
ON EXACT VALUES OF n-WIDTHS FOR CLASSES DEFINEDBY CYCLIC VARIATION DIMINISHING OPERATORSK. Yu. OsipenkoAbstract. In the paper the unique approach to the problems of calculation of exactvalues of n-widths in the uniform metric is suggested for the classes of 2�-periodicfunctions de�ned by operators (not necessary linear) having certain oscillating prop-erties. This approach allows to obtain exact results of n-widths both for classes offunctions represented by the convolution with cyclic variation diminishing kernelsand some classes of analytic functions which are not represented in the form of suchconvolution. IntroductionFor classes of smooth periodic functions many extremal problems of approxi-mation theory can be solved due to analysis of oscillating properties of functionsfrom these classes. The approach based on such analysis leaded to investigation ofclasses of functions represented in the form of the convolution with cyclic variationdiminishing kernels. For such classes su�ciently general results concerning optimalrecovery, optimal quadratures formulas, n-widths, Kolmogorov inequalities, andseveral others were obtained (see [1]{[3]).However some classes of analytic functions are not represented in the form ofthe convolution with cyclic variation diminishing kernels. Neveretheless for theseclasses there are very closed results to the smooth case (see [4]{[6]). In this paperfor the problem of calculation exact values of n-widths the unique approach servedboth as the smooth and analytic cases is suggested which based on the introduc-tion of special class of operators (in general, nonlinear) having the cyclic variationdiminishing property. 1. Basic definitionsRecall de�nitions of some n-widths. Let A be a subset of a normed linear spaceX. The Kolmogorov n-width is the numberdn(A;X) := infXn supx2A infy2Xn kx� yk;where Xn are any n-dimensional subspaces of X.The linear n-width is the number�n(A;X) := infY infPn supx2A kx� Pnxk;1991 Mathematics Subject Classi�cation. 41A46, 30D55.The research was supported in part by RFBR (Grant 96-01-00325). Typeset by AMS-TEX1



2 K. YU. OSIPENKOwhere Y are any normed linear spaces containing A and Pn are bounded linearoperators mapping Y into X, whose range is n or less.The Gel'fand n-width is de�ned by followingdn(A;X) := infY infY n supx2A\Y n kxk;where Y has the same sense as in the de�nition of the linear n-width and Y n areany subsets of Y of codimension n (here it is assumed that 0 2 A).The information n-width of a set A is the number(1) in(A;X) := infY�Al1;:::;ln2Y � infL:Rn!X supx2A kx �L(l1x; : : : ; lnx)kX ;where Y as above are any normed linear spaces containing A. Linear functionalswhich realizes the lower bound in (1) will be called optimal functionals for thecorresponding information n-width.Lemma 1. Let A be a centrally symmetric set containing zero. Then(2) dn(A;X) � in(A;X) � �n(A;X):Proof. The inequality in(A;X) � �n(A;X)immediately follows from the de�nitions of the information and linear n-widths.Let us prove the lower bound. Let Y � A and l1; : : : ; ln 2 Y �. For all " > 0 thereexists x" 2 A for which l1x" = : : : = lnx" = 0 andsupx2Al1x=:::=lnx=0kxkX � kx"kX + ":For all L we havekx" � L(0; : : : ; 0)kX + k � x" � L(0; : : : ; 0)kX � 2kx"kX :Thereforesupx2Akx � L(l1x; : : : ; lnx)kX � kx"kX � supx2Al1x=:::=lnx=0 kxkX � " � dn(A;X) � ":Hence by virtue of the arbitrariness of l1 : : : ; ln, L, and " > 0 we obtainin(A;X) � dn(A;X): �Denote by Lp, 1 � p � 1, the space of real 2�-periodic functions for whichkxkp := �ZT jx(t)jp dt�1=p <1; 1 � p <1;kxk1 := vrai supt2T jx(t)j <1; p =1:



ON EXECT VALUES OF n-WIDTHS 3Set BL1 := fx 2 L1 j kxk1 � 1 g:Denote by F the set of operators F :BL1 ! L1 (in general, nonlinear) forwhich(1) for all x 2 BL1 F (�x) = �Fx;(2) for all � 2 T P� � F = F � P�, where (P�x)(�) = x(� + �);(3) F is continuous operator as an operator acting from the subset BL1 of thespace L1 into L1 (i.e., kFxm � Fxk1 ! 0 as kxm � xk1 ! 0).For a �nite, symmetric with respect to zero set M � Zdenote by TM the setof real trigonometric polynomials from spanfeiktgk2M , T; := f0g. Let G 2 F andM0, M be �nite, symmetric with respect to zero sets of integers. We shall denoteby CVD(M0;M;G) the set of operators F 2 F for which the following conditionsare hold:(1) if x1, x2 are di�erent functions from BL1 such that Gx1 �j TM , Gx2 �j TM ,and p 2 TM0 , thenS(p+ Fx1 � Fx2) � S(x1 � x2);where S(f) is the number of sign changes of 2�-periodic function f on theperiod (about the de�nition of S(f) for f 2 L1 see [1, p. 41]);(2) for all 0 < � < 1 and all x 2 BL1 such that kxk1 � 1 and Gx �j TMthere exists a function x� 2 BL1 such that kx�k1 < 1, Gx� �j TM , and�Fx = Fx�.(3) the set fFx j x 2 BL1; Gx �j TMg is convex.(4) if x 2 BL1 and Gx �j TM , then Fx �j TM .The last condition is valid, for example, if G is the identical operator and F is theconvolution one, or if G = F . These two cases are the basic ones in the examplesconsidered below.For a function f 2 C(T) denote by dist f the maximum length of subinterval ofT on which the function f has no zeros. Set(f � g)(t) := 12� ZT f(t � s)g(s) ds:Denote by K(M; �) the class of kernels 
 2 L1 for which for all x 2 L1 and p 2 TMsuch that x �j TM , x 6� 0, and dist(p+
 � x) < � the inequalityS(p+
 � x) � S(x)holds, moreover, if 
 � x 2 C2(T), thenZ2(p +
 � x) � S(x);where Z2 is the number of zeros of a function when multiple zeros are counted twiceand intervals on which a function identically equals zero are discarded. We shallalso suppouse that cj(
) 6= 0, j =2M , wherecj(f) := 12� ZT f(t)e�ijt dt; j = 0;�1; : : : :



4 K. YU. OSIPENKOSuppouse that(3) 
j 2 K(Mj ; �j ); j = 1; : : : ; k; F 2 CVD(M0;M;G); M = k[j=0Mj :We shall interest in exact values of n-widths for classesF1 := F1(�;M) := f p+�x j p 2 TM ; x 2 BL1; Gx �j TM g;where �x = 
k � : : : � 
1 � Fx.2. Exact values of n-widths on classes F1Let n 2 N and�n := f � j � = (�1; : : : ; �n); 0 � �1 � � � � � �n < 2� g:For � 2 �2n puth�(t) := (�1)j ; t 2 [�j�1; �j); j = 1; : : : ; 2n+ 1;where �0 := 0, �2n+1 := 2�. Denote by hn(t) the function h�(t) when �j =(j � 1)�=n, j = 1; : : : ; 2n.We will suppouse conditions (3) are ful�lled. Set� := min1�j�k �j ; m := � supfj j j 2Mg; M 6= ;;�1; M = ;:Lemma 2. For all n > maxfm; 2�=�g the inequalityinfp2TM�2�2n; Gh� �j TM kp+�h�k1 = k�hnk1holds.Proof. SetG�(t) = p2�� Xj2Z exp�� (t� 2�j)22�2 � = 1 + 2 1Xj=1 e�j2�2=2 cos jt; � > 0:The following properties of the kernel G� are well known (see [7]): for all f 2 L1G� � f are analytic functions and furthermorelim�!0 kG� � fk1 = kfk1; Z(G� � f) � S(f);where Z(g) is the number of zeros of a function g with regard to multiplicities.Suppose that there exist p 2 TM and � 2 �2n for which Gh� �j TM andkp+�h�k1 < k�hnk1:



ON EXECT VALUES OF n-WIDTHS 5Then for su�ciently small �kp� +��h�k1 < k��hnk1;where p� = G� � p 2 TM , ��x = G� � �x. In view of properties of the convolutionand operator F we have(4) P�=n(��hn) = ��(P�=nhn) = ��(�hn) = ���hn:Hence it follows the existence of the points 0 � t1 < : : : < t2n < 2� such that(5) (��hn)(tj ) = "(�1)jk��hnk1; j = 1; : : : ; 2n;where " = 1 or �1. Thus for any � 2 T(6) 2n � S(P�(��hn)� p� � ��h�) = S(��(P�hn)� p� � ��h�):If for some � h� = P�hn, then2n � S(P�(��hn)� p� � ��h�) = S(p) � 2m < 2n:Thus for all � P�hn 6= h�.From the fact that cs(
j) 6= 0, s =2 Mj it follows the existence of trigonometricpolynomials pj 2 TMj , j = 0; : : : ; k for whichp� +��h� = pk +
k � (pk�1 + : : : +
1 �G� � (p0 + Fh�) : : : ):Set fj := pj +
j � (pj�1 + : : :+
1 �G� � (p0 + Fh�) : : : ); j = 1; : : : ; k;gj := 
j � : : : � 
1 �G� � Fhn; j = 1; : : : ; k;f0 := G� � (p0 + Fh�); g0 := G� � Fhn;�j := kfjk1kgjk1 ; j = 0; : : : ; k � 1; � := max0�j�k�1�j :Let us prove that �0 � 1. Assume the contrary. Then by the analogy with theprevious arguments (see (4){(6)) it can be shown that for all � 2 TS(P�g0 � f0) � 2n:Having choosed � = ��1, we have2n � S(G� � F (P�hn) �G� � (p0 + Fh�)) � S(F (P�hn)� p0 � Fh�)� S(hn(�+ �)� h�(�)) � 2(n � 1):Thus it is proved that � � 1. Let � = �s, 0 � s � k� 1. Choose � 2 T so that thedi�erence P�gs � ��1s fs



6 K. YU. OSIPENKOhas a multiple zero. By the analogy with equalities (4), we obtain(7) P�=ngj = �gj:Hence it follows that dist(P�gj � ��1s fj ) � 2�n < �:Consequently by virtue of properties of kernels 
j as s > 0 we have(8) 2n � S(P�gk � ��1s fk) � : : : � S(P�gs � ��1s fs) < Z2(P�gs � ��1s fs)� S(P�gs�1 � ��1s fs�1) � : : : � S(P�g0 � ��1s f0)� S(F (P�hn)� ��1s (p0 + Fh�)):If �s > 1, then in view of property (2) of operators from the set CVD(M0;M;G)there exists a function h� 2 BL1 such that kh�k1 < 1, Gh� �j TM and ��1s Fh� =Fh�. For �s = 1 set h� = h�. ThusS(F (P�hn) � ��1s (p0 + Fh�)) � S(hn(� + �) � h�(�)) � 2nwhat contradicts with (8). If s = 0, then inequalities (8) are replaced with thefollowing ones2n � S(P�gk � ��10 fk) � : : : � S(P�g0 � ��10 f0) < Z2(P�g0 � ��10 f0)� S(F (P�hn)� ��1s (p0 + Fh�)):Thus it is proved that kp+�h�k1 � k�hnk1:From the equality P�=nGhn = �Ghnit follows that Ghn is a 2�=n-periodic function. Therefore Ghn �j TM . �Set Tn := T[�n;n]\Zaj(f) := 1� ZT f(t) cos jt dt; j = 0; 1; : : : ;bj(f) := 1� ZT f(t) sin jt dt; j = 1; 2; : : : ;I2n�1(f) := (a0(f); a1(f); b1(f); : : : ; an�1(f); bn�1(f)):In what follows we shall assume that for k = 0 F (BL1) � C(T) and, moreover,the operator F is continuous as an operator acting from the subset BL1 of thespace L1 into C(T) (i.e., kFxm � Fxk1 ! 0 as kxm � xk1 ! 0).



ON EXECT VALUES OF n-WIDTHS 7Lemma 3. For all n > maxfm; 2�=�g there exists a linear operator L:T2n�1 !Tn�1 for which supf2F1 kf � L(I2n�1(f))k1 = k�hnk1:Proof. First we prove that(9) supf2F1I2n�1(f)=0kfk1 = k�hnk1:Assume that there exists a function f 2 F1 for which I2n�1(f) = 0 and kfk1 >k�hnk1. Let f = �x, x 2 BL1. Then for su�ciently small � k��xk1 >k��hnk1. Having leaved the same notation for gj as in Lemma 2, setfj := 
j � : : : � 
1 �G� � Fx; j = 1; : : : ; k; f0 := G� � Fx;�j := kfjk1kgjk1 ; j = 0; : : : ; k; � := max0�j�k �j :Let � = �s, 0 � s � k. By virtue of our assumptions �s > 1. Choose � 2 T so thatthe di�erence P�gs � ��1s fshas a multiple zero. From equalities (7) it follows that the functions gj have theperiod 2�=n. Consequently, I2n�1(gj) = 0. ThusI2n�1(P�gs � ��1s fs) = 0:Since the trigonometric system is the Chebyshev system hence it follows (see [1,p. 41]) that S(P�gs � ��1s fs) � 2n:By virtue of the fact that dist(P�gs � ��1s fs) � 2�=n < � we have2n � S(P�gs � ��1s fs) < Z2(P�gs � ��1s fs) � S(P�gs�1 � ��1s fs�1)� : : : � S(P�g0 � ��1s f0) � S(F (P�hn)� ��1s Fx)� S(hn(�+ �)� x�(�)) = 2n;where x� is de�ned by equality ��1s Fx = Fx�, kx�k1 < 1, Gx� �j TM . The obtainedcontradiction proves equality (9).Now consider the problem of optimal recovery of the value f(0) on the class F1with the information I2n�1(f). From general results concerning the problems ofoptimal recovery the existence of linear optimal method of recovery follows, thatis, there exist such numbers �0; �1; �1; : : : ; �n�1; �n�1 that(10) supf2F1 jf(0)��0a0(f)�n�1Xj=1(�jaj (f)+�jbj(f))j = supf2F1I2n�1(f)=0 kfk1 = k�hnk1:



8 K. YU. OSIPENKOLet g be an arbitrary function from F1. For t 2 T put ft(� ) := g(t + � ). Sinceft 2 F1, a0(ft) = a0(g), andaj(ft) = aj(g) cos jt+ bj(g) sin jt;bj(ft) = �aj(g) sin jt+ bj (g) cos jt; j = 1; 2; : : : ;upon puttingL(I2n�1(g)) := �0a0(g)+ n�1Xj=1�(�j cos jt� �j sin jt)aj(g) + (�j sin jt+ �j cos jt)bj (g)�;from (10) for � = 0 we �ndjg(t)� L(I2n�1(g))j � k�hnk1:In view of arbitrariness of t 2 Twe havekg � L(I2n�1(g))k1 � k�hnk1:Since for g = �hn the last inequality turns into equality the conclusion of thelemma is proved. �We now prove the basic result of the paper.Theorem 4. For all n > maxfm; 2�=�g the equalitiesd2n(F1; L1) = �2n(F1; L1) = d2n(F1; L1) = i2n(F1; L1)= d2n�1(F1; L1) = �2n�1(F1; L1) = d2n�1(F1; L1) = i2n�1(F1; L1)= k�hnk1hold. Moreover, the Fourier coe�cients a0(f); a1(f); b1(f); : : : ; an�1(f); bn�1(f)are optimal functionals for the values i2n�1 and i2n.Proof. First we prove the lower bound for the Kolmogorov and Gel'fand 2n-widths.Set S2n := ( � = (�1; : : : ; �2n+1) 2 R2n+1 ��� 2n+1Xs=1 j�sj = 2�) ;�0(�) := 0; �j(�) := jXs=1 j�sj; j = 1; : : : ; 2n+ 1:For � 2 S2n de�ne the functionsg�(t) := sign �j ; �j�1(�) � t < �j(�); j = 1; : : : ; 2n+ 1; f� := �g�:



ON EXECT VALUES OF n-WIDTHS 9Let X2n be an arbitrary 2n-dimensional subspace of Lq, 1 < q <1. Assume thatX2n = spanff1; : : : ; f2ng and f�� := 2nXj=1 �j(�)fjis the best approximation to f� by the subspace X2n. SetE(F1;X2n) := supf2F1 infg2X2n kf � gkq:If TM 6� X2n, then E(F1;X2n) =1. We will assume that TM � X2n, dimTM = r,and ffjgrj=1 is a basis of TM . Put IM (f) := faj(f); bj (f)gj2M\Z+ . Consider themapping �(�) := (IM (Gg�); �r+1(�); : : : ; �2n(�)):The mapping �:S2n ! R2n is a continuous and odd one. Therefore by the BorsukTheorem there exists �� 2 S2n for which �(��) = 0. We haveE(F1;X2n) � infg2X2n kf�� � gkq = k�g�� � rXj=1 �j(��)fjkq� infp2TM�2�2n; Gh� �j TM kp+�h�kq:Consequently d2n(F1; Lq) � infp2TM�2�2n; Gh� �j TM kp+�h�kq:By passing to the limit as q !1 and using Lemma 2, we �ndd2n(F1; L1) � infp2TM�2�2n; Gh� �j TM kp+�h�k1 = k�hnk1:Now let us obtain the lower bound for the Gel'fand 2n-widths. Let Y be somenormed linear space containing F1 andX2n = f f 2 Y j hlj ; fi = 0; j = 1; : : : ; 2n; lj 2 Y � g:Consider the mapping J :TM ! R2n de�ned by the equalityJp = (l1p; : : : ; l2np):If KerJ 6= 0, then supf2F1\X2n kfk1 =1:



10 K. YU. OSIPENKOIf KerJ = 0, then among the functionals l1; : : : ; l2n there exist r linearly indepen-dent functionals on TM . Assume that l1; : : : ; lr are such functionals. Then theother functionals can be represented on TM in the formhlj ; pi = rXs=1 cjshls; pi; j = r + 1; : : : ; 2n:Set Lj := lj � rXs=1 cjsls; j = r + 1; : : : ; 2nand consider the mapping�(�) := (IM (Gf�); hLr+1; f�i; : : : ; hL2n; f�i):By the Borsuk Theorem there exists �� 2 S2n for which �(��) = 0. Since KerJ = 0there exists a trigonometric polynomial p� 2 TM such thathls; p�i = �hls; f�� i; s = 1; : : : ; r:For r + 1 � j � 2n we havehlj ; p� + f�� i = �Lj + rXs=1 cjsls; p� + f��� = rXs=1 cjshls; p� + f�� i = 0:Consequently p� + f�� 2 X2n:Thus supf2F1\X2n kfk1 � kp� + f��k1 � infp2TM�2�2n; Gh� �j TM kp+�h�k1 = k�hnk1:Hence d2n(F1; L1) � k�hnk1:From inequalities (2) and monotonicity of n-widths it follows that it remainsto estimate the upper bound for �2n�1(F1; L1). This estimation follows fromLemma 3. � 3. Examples of classes F1For 
 2 L1 setWM (
) := fp +
 � x j p 2 TM ; x 2 BL1; x �j TM g:We shall call a function 
 2 L1 a cyclic variation diminishing kernel if for allx 2 L1 such that x �j TM , x 6� 0, and for all p 2 TM the inequalityS(p+
 � x) � S(x)



ON EXECT VALUES OF n-WIDTHS 11holds. It is evident that operator Fx = 
 � x belongs to the class CVD(M;M; Id)(Id is identical operator). ConsequentlyWM (
) = F1(�;M);where �x = Fx (k = 0, G = Id).ForM = ; cyclic variation diminishing kernels are called cyclic variation dimin-ishing density functions or CVD kernels. For classes of functions represented inthe form of convolution with such type kernels Theorem 4 was proved by A. Pinkus[1, p. 179].Let Q(D) be a di�erential polynomial with �xed real coe�cientsQ(D) = DdegQ + degQ�1Xm=0 amDm; D = ddx:Set 
Q(t) := Xm2ZQ(im)6=0 eimtQ(im) :Let M = fm 2Zj Q(im) = 0 g:Then WM (
Q) =WQ1 := f f j f (degQ�1) abs. cont.; kQ(D)fk1 � 1 g:Denote by h(Q) the maximum of imaginary part of zeros of the polynomial Q.From the papers [8] and [3] it follows that when h(Q) � 1=2 the kernel 
Q is acyclyc variation diminishing kernel (in this case M = 0 if Q(0) = 0 and M = ; ifQ(0) 6= 0). Thus for h(Q) � 1=2 Theorem 4 holds for the class WQ1.If Q(D) = Dr, then the classWQ1 coincides with the Sobolev classW r1 for whichthe exact values of studying n-widths were obtained by V. M. Tikhomirov [9].There exist polynomials Q whose zeros are arbitrary far from the real axis butthe corresponding kernels 
Q are cyclic variation diminishing kernels. For example,for(11) Q(D) = D(D2 + 12) : : : (D2 +m2)the kernel 
Q are a cyclic variation diminishing kernel with M = f0;�1; : : :�mg(see [10]).In the general case a polynomial Q(D) can be represented in the form(12) Q(D) = kYj=1Qj(D);whereQj(D) are di�erential polynomials with real coe�cients such that degQj � 2.From the paper [3] it follows that 
Qj 2 K(Mj ; �j), where(13) Mj = fm 2Zj Qj (im) = 0 g; �j = �=h(Qj ):



12 K. YU. OSIPENKOTherefore, upon putting �x = 
Qk � : : : � 
Q1 � x, we haveWQ1 = F1(�;M); M = k[j=1Mj (F = G = Id; M0 = ;):Denote by h�1 (H�1) the class of real-valued 2�-periodic functions analyticallycontinued in the strip S� := fz 2 C j j Im zj < �g and satisfy in it the conditionjRe f(z)j � 1 (jf(z)j � 1):It is well known (see, for example, [11, p. 269]) thath�1 = fK� � x j x 2 BL1 g;where K�(t) = 1 + 2 1Xm=1 cosmtchm� :The kernel K� is a CVD-kernel (see [1, p. 62]). Thush�1 =W;(K�):Consider now the class H�1. In view of the fact that the function w = 4� arctg zconformally maps the interior of the unit disk on the strip jRewj < 1 we havef(�) 2 H�1 () 4� arctg f(�) 2 h�1:Therefore H�1 = f'(K� � x) j x 2 BL1 g;where '(w) = tg �4w. Since sign'(w) = '(signw) for w 2 [�1; 1] it is not di�cultto see that the operator Fx = '(K� � x)belongs to the set CVD(;;M;F ) for all M . ThusH�1 = F1(�; ;); �x = Fx (k = 0; G = F ):For a di�erential polynomial with real coe�cients Q(D) denote by hQ;�1 (HQ;�1 )the class of real-valued 2�-periodic functions analytically continued in the strip S�and satisfy the conditionQ(D)f 2 h�1 (Q(D)f 2 H�1):By notation (12) and (13) we havehQ;�1 = F(�1;M); HQ;�1 = F(�2;M);where �1x = 
Qk �: : :�
Q1 �K��x, �2x = 
Qk �: : :�
Q1 �'(K��x), M = Skj=1Mj(in the �rst case G = Id and in the second one G = F ).Thus from Theorem 4 it follows



ON EXECT VALUES OF n-WIDTHS 13Theorem 5. For all n > 2h(Q)d2n(W;L1) = �2n(W;L1) = d2n(W;L1) = i2n(W;L1)= d2n�1(W;L1) = �2n�1(W;L1) = d2n�1(W;L1) = i2n�1(W;L1)= 8>><>>: k
Q � hnk1; W =WQ1;k
Q �K� � hnk1; W = hQ;�1 ;k
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