that ||z —y;lly, <0;,0; 20, j=k+1,---,n

By the analogy with the previous setting, we define the error of a recovery method

@ : Y1 X - x Y, — Y as follows:

e(I,6,¢) = sup oz — () lvo-
TEW,YEY 11 X XYn
HIjI*yjHYj S8, =k+1,--,mn

The value

E(I1,6) = inf e(I,6,p) (19)

O Y1 XX Y=Yy
is called the optimal error of recovery (here I = (Ip, I -+ ,1I,), 6 = (61, ,0n)). Methods
for which the lower bound in (19) is attained, we call optimal methods of recovery.

For the problem of optimal recovery of linear operators, there are no such general results
similar to Theorem 4 or Theorem 5. Moreover, sometimes there is no linear optimal method
even for the problem of optimal recovery from exact information and with Hilbert spaces
Yo,Y1,---,Y,. Let us consider the corresponding example.

Let X = R3, Yy = I3 (I% is the space R™ with the usual Euclidean metric), Y3 = Vs =

Y3 =Y, =13. For x = (21,22, 73) € R?, we set

Iyx = (x1,22), Lx=x1+2xe, Ix=x1— 29,

IgIZZEg, I4$ZIE1 + z3.
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Let k =3, 61 = 02 = 1, 63 = 2/15, 64 = 0. Thus, we consider the problem of optimal

recovery of Iy on the set

2
W= {3: eR3: |Lz| <1, |La| < 1,| L] < E}

from exact values of the functional 1. It is easy to see that the set W is the parallelepiped

2
W= {xeR3 o] + 2lza] < 1, |23) < 1—5}

Consider the method

4
07 |y| < T
15
po(y) = A
(yvo)a |y| > E
If |z1 + 23] < 4/15, then
sup |[|(z1,22) —po(z1 +23)lliz = sup  [[(z1, z2)]liz-
(zq,x0,23)EW (z1,x2,23)EW
=1 begl<a/15 |21 +og|<4/15
Since
2
|z1] = |71 + 23 — 23] < |71 + 23] + 23] < =
we have
1
sup ||(z1,22) —go(r +as)lly < sup |z @)l = 5
(zq,x0,23)EW (z1,z0,23)EW
21 begl<a/15 le11<2/5

If (z1,22,23) € W and |21 + x3| > 4/15, then |z1| > |z1 + z3| — |x3| > 2/15. Conse-
quently, |z2| < 13/30. Therefore,

sup ||(z1,22) —polz1 +a3)lliz < sup [[(—wz3,22) [z
(zq,x0,23)EW (21,12,13)5‘/‘/
|z1+zg|>4/15 |zo[<13/30
4 n 169 < 1
225 900 2
Thus,
1
E(I,(S) < 6(1567</70) < 5

On the other hand, for any linear method ¢(y) = (c1y, c2y), c1,c2 € R, we have

e(l,8,p) = sup V(1 —er(z1 4+ 23))2 + (22 — co(x1 + 23))2.
(z1,22,23)EW

If ¢; < 0, considering the point (1,0,0) € W, we obtain

e(I,6,p) > /(1 —c1)2+c2 > 1.
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If ¢; > 0, considering the point (0,1/2,2/15sign co) € W, we obtain

4 1 2\2 1
Lae) s i+ (Lelel ) > L
e(Z,9,¢) \/0115—1— 5 tlelz) >3
Consequently, for any linear method ¢,

e(I,8,0) > = > E(I, ).

N =

Nevertheless, we prove a result which sometimes helps to construct a family of linear
optimal methods.
Theorem 8 Assume that there exist such A\; > 0, j = 1,--- ,n, and an element

T € W, for which [|;Z]]y, <, j =1,---,n, and

R n 1/2
Izl > (3o A02)
j=1

Moreover, assume that the linear operators S;: Y; — Yj satisfy the conditions

(a) Io = > S;1;,

j=1

n 2 n

(b) ‘ S 857, < X Mllz IR forall 55 € ¥ =1, o
J= J=

Then, for any such operators, the method

o(y) = Sk+1Yk+1 + -+ Sn¥n, Y E Vg1 X+ x Y

is optimal, and

n 1/2
B(1,6) = (D ne?)
j=1
Proof Let ¢:Yg41 X - XY, — Yy be an arbitrary method of recovery. Then,

2[[Hozlly, = 0% = ¢(0) = (Jo(=7Z) — ¢(0))ly;
< [HoZ = @(0)llyv, + [Ho(=2) = #(0) ||y, < 2e(1,6,¢).

In view of the arbitrariness ¢, we have
N n 5\ 1/2
B(1,6) > [lly, > (Do n02) (20)
j=1
To estimate the error of the method @, consider the following extremal problem:

n
2
Hlox— 3 sjyjHY —max, |Lalll, <87, j=1,--,k,
j=k+1 0

Iz —yslly, <67, j=k+1,---,n, =zeX
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Set z; = Iz, j=1,--- ,k, zj = jx —y;, j =k +1,--- ,n. Then, taking into account (a),

this problem may be rewritten in the form
n

HE:f%%
j=1

In view of (b), we obtain

HZS zJ

2
Y A, ||zj||§/j<6j2», j=1,---,n, zeX. (21)
0

Z Al ‘ZJ”YJ Z )\ja_?'
j=1 j=1

Thus,

E(1,0) < e(I,6,3) < (Z)\)

These inequalities together with (20) prove the theorem.

We apply this theorem to construct a family of optimal recovery methods of the k-th
derivative, 1 < k < r, for functions from the Sobolev class W3 (T) knowing a finite number
of their Fourier coefficients given inaccurately. To simplify calculations, we will consider the
complex case.

Assume that we have the Fourier series for some 27-periodic function x,

—+o0
E bt
zj;e

j=—0c0

Suppose that we know only a finite number of the Fourier coefficients which are given with

an error. That is, we know = = (Z_pn,--- ,Zx) such that
> r— 3 < 6% (22)
KIS

Using the information =, we want to recover the k-th derivative of x.
One of the simplest methods of recovery is as follows:
2B () & Y (i) T e
7SN
However, it is not very good because the error of terms (ij )kfj in |7|* times larger than the
error of z;.

In practice, this effect is known very well. Those who deal with such problems simply
cut the terms with high frequencies and smooth other terms by some filter. Such filter was
constructed in a similar problem in Theorem 7.

The problem which we would like to pose is: what is a best method of recovery? In

other words, what is a best possible filter? Now, we give the exact setting of the problem.
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Define Lo(T) as the space of square integrable real-valued or complex-valued functions

loll = (55 [ e ar)

The Sobolev space W (T) is the set of all 27-periodic real-valued or complex-valued functions

z on T with the norm

x for which the (r — 1)-st derivative is absolutely continuous and ||z(")| < co. The Sobolev
class WJ(T) is the set of all functions € Wj(T) for which ||z(™| < 1.

2N+1

Denote by 157", N € Z, the space of vectors y = (y_n,--- ,yn) with the norm

N 1/2
lollgver = (2 lwal?)
j=—N

We consider the problem (19) for X = Wi (T), Yo = Y1 = Ly(T), Yo = 2N Lyz = o),

Lz =2", Ly = {xj}é‘v:va

1 ;
z;=— [ x(t)e”Vde,
2 T
01 = 1, and 92 = § > 0. The appropriate error of optimal recovery, we denote by
E(D*,W3(T),0).
Set
. . (5 +1)%F — 52k 1
S0 = min { sS€Ly : GT)T —s% < EEEECIE (23)

It is easy to prove that s < N. We will consider three cases:

1
i >1, ——— <0< —,1<s<s0— 1
i) s0 (s+1)r s" 55 %0

1
ii)50>0,0<5<—r;
50
iii) so =0ord > 1.

In Case i), we put

(S+1)2rs2k _S2T(S+1)2k'
(S+1)2r_82r ’

in Case ii), we put

_ 1 _ 2k 53T
A= (N 4 1)2(r=k)” A2 =50 — (N + 1)2(r=k)”

and in Case iii), we put Ay =1, Ay = 0.
Theorem 9 For all § > 0,

E(D*, W3 (T),6) = v/ A1 + Mad2.
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If sp > 0 and § < 1, then for all §;, |6, < 1, 0 < |j| < N, the methods

p@) = Y (ij)Faze, (24)

0<|jI<N

where

o — A2 +9jj7“*k\//\1)\2()\2 T A% — j2F)
! )\2_|_/\1j2r ;

(25)

are optimal.
If s =0or § > 1, then the method @(Z)(t) = 0 is optimal.
Proof In Case i), put

N (52(s+1)2T—1)1/2 N ( 1— 6282 )1/2
Ts=\\—7—F"F y Ts = )
(s+1)2 — 527 (s + 1)z — s

/.’L'\(t) — Esem + /«"L'\s-',-lei(s-i_l)t'
We have

18O = 2@l + (s + D> [Busa P = 1,

1122 v in = [Bs]? + [Bosa]* = 6%,
Moreover,
116Z))2 = W% = s2%|2 |2 + (s + 1) |Zsp1 > = M + A2

In Case ii), we put

V1—62s2"

/(E\so == 67 /«/I:\N-‘,-l = (N+ 1)7“ )

We have
[Z7)? = 557150 > + (N + 1)* [Zna | = 1, 12 on 1 = [Zso|* = 67,
and
116Z))2 = W% = s2%|Z5, > + (N + D2 [Zn11? = M1 + Aad2.

In Case iii), we consider Z(t) = e’*. Then,

~(r - 1, N>0,
1800 =1, @z, = {O N
and

122 = 1Z0)% =1 = A + A62
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Now, to apply Theorem 8, we will construct the operators S; and Ss. Let u € Eo(T),
+oo
u(t) = Z u;et
Jj=—00

and v = (v_pn, - ,UN) € L%NH. We will search the operators S; and S5 in the forms

+oo
ijt e ijt
Siu = E Bjujet,  Syv = E (i) ojviet’.
= JI<N

From condition (a) of Theorem 8, we obtain
ﬁ{@ﬁruﬂm,o<m<m
j = A\ h—r .
@@)*", il > N.

First, we consider Case iii) (A7 =1, A2 =0). Put oy =0 for all j = —N,--- , N. Then,
by virtue of the Parseval equality, we have
+oo +o0
[S1u + Sovl? = | Squll* = D> 2E P <Y fuyl?
e e
<l = M flull® + Aeflvl v

Now, consider Cases i) and ii), we have

1S1u+ Spvl® = Y 1Bjus + (i) v+ > 1851 |uyl. (26)

0<|jl<N l71>N

Using the Cauchy-Schwarz inequality, we obtain

|Bjuj + (i) ov;]* < Aj(Aalus® + Az v; %), (27)
where
PR L ] ] el i 071
’ A1 A2 JAr=k) )\ A2

Assume that we find «; such that 4; < 1 for all 0 < |j| < N. Then, from (26), (27),
taking into account that A\; > (N 4 1)72"=%) we obtain

1S1u+Savl> <A D> fuglP+ D0 FPE P+ A Yyl

0<|jI<N [JI>N 7SN
—+o00
|2 2 _ 2 2
<A D0 [P e Yo gl = Aflull® 4+ Aafolfven
Jj=—o0 [7I<N
It remains to show that there exist a; such that

1 —oy? | j2|ay)?
j2(r—k))\1 )\2

<1 (28)
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for all 0 < |j| < N. This inequality may be rewritten in the form

A 2 MR (g + A% — 5%F)

o — < - 29
J Ao + )\1j2r ()\2 + )\1]2T)2 ( )
It suffices to prove that
Ao+ A2 =2 >0 (30)
for all j =1,---, N. Consider the set of points on the plane R?,
. — 427
{% S =0 (31)
Yi =J
If we plot the function
x =t

then the points (31) belong to the plot of this function. The function defined by (32) can

be written in the form

k
y=z" 0<=<1.
r

It is a concave function. In Case i), the line y = Ay + A\ 2 passes through the points (527, s2¥)
and ((s + 1)%", (s + 1)?¥)). In view of concavity, the inequality (30) holds for all j > 0.
In Case ii), the line y = A\g + Az passes through the point (s2", s2*) and
(so+1)%F — 83"

— < A1
(so+ 12 —sgr =~

It means that the inequality (30) holds for all j > so. On the other hand, in view of definition
of sg,

52k — (s — 1)

—_—— > 1.
$2m— (so — 1) !

Consequently, the inequality (30) holds for all 0 < j < sp.

Now, it remains to note that the set of all «; satisfying (29) may be written in the form
(25) with [6;] < 1.

Among the family of optimal methods (24), we find the ones that use minimal infor-
mation about the input data. If in (24) a; = 0 for some j, then the information about z;
is not used. Thus, we would like to find all such j. It follows from (28) that if a;; = 0, then
l7] = Af“‘+”. It is interesting to find also those j for which a; = 1 (that is, for such j, we
do not smooth the information). From (28), we see that we may take a; = 1 for |j| < /\22%“.

Thus, we obtain the following result.
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Corollary 2 If 5o > 0 and 6 < 1, then for all 6;, |6;] <1, 0 < |j] < N, the methods

B = > @FEe+ > (i) e

1 a1 L
0<[j]<AZ* AZF <] jl<A]Fm

where o; are defined by (25), are optimal.

More results on optimal recovery of functions and their derivatives in the periodic case

and in the case when functions defined on the real line may be found in [20]~[24].
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