ON EXACT VALUES OF »-WIDTHS FOR CLASSES DEFINED
BY CYCLIC VARIATION DIMINISHING OPERATORS

K. Yu. OSIPENKO

ABSTRACT. In the paper the unique approach to the problems of calculation of exact
values of n-widths in the uniform metric is suggested for the classes of 2m-periodic
functions defined by operators (not necessary linear) having certain oscillating prop-
erties. This approach allows to obtain exact results of n-widths both for classes of
functions represented by the convolution with cyclic variation diminishing kernels
and some classes of analytic functions which are not represented in the form of such
convolution.

INTRODUCTION

For classes of smooth periodic functions many extremal problems of approxi-
mation theory can be solved due to analysis of oscillating properties of functions
from these classes. The approach based on such analysis leaded to investigation of
classes of functions represented in the form of the convolution with cyclic variation
diminishing kernels. For such classes sufficiently general results concerning optimal
recovery, optimal quadratures formulas, n-widths, Kolmogorov inequalities, and
several others were obtained (see [1]-[3]).

However some classes of analytic functions are not represented in the form of
the convolution with cyclic variation diminishing kernels. Neveretheless for these
classes there are very closed results to the smooth case (see [4]-[6]). In this paper
for the problem of calculation exact values of n-widths the unique approach served
both as the smooth and analytic cases is suggested which based on the introduc-
tion of special class of operators (in general, nonlinear) having the cyclic variation
diminishing property.

1. BASIC DEFINITIONS

Recall definitions of some n-widths. Let A be a subset of a normed linear space
X. The Kolmogorov n-width is the number

dn(A,X) :=infsup inf ||z —1y|,

where X,, are any n-dimensional subspaces of X.
The linear n-width is the number

An(A, X) :=infinf sup ||z — P,z||,
Y P, z€A
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2 K. YU. OSIPENKO

where Y are any normed linear spaces containing A and P, are bounded linear
operators mapping Y into X, whose range is n or less.

The Gel’fand n-width is defined by following

d"(A,X) :=infinf sup ||,
Y Y zeANY ™

where Y has the same sense as in the definition of the linear n-width and Y™ are
any subsets of Y of codimension n (here it is assumed that 0 € A).
The information n-width of a set A is the number

(1) in(A,X):= inf inf  suplle — L(lha,... LL2)|x,
. YleéY* LR X z€A
Lyeeestn

where Y as above are any normed linear spaces containing A. Linear functionals
which realizes the lower bound in (1) will be called optimal functionals for the
corresponding information n-width.

Lemma 1. Let A be a centrally symmetric set containing zero. Then
@) I7(A4,X) < in(A, X) < Ag(A,X)
Proof. The inequality

in(A4,X) <A\ (4,X)

immediately follows from the definitions of the information and linear n-widths.

Let us prove the lower bound. Let ¥ D A and [4,... ,l, € Y*. For all ¢ > 0 there
exists z. € A for which lyz. = ... = {,z. = 0 and
s lellx < ey +e.
rEA
lhoe=...=l,z=0

For all £ we have

lee = £(0,..., 0)l[x + | = @e = £(0,...,0)[[x = 2[eelx.

Therefore
swplle = £(hs . la)llx > fecllx > sup flelly — e > (A, X) <.
T€A TEA
lhoe=...=l,z=0
Hence by virtue of the arbitrariness of [y ... ,l,, £, and ¢ > 0 we obtain

in(A4,X) > d"(A4,X). O

Denote by Ly, 1 < p < oo, the space of real 2r-periodic functions for which

1/p
ku:(/uwWﬁ) coo, 1<p< oo
T

||| := vraisup |z(t)| < oo, p = 0.
teT
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Set
BLy :={2 € Lo | |||l <1}.

Denote by F the set of operators F: BLo, — Lo (in general, nonlinear) for
which

(1) for all # € BLo, F(—2) = —Fu;

(2) foralla € T P,oF = F o P,, where (Pyz)(-) = 2(- + a);

(3) F is continuous operator as an operator acting from the subset B L, of the
space Ly into Ly (i.e., ||Fay — Falli — 0 as ||y, — 2|1 — 0).

For a finite, symmetric with respect to zero set M C 7Z denote by Tjs the set
of real trigonometric polynomials from span{e’**}rcnr, Tp := {0}. Let G € F and
My, M be finite, symmetric with respect to zero sets of integers. We shall denote
by CVD(My, M,G) the set of operators F' € F for which the following conditions
are hold:

(1) if @1, 2 are different functions from BL such that Gzy LTy, Gua LTy,
and p € Tar,, then

S(p+ Fay — Faz) < S(21 — 72),

where S(f) is the number of sign changes of 2x-periodic function f on the
period (about the definition of S(f) for f € L see [1, p. 41]);

(2) for all 0 < p < 1 and all @ € BL, such that ||#]lcc < 1 and Gz 1 Ty
there exists a function z, € BLy such that ||z,|le < 1, Gz, L Ty, and
pFrx = Fzx,.

(3) the set {Fx |« € BLo, Gz LT} is convex.

(4) if # € BLo, and Ga LTy, then Fa 1Ty.

The last condition is valid, for example, if G is the identical operator and F' is the
convolution one, or if G = F. These two cases are the basic ones in the examples
considered below.

For a function f € C(T) denote by dist f the maximum length of subinterval of
T on which the function f has no zeros. Set

(oot = 5= [ it = 2a(s)ds.

Denote by K(M, §) the class of kernels 2 € Ly for which for all @ € Lo, and p € Ty
such that « 1Ty, © £ 0, and dist(p + Q * 2) < § the inequality

S(p+ Q+a) < S(x)
holds, moreover, if Q * z € C*(T), then
Zy(p+ Qxax) < S(x),

where Zs is the number of zeros of a function when multiple zeros are counted twice
and intervals on which a function identically equals zero are discarded. We shall
also suppouse that ¢;(Q) # 0, j ¢ M, where

¢;(f) = %/Tf(t)e_m dt, j7=0,%1,....



4 K. YU. OSIPENKO

Suppouse that
(3) Q €K(M;,8;), j=1,....k, FeCVDMy,MG), M=]|]M,.

We shall interest in exact values of n-widths for classes
Foo i =Fo @, M) :={p+®x|p&€ Ty, v € BLoo, Gz 1Ty},
where ®o = Qp * ... % Qq * Fa.

2. EXACT VALUES OF n-WIDTHS ON CLASSES Fo

Let n € N and
Op:=1{0]0=(0,....0,), 0<8 <-- <8, <2r}.
For n € ©4, put
hy(t) == (=1), t€ni—1,m), j=1,....2n+1,

where 19 := 0, n2p41 = 27. Denote by h,(t) the function h,(¢) when n; =
(J—Dr/n,3=1,....2n.
We will suppouse conditions (3) are fulfilled. Set

m._{sup{jljeM}, M #40,
-1, M = 0.

0 := min Jj,
1<j<k

Lemma 2. For all n > max{m,2x/d} the inequality

inf 1P+ @hyllec = |®hnl|oo
PETM
7)€®2n7 Ghn J-TM

holds.
Proof. Set

V2 t—2mj)? N .
Go(t) = Tﬂ- exp (—%) =1+ ZZ A cosjt, o> 0.
= i=1

The following properties of the kernel G, are well known (see [7]): for all f € L
G, * f are analytic functions and furthermore

i |G # flloe = /e Z(Go s f) < 50D,

where Z(g) is the number of zeros of a function g with regard to multiplicities.
Suppose that there exist p € Tyy and n € Oy, for which Gh, LTy and

1P+ ®hylloc < [[@hn]oc-
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Then for sufficiently small o
1P5 + Pohylloe < |Pohin[oo,

where p, = G, *xp € Ty, Pox = G, * Px. In view of properties of the convolution
and operator F' we have

(4) Prn(@ohn) = @o(Prjnhn) = ®o(—hpn) = —Pohy.
Hence it follows the existence of the points 0 < t; < ... < t2, < 27 such that
(5) (@rha)(t)) = (1Y |@hallocs G =1,... .20,
where ¢ = 1 or —1. Thus for any o € T
(6) 2n < S(Po(®shpn) — po — Pohy) = S(Po(Pohn) — po — Bohy).
If for some a h, = Pyhy, then
2n < S(Po(®ohpn) — po — Pohy) = S(p) < 2m < 2n.

Thus for all o Pyh, # hy.
From the fact that ¢,(Q;) # 0, s ¢ M, it follows the existence of trigonometric
polynomials p; € Tay;, j = 0,... ,k for which

Po+ Pohy = pr + Qi * (pr—1 + ... + Q1 x Gy x (po + Fhy)...).

Set

fi=pi+Qi*(pj-1+...+ QU *Go*(po+ Fhy)...), j=1,...,k,
g =Q*... W *xGo*xFhy, 7=1,...k,
fo =G5 * (po + Fhy), go := G, * Fhy,
_ il

M il T T T R

Let us prove that pg > 1. Assume the contrary. Then by the analogy with the
previous arguments (see (4)—(6)) it can be shown that for all a € T

S(Pago - fO) 2 2n.
Having choosed o« = —n1, we have

21 < S(Gy % F(Pahy) — Go * (po + Fhy)) < S(F(Pahn) — po — Fhy)
< S(ha(-+ ) = hy()) < 2(n — 1),

Thus it is proved that > 1. Let p = ps, 0 < s <k — 1. Choose a € T so that the
difference

Pags - /~L3_1f3
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has a multiple zero. By the analogy with equalities (4), we obtain

(7) Pringi = —9;.

Hence it follows that

2
dist(Pag; — p'f;) < % <6

Consequently by virtue of properties of kernels {; as s > 0 we have

(8) 2n < S(Pagk _M;Ifk) <...< S(Pags _/~Ls_1f8) < Z2(Pags _/~Ls_1f8)
S S(Pags—l _/~L3_1f3—1) S S S(Pago _/~Ls_1f0)
< S(F(Puhn) — p5 " (po 4+ Fhy)).

If s > 1, then in view of property (2) of operators from the set CVD(My, M, G)
there exists a function h* € BLy, such that ||h*||ec < 1, Gh* LTy and p; ' Fh, =
Fh*. For ps =1 set h* = h,. Thus

S(F(Paha) = 7 (po + Fhy)) < S(hal- +0) = 1*(-)) < 2n

what contradicts with (8). If s = 0, then inequalities (8) are replaced with the
following ones

2n < S(Pagi — 115 " fr) < ... < S(Pago — g fo) < Z2(Pago — 115 fo)
< S(F(Pahn) = 5 (po + Fhy)).

Thus it is proved that
1P+ @hylloc = |®hn]|oo-

From the equality
Py Ghy = —Ghy,

it follows that Gh,, is a 27 /n-periodic function. Therefore Gh,, 1 Ty. O

Set Ty := ﬁ—n,n]ﬁZ

a;(f) ::%/Tf(t)cosjtdt, j=0,1,...,

1
bi(f) = —/f(t)sinjtdt, j=1,2,...,
TJr
Ion1(f) = (ao(f), a1 (f),01(f),- - s an—1(f), bu-1(f)).
In what follows we shall assume that for k = 0 F(BL.) C C(T) and, moreover,

the operator F' is continuous as an operator acting from the subset BL., of the
space Ly into C(T) (i.e., ||[Fam — Fallcc — 0 as ||@y — x|l1 — 0).
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Lemma 3. For all n > max{m,2r/d} there exists a linear operator L£: T?*"~1 —
T..—1 for which

sup || = L(Lzn—1(f))l[oc = |®hn]|oo-
fEF

Proof. First we prove that

(9) sup [ flloo = ([ @ -
FeF

Inp—1(f)=0

Assume that there exists a function f € F for which I,—1(f) = 0 and || f]|ec >
|®hy||co. Let f = ®x, v € BLs. Then for sufficiently small o ||®Py2]oc >

|®shn||co. Having leaved the same notation for ¢; as in Lemma 2, set

= x xGoxFoe, 7=1,...F, fo =G4 * Fr,
_ Ifilleo

]‘ .

= =0,... .k = .
gl /0 M Y

Let v = v,, 0 < s < k. By virtue of our assumptions vs > 1. Choose a € T so that
the difference

Pags _Vs_lfs

has a multiple zero. From equalities (7) it follows that the functions ¢g; have the
period 27 /n. Consequently, I3,—1(g;) = 0. Thus

IZn—l(Pags - Vs_lfs) =0.

Since the trigonometric system is the Chebyshev system hence it follows (see [1,
p. 41]) that
S(Pags - Vs_lfs) 2 2n.

By virtue of the fact that dist(Pags — v;'fs) < 27/n < § we have

2n < S(Pags - Vs_lfs) < ZZ(Pags - Vs_lfS) < S(Pags—l - Vs_lfs_l)
< ... < S(Pago — vt fo) < S(F(Pyhy) — vy ' Fx)
< S(hn(-+0) — () = 2n.

where z* is defined by equality v; ' Fa = Fa* | ||2*||oc < 1, Ga* LTas. The obtained
contradiction proves equality (9).

Now consider the problem of optimal recovery of the value f(0) on the class Fo
with the information Iy,_1(f). From general results concerning the problems of
optimal recovery the existence of linear optimal method of recovery follows, that
is, there exist such numbers ag, ay, 31,... ,an—1, Fn—1 that

J€F

[ee]

Inp—1(f)=0

(10)  sup If(O)—aoao(f)—Z(Oéjaj(f)Jrﬁjbj(f))l = [Flloe = 1®72n][ oo
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Let g be an arbitrary function from F.. For t € T put fi(r) := g(t + 7). Since
ft € Fooy ao(ft) = ao(g), and

aj(fe) = aj(g)cosjt+bj(g)sin jt,

b;(fi) = —aj(g)sinjt + bj(g) cos jt, j=1,2,...,
upon putting
L(Izn-1(g)) = agao(g)
n—1
+ Z <(ij cos jt — [ sin jt)a;j(g) + (a; sinjt + f; cosjt)bj(g)>7
Jj=1

from (10) for 7 = 0 we find

l9(t) = L{Lzn-1(9)] < [[hn ]| oo-

In view of arbitrariness of ¢+ € T we have

lg = L{Tzn-1(9)loc < [[®hn oo

Since for g = ®h, the last inequality turns into equality the conclusion of the
lemma is proved. O

We now prove the basic result of the paper.

Theorem 4. For all n > max{m,2x/§} the equalities

dZn(fooaLoo) - /\Zn(fooaLoo) - dzn(FmaLoo) - ZZn(FooaLoo)
- d2n—1(Fm7Loo) - AZn—l(fooaLoo) - dzn_l(FmaLm) - i2n—1(fooaLoo)
= ||®hn[oe

hold. Moreover, the Fourier coefficients ao(f),a1(f),b1(f),... san—1(f),bn=1(f)

are optimal functionals for the values 19,_1 and ig,.

Proof. First we prove the lower bound for the Kolmogorov and Gel’fand 2n-widths.
Set

2n+1
S = {52 (&1, angr) € RPMH ‘ Z €s| = 27 }7
s=1

J
W€ =0, H(E) =Yl j=1. 2L
s=1

For £ € S?™ define the functions

ge(t) :=signé&;, 71,1(§) <t<m(€), j=1,....,2n+1, fe = @ge.
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Let X5, be an arbitrary 2n-dimensional subspace of L,, 1 < ¢ < co. Assume that
Xop, = span{fi,..., fon} and

2n

fE=) 0O

=1
is the best approximation to f¢ by the subspace X»,. Set

E(Foo,X3n) := sup inf |[[f — gl

Ty & Xan, then E(Fo, X2p,) = 00. We will assume that Ty C Xop,, dim Ty = 7,
and {f;}i_; is a basis of Tay. Put In(f) := {a;(f),b;(f)}jemnz, . Consider the
mapping

a(§) == (In(Gye)s argr(§),- - s azn(§)).

The mapping a: S2"* — R2" is a continuous and odd one. Therefore by the Borsuk
Theorem there exists £* € S for which a(£*) = 0. We have

E(Foo, Xon) > uf I fer = gllg = Bger — > a;(€°) £l

> inf Dh, |,
= wf o lp e $hy
7)€®2n7 Ghn J-7~M
Consequently
d2n(fwan) > inf Hp + (I)han'
PETM

7)€®2n7 Ghn J-7~M
By passing to the limit as ¢ — oo and using Lemma 2, we find

dZn(}—omLOO) > inf Hp—l_ CI)hnHOO = HCI)hnHOO
ETm
7)€®2n7 Ghn J-7~M

Now let us obtain the lower bound for the Gel'fand 2n-widths. Let Y be some
normed linear space containing F,, and

X ={feY |({f)=0j=1,....2n, [; €Y*}.
Consider the mapping J: Ty — R?" defined by the equality

Jp = (llp, . 7l2np)-

If Ker J # 0, then

sup || f]lec = o0.
fEFwnX
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If Ker J = 0, then among the functionals [y, ... ,l3, there exist r linearly indepen-
dent functionals on Ty;. Assume that [q,...,[. are such functionals. Then the
other functionals can be represented on Tjs in the form

T

<ljap>:Zst<ls,p>, ]:T—I-l,,Zn

s=1

Set

T

L; ::lj—Zstls, j=r4+1,...,2n

s=1

and consider the mapping

Oz(f) = (IM(Gf€)7<LT’+17f€>7"' 7<L2n7f€>)'

By the Borsuk Theorem there exists £* € S$?" for which a(¢*) = 0. Since Ker J =0

there exists a trigonometric polynomial p* € T3y such that

(le,p") = —(lss fer), s=1,...,m

For r +1 < j < 2n we have

T

{ljsp" + fer) = <LJ‘ + Y cislep™ + f€*> =Y cislle,p* + fer) = 0.
s=1

s=1
Consequently
Thus
sup  |[fllee 2 [IP" + ferlloo 2 inf 1P+ ®hylloc = |®hn]|co-
X2n PETM

o]

N€O2y, Ghy LTy

Hence

A" (Focs Loo) = [[®hn]| -

From inequalities (2) and monotonicity of n-widths it follows that it remains
to estimate the upper bound for Ag,—1(Fs, Loo). This estimation follows from
Lemma 3. 0O

3. EXAMPLES OF CLASSES Fo

For Q2 € Ly set
Wy (Q) :={p+Q+a|p&€Ty, v € BLoo, v LTy }.

We shall call a function 2 € Ly a cyclic variation diminishing kernel if for all
x € Lo such that @ 17y, v # 0, and for all p € Ty the inequality

S(p+Qxx) < S(x)
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holds. It is evident that operator Fa = § * & belongs to the class CV.D(M, M, Id)
(Id is identical operator). Consequently

Wi (Q) = Foo (D, M),
where &2 = Fa (k =0, G = Id).

For M = {) cyclic variation diminishing kernels are called cyclic variation dimin-
wshing density functions or CV D kernels. For classes of functions represented in
the form of convolution with such type kernels Theorem 4 was proved by A. Pinkus
[1, p. 179].

Let Q(D) be a differential polynomial with fixed real coefficients

deg Q—1

d
D) = Dies@ mD™, D= —.

Q(D) + n;) am D", -

Set 4
Q (t) - Z ezmt
GV L Qlim)
Q(im)#0
Let
M={meZ|Qim)=0}.

Then

War(0) = W2 = { £ | F452=D abs. cont., [ Q(D)flloc <11}

Denote by h(Q) the maximum of imaginary part of zeros of the polynomial Q.
From the papers [8] and [3] it follows that when h(Q)) < 1/2 the kernel Qg is a
cyclyc variation diminishing kernel (in this case M = 0 if Q(0) = 0 and M = () if
Q(0) # 0). Thus for h(Q) < 1/2 Theorem 4 holds for the class W2.

If Q(D) = D", then the class W2 coincides with the Sobolev class W for which
the exact values of studying n-widths were obtained by V. M. Tikhomirov [9].

There exist polynomials ) whose zeros are arbitrary far from the real axis but
the corresponding kernels €2 are cyclic variation diminishing kernels. For example,
for

(11) Q(D) = D(D? +1?)...(D* +m?)
the kernel Q¢ are a cyclic variation diminishing kernel with M = {0,+1,... £ m}
(see [10]).

In the general case a polynomial Q(D) can be represented in the form

(12) QD) = [T ;D)

where @;(D) are differential polynomials with real coefficients such that deg @; < 2.
From the paper [3] it follows that Qgq, € K(M;,d;), where

(13) Mj={meZ|Q;tm)=0}, & =r/h(Q;).
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Therefore, upon putting ®x = Qg, *...* g, * x, we have
k
We=Fo(® M), M=|JM (F=G=Id, My=0).
j=1

Denote by h2, (HZ) the class of real-valued 27-periodic functions analytically
continued in the strip Sg := {# € C| |Imz| < 8} and satisfy in it the condition

[Ref(z)] <1 ([f(2)] £ 1),
It is well known (see, for example, [11, p. 269]) that
WS, = (Ky+r|eeBla),

where
cosmt

chmp’

Ks(t)=1+2)

m=1

The kernel K3 is a C'V D-kernel (see [1, p. 62]). Thus
he = Wy(Kjp).
Consider now the class H7 . In view of the fact that the function w = = arctg =
conformally maps the interior of the unit disk on the strip |Rew| < 1 we 7l:-lave
f()e H — %arctg f() e n..

Therefore
HY ={¢(Kg*z) |z € BLxy},
where p(w) = tg Zw. Since sign p(w) = p(signw) for w € [—1, 1] it is not difficult

to see that the operator
Fo = p(Kg*x)

belongs to the set CVD(0, M, F) for all M. Thus
HS = F (®,0), @z=Fzx (k=0,G=F).

For a differential polynomial with real coefficients Q(D) denote by h%? (HZ:F)
the class of real-valued 27r-periodic functions analytically continued in the strip S
and satisfy the condition

QD)f €hl,  (QD)f € HY).
By notation (12) and (13) we have
hgoﬁzf(q)lvM)v HoQoﬁ:f((I)%M)v

where @12 = Qg *.. . *Qg, *Kg*xx, Pox = Qg, *...xQg, xp(Kg*x), M = Ule M;
(in the first case G = Id and in the second one G = F).

Thus from Theorem 4 it follows
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Theorem 5. For all n > 2h(Q)

don(W, Loo) = Xan(W, Loo) = d*™(W, Loo) = tan(W, Loo)
= don1(W,Loo) = Aan_1(W, Loo) = d*" N (W, Loo) = t2n—1(W, Loo)
192G * hn | oo, W=wg,
= 190 * K5 * hpl|oo, W = h5,
120 * o(Kp * hn)lloc, W =HZ.

Moreover, the Fourier coefficients ao(f),a1(f),01(f),-.. yan—1(f),bn=1(f) are op-

timal functionals for the values 19,_1 and 19,,.

For the class W2 (for the Kolmogorov, linear, and Gel'fand n-widths) the con-
clusion of this theorem was obtained in the paper [3]. The even n-widths of the
class H2P for Q(D) = D" were obtained in the paper [6].

The idea of the construction of a general theory for smooth and analytic cases
was expressed many times by V. M. Tikhomirov whom the author is obliged for
helpful discussions.
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