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ON BEST HARMONIC SYNTHESIS OF PERIODIC FUNCTIONS

G. G. Magaril-Il’yaev and K. Yu. Osipenko UDC 517.984.64

Abstract. In this paper, we construct optimal methods of recovery of periodic functions from a known
(exact or inexact) finite family of their Fourier coefficients. The proposed approach to constructing recovery
methods is compared with the approach based on the Tikhonov regularization method.

Introduction

This paper is concerned with construction of best (optimal) methods of recovery of functions from
their approximately given Fourier coefficients. Such methods are built simultaneously for an entire class
of functions, and this is what determines their important specific feature—they do not use, in general,
all the Fourier coefficients available for measurement (exact or inexact), and those which are used are
somehow “smoothed.” This is in full agreement with what happens in engineering practice related to
digital signal processing: high frequencies are thrown away, and low ones are filtered in some way.

The approach presented here to the definition of an optimal method goes back conceptually to
A. N. Kolmogorov’s works on finding a best subspace among all the subspaces of fixed dimension ap-
proximating a given class of functions. This approach, which might have been entitled “the Kolmogorov
regularization,” is a certain alternative to the regularization in the sense of A. N. Tikhonov, which deals
with individual objects, does not take into account concrete values of the measurement error (which may
well not be close to zero), and is not concerned with the problem of best methods.

The paper is structured as follows. We start by considering one example of Tikhonov regularization
in the problem of recovery of a function at a point from inexactly given Fourier coefficients. This example
is taken from one classical graduate calculus text [1]. We put forward our own variant of the solution
of this problem, which resides in the Kolmogorov regularization. We give exact solutions for a number
of optimal recovery problems for functions and their derivatives in the mean square metric from a finite
family of Fourier coefficients given exactly or inexactly. Similar problems were studied in [2–8], viz. the
problem of optimal recovery of functions (periodic or defined on R

d) and of operators of these functions
from inexactly given spectral data.

1. On One Problem of Recovery of a Function from Inexactly Given Fourier Coefficients

In [1], the following problem was addressed. Let a 2π-periodic function x(·) be such that its Fourier
series

x(t) =
a0
2

+
∞∑

k=1

(ak cos kt + bk sin kt)

converges to x(·) uniformly, where

ak = ak

(
x(·)) =

1
π

π∫

−π

x(t) cos kt dt, k = 0, 1, 2, . . . ,

bk = bk

(
x(·)) =

1
π

π∫

−π

x(t) sin kt dt, k = 1, 2, . . . .

(1)
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Suppose that, instead of the exact values of Fourier coefficients of a function x(·), we are given their
approximate values ãk and b̃k such that

(a0 − ã0)2

2
+

∞∑

k=1

(
(ak − ãk)2 + (bk − b̃k)2

) ≤ δ2,

where δ > 0. The problem is to recover the value of the function x(·) at some point τ from this information.
It is easily proved that, however rapidly the given series may converge to x(τ) and however small

δ > 0 may be, it is possible to specify numbers ãk and b̃k such that the sum of the series

ã0
2

+
∞∑

k=1

(ãk cos kt + b̃k sin kt)

differs from x(τ) by any preassigned number (or even diverge).
The following approach is proposed for solving the recovery problem of a function x(·) at a point τ .

As an approximate value of x(τ) one considers the series

ã0
2

+
∞∑

k=1

1
1 + αk2

(ãk cos kτ + b̃k sin kτ),

where α is of the same order of smallness as δ (for example, one may take α = δ). It is shown that
if x(·) ∈ L2(T) and if x(·) is continuous at τ , then this series converges to x(τ) as α → 0 (here and
henceforth, T will denote the closed interval [−π, π] with the endpoints identified).

The concluding remark of [1] states that “should we, with the aim at getting the fullest overall picture
about a physical process of interest, unboundedly refine the accuracy of an instrument, or should the
right approach to this objective rather involve development of such mathematical methods for analyzing
measurements that are capable, within the available measurement accuracy of frequency characteristics,
of extracting the maximum amount of information about the process under study” (emphasis added)?

The approach that we call Kolmogorov regularization does require some a priori information about
the function x(·). Consequently, under this approach, one has the benefit of taking into account the given
measurement accuracy and may pose the problem of finding the best method among all possible ones.

Now we proceed to the precise statement. We let W1
2 (T) denote the space of absolutely continuous

2π-periodic functions x(·) for which the derivative ẋ(·) lies in L2(T). The norm of a function x(·) in L2(T)
is defined as follows:

‖x(·)‖L2(T) =
(

1
π

π∫

−π

|x(t)|2 dt

)1/2

.

If x(·) ∈ W1
2 (T), then at each point t ∈ T the function x(·) can be expanded into a Fourier series, which

converges to x(·) uniformly.
In the space W1

2 (T) we consider the class of functions

W 1
2 (T) =

{
x(·) ∈ W1

2 (T) : ‖ẋ(·)‖L2(T) ≤ 1
}
.

As usual, l2 denotes the space of square summable real sequences with the inner product

〈y, y′〉 =
a0a

′
0

2
+

∞∑

k=1

yky
′
k,

where y = (y0, y1, . . .), y′ = (y′0, y′1, . . .); the corresponding norm is as follows:

‖y‖l2 =
(

a20
2

+
∞∑

k=1

y2k

)1/2

.
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If a function x(·) belongs to the space W1
2 (T), then its Fourier coefficients are known to lie in l2.

Let F : W1
2 (T) → l2 be the Fourier transform of x(·); i.e., Fx(·) =

(
a0

(
x(·)), a1

(
x(·)), b1

(
x(·)), . . .) is the

sequence of Fourier coefficients of a function x(·).
Assume that about each function x(·) ∈ W 1

2 (T) we know approximate values of its Fourier coefficients.
Namely, we know the vector

y = (ã0, ã1, b̃1 . . .) ∈ l2

such that
‖Fx(·) − y‖l2 ≤ δ,

where δ > 0.
Any recovery method x(τ) is assumed to associate with a vector (observation) y a number, which in

accordance with this method is some approximation to x(τ). So, any method is some function ϕ : l2 → R.
By the error of a given method we shall understand the quantity

e(W 1
2 (T), F, δ, ϕ) = sup

x(·)∈W 1
2 (T), y∈l2

‖Fx(·)−y‖l2≤δ

|x(τ) − ϕ(y)|.

We shall be concerned both with the quantity

E(W 1
2 (T), F, δ) = inf

ϕ : l2→R

e(W 1
2 (T), F, δ, ϕ)

known as the optimal recovery error, and with the optimal recovery method ϕ̂ at which the infimum is
attained; i.e.,

E(W 1
2 (T), F, δ) = e(W 1

2 (T), F, δ, ϕ̂).

Theorem 1. For any δ > 0,

E(W 1
2 (T), F, δ) = (â + δ2)

( ∞∑

k=1

k2

(1 + âk2)2

)1/2

,

where â = â(δ) is a unique solution of the equation

1
2

+
∞∑

k=1

1
(1 + ak2)2

∞∑
k=1

k2

(1 + ak2)2

= δ2.

Moreover, the method

ϕ̂(y) =
ã0
2

+
∞∑

k=1

1
1 + âk2

(ãk cos kτ + b̃k sin kτ)

is optimal.

As is evident from the statement of the theorem, for any δ > 0 the regularization method of [1] is
optimal in the class W 1

2 (T) with α = â(δ). Moreover, the minimal estimation error x(τ) is given by the
quantity E(W 1

2 (T), F, δ), which tends to zero as δ → 0.
We also note that the information about a function x(·) ∈ W 1

2 (T) that we are given a vector y ∈ l2
such that ‖Fx(·) − y‖l2 ≤ δ is equivalent, by the Parseval equality, to the information that we are given
a function y(·) ∈ L2(T) such that ‖x(·) − y(·)‖L2(T) ≤ δ.

Proof of Theorem 1. We first claim that the optimal recovery error E(W 1
2 (T), F, δ) is not smaller than

the value of the problem
x(τ) → max, x(·) ∈ W 1

2 (T), ‖Fx(·)‖l2 ≤ δ, (2)
i.e., not smaller than the supremum of the functional to be maximized under given constraints.
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Indeed, let ϕ : l2 → R be an arbitrary recovery method, x(·) ∈ W 1
2 (T) (and hence −x(·) ∈ W 1

2 (T)),
and let ‖Fx(·)‖l2 ≤ δ. We have

2x(τ) ≤ ∣∣x(τ) − ϕ(0) − (−x(τ) − ϕ(0)
)∣∣ ≤ |x(τ) − ϕ(0)| + | − x(τ) − ϕ(0)|

≤ 2 sup
x(·)∈W 1

2 (T),
‖Fx(·)‖l2≤δ

|x(τ) − ϕ(0)| ≤ 2 sup
x(·)∈W 1

2 (T), y∈l2,
‖Fx(·)−y‖l2≤δ

|x(τ) − ϕ(y)| = 2e(W 1
2 (T), F, δ, ϕ).

The result required is obtained by taking, first, the supremum on the left over all such x(·), and second,
on the right over all methods ϕ.

Now let us find the value of problem (2) (thereby obtaining a lower estimate for the optimal recovery
error). To this aim, it is convenient to rewrite the problem in terms of the Fourier coefficients. If
x(·) ∈ W1

2 (T), then, by the Parseval equality,

‖x(·)‖2L2(T)
= ‖Fx(·)‖2l2 =

a20
2

+
∞∑

k=1

(a2k + b2k),

‖ẋ(·)‖2L2(T)
= ‖Fẋ(·)‖2l2 =

∞∑

k=1

k2(a2k + b2k),

where ak = ak

(
x(·)), k ∈ Z+, and bk = bk

(
x(·)), k ∈ N. Now problem (2) can be rewritten as

a0
2

+
∞∑

k=1

(ak cos kτ + bk sin kτ) → max,
∞∑

k=1

k2(a2k + b2k) ≤ 1,

a20
2

+
∞∑

k=1

(a2k + b2k) ≤ δ2.

(3)

Note that problem (3) qua a problem on the l2-sequence (a0, a1, b1, . . .) (in what follows, we denote such
sequence by {ak, bk}) for which the sequence {kak, kbk} also lies in l2 (the space of such sequences will be
denoted by l12) is equivalent to problem (2) in the sense that if {ak, bk} ∈ l12, then there exists a unique
function x(·) ∈ W1

2 (T) for which {ak, bk} is the sequence of its Fourier coefficients. The constraints in (3)
are carried over into the constraints in (2), and x(τ) is the functional to be maximized in (3).

If we find a solution of problem (3), then we shall find its value. This is a convex problem. Let
us employ sufficiency conditions for existence of a solution. The Lagrange function of problem (3) is as
follows:

L({ak, bk}, λ1, λ2) = −a0
2

−
∞∑

k=1

(ak cos kτ + bk sin kτ) + λ1

∞∑

k=1

k2(a2k + b2k) + λ2

(
a20
2

+
∞∑

k=1

(a2k + b2k)
)

.

If we find an admissible sequence {âk, b̂k} for (3) (i.e., a sequence for which the constraints are satisfied)
and Lagrange multipliers λ̂1 ≥ 0 and λ̂2 ≥ 0 such that

(a) min
{ak,bk}∈l12

L({ak, bk}, λ̂1, λ̂2) = L({âk, b̂k}, λ̂1, λ̂2),

(b) λ̂1

( ∞∑

k=1

k2(â2k + b̂2k) − 1
)

= 0, λ̂2

(
â20
2

+
∞∑

k=1

(â2k + b̂2k) − δ2
)

= 0,

then {âk, b̂k} is a solution of problem (3).
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This can be easily checked. Indeed, for any admissible sequence {ak, bk}, using conditions (a) and (b),
we have that

− a0
2

−
∞∑

k=1

(ak cos kτ + bk sin kτ) ≥ −a0
2

−
∞∑

k=1

(ak cos kτ + bk sin kτ)

+ λ̂1

( ∞∑

k=1

k2(a2k + b2k) − 1
)

+ λ̂2

(
a20
2

+
∞∑

k=1

(a2k + b2k) − δ2
)

= L({ak, bk}, λ̂1, λ̂2) − λ̂1 − λ̂2δ
2 ≥ L({âk, b̂k}, λ̂1, λ̂2) − λ̂1 − λ̂2δ

2

=
â0
2

−
∞∑

k=1

(âk cos kτ + b̂k sin kτ) + λ̂1

( ∞∑

k+1

k2(â2k + b̂2k) − 1
)

+ λ̂2

(
â20
2

+
∞∑

k=1

(â2k + b̂2k) − δ2
)

= − â0
2

−
∞∑

k=1

(âk cos kτ + b̂k sin kτ),

i.e., {âk, b̂k} is a solution of problem (3).
Proceeding heuristically, we next try to understand what form should a sequence {âk, b̂k} and La-

grange multipliers λ̂1 ≥ 0 and λ̂2 ≥ 0 have if they satisfy the conditions (a) and (b). The Lagrange
function qua a function of a sequence {ak, bk} is smooth, the derivative of this function vanishing at
a point {âk, b̂k}, as is seen from condition (a). Formally calculating this derivative, we see that any
sequence {ak, bk} must satisfy the following identity:

−a0
2

−
∞∑

k=1

(ak cos kτ + bk sin kτ) + 2λ̂1

∞∑

k=1

k2(âkak + b̂kbk) + 2λ̂2

(
â0a0

2
+

∞∑

k=1

(âkak + b̂kbk)
)

= 0. (4)

Hence, taking sequences of the form (1, 0, . . .), (0, 1, 0, . . .), . . . , we obtain that

â0 =
1

2λ̂2

, âk =
cos kτ

2(λ̂1k2 + λ̂2)
, b̂k =

sin kτ

2(λ̂1k2 + λ̂2)
, k ∈ N. (5)

If we assume that λ̂1 > 0 and λ̂2 > 0, then, in order to satisfy condition (b), it is necessary that the
bracketed expressions in this condition vanish; i.e.,

∞∑

k=1

k2(â2k + b̂2k) =
1
4

∞∑

k=1

k2

(λ̂1k2 + λ̂2)2
= 1

and
â20
2

+
∞∑

k=1

(â2k + b̂2k) =
1
4

(
1

2λ̂2
2

+
∞∑

k=1

1

(λ̂1k2 + λ̂2)2

)
= δ2.

Denoting a = λ̂1/λ̂2 and dividing the second equation by the first one gives

1
2

+
∞∑

k=1

1
(1 + ak2)2

∞∑
k=1

k2

(1 + ak2)2

= δ2. (6)

We shall make the above argument rigorous. The expression on the left of (6) defines a function f
(of variable a) on (0,∞). We claim that, for any δ > 0, there exists a unique â = â(δ) > 0 such that
f(â) = δ2. To this aim, we first check that lim

a→0
f(a) = 0 and lim

a→+∞ f(a) = +∞.
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Let ε > 0 and n ≥ 6 be such that 1/n < ε. Since, clearly,

lim
a→0

(
1
2

+
n∑

k=1

1
(1 + ak2)2

)
=

1
2

+ n < 2n + 1

and

lim
a→0

n∑

k=1

k2

(1 + ak2)2
=

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
> n(2n + 1),

there exists an a0 > 0 such that, for all 0 < a < a0,

1
2

+
n∑

k=1

1
(1 + ak2)2

< 2n + 1,
n∑

k=1

k2

(1 + ak2)2
> n(2n + 1).

It follows that
1
2

+
n∑

k=1

1
(1 + ak2)2

<
1
n

n∑

k=1

k2

(1 + ak2)2
.

Next, it is clear that
∞∑

k=n+1

1
(1 + ak2)2

<
1
n2

∞∑

k=n+1

k2

(1 + ak2)2
<

1
n

∞∑

k=n+1

k2

(1 + ak2)2
.

Adding these inequalities and dividing one by the other, we see that, for all 0 < a < a0,

f(a) =

1
2

+
∞∑

k=1

1
(1 + ak2)2

∞∑
k=1

k2

(1 + ak2)2

<
1
n

< ε,

i.e., lim
a→0

f(a) = 0.

On the other hand, for any a > 0,

f(a) =

a2

2
+

∞∑
k=1

1
(a−1 + k2)2

∞∑
k=1

k2

(a−1 + k2)2

>
a2

2
∞∑

k=1

1
k2

,

which immediately implies that lim
a→+∞ f(a) = +∞.

To prove the uniqueness we need to show that f is strictly increasing on (0,∞). To this aim it suffices
to show that f is strictly increasing on any interval [a0, a1], where 0 < a0 < a1 < ∞. On each such
interval the standard conditions for term-by-term differentiation of the series involved in the definition
of f are satisfied, and hence, for any a ∈ [a0, a1],

f ′(a) =
2g(a)

( ∞∑
k=1

k2

(1 + ak2)2
)2

,

where

g(a) = −
∞∑

k=1

k2

(1 + ak2)3

∞∑

k=1

k2

(1 + ak2)2
+

(
1
2

+
∞∑

k=1

1
(1 + ak2)2

) ∞∑

k=1

k4

(1 + ak2)3

> −
∞∑

k=1

k2

(1 + ak2)3

∞∑

k=1

k2

(1 + ak2)2
+

∞∑

k=1

1
(1 + ak2)2

∞∑

k=1

k4

(1 + ak2)3
= −

∞∑

j,k=1

αjk +
∞∑

j,k=1

βjk
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and

αjk =
j2k2

(1 + aj2)3(1 + ak2)2
, βjk =

k4

(1 + aj2)2(1 + ak2)3
.

Hence,

−αjk + βkj =
j2(j2 − k2)

(1 + aj2)3(1 + ak2)2
, αkj + βjk =

k2(k2 − j2)
(1 + ak2)3(1 + aj2)2

,

and now

−αjk + βkj − αkj + βjk =
j2 − k2

(1 + aj2)2(1 + ak2)2

(
j2

1 + aj2
− k2

1 + ak2

)
=

(j2 − k2)2

(1 + aj2)3(1 + ak2)3
≥ 0.

This proves that g(a) > 0, and so f ′(a) > 0 for any a ∈ (0,∞), completing the proof of uniqueness.
Let δ > 0, and let â = â(δ) be a unique solution of the equation f(a) = δ2. Further, let

λ̂2 = λ̂2(â) =
1
2

( ∞∑

k=1

k2

(1 + âk2)2

)1/2

,

λ̂1 = λ̂1(â) = âλ̂2, and let â0, âk, b̂k, k ∈ N, be defined by (5) with these λ̂1 and λ̂2.
It is readily seen that the sequence {âk, b̂k} lies in l12. Next, by elementary calculation,

∞∑

k=1

k2(â2k + b̂2k) = 1,
â20
2

+
∞∑

k=1

(â2k + b̂2k) = δ2, (7)

proving that {âk, b̂k} is admissible for problem (3).
The second and third sums in (4) are the inner products of, respectively, the sequences {kâk, kb̂k},

{kak, kbk} and {âk, b̂k}, {ak, bk}, and hence are well defined. Substituting λ̂1, λ̂2 and â0, âk, b̂k, k ∈ N,
into (4), we see, after elementary calculation, that this equality is satisfied for any sequence {ak, bk} ∈ l12.

Let a function x̂(·) ∈ W1
2 (T) be such that {âk, b̂k} is the sequence of its Fourier coefficients. Using (4),

it follows by the Parseval equality that, for any function x(·) ∈ W1
2 (T),

x(τ) = 2λ̂1〈F ˙̂x(·), F ẋ(·)〉 + 2λ̂2〈Fx̂(·), Fx(·)〉. (8)

Substituting here the function x̂(·) for x(·), we see that

x̂(τ) = (â + δ2)
( ∞∑

k=1

k2

(1 + âk2)2

)1/2

.

The quantity on the left is the value of the functional to be maximized in problem (2) on the function
x̂(·), and hence the value of the problem itself is not smaller than this quantity.

As shown above, the optimal recovery error E(W 1
2 (T), F, δ) is not smaller than the value of prob-

lem (2), and hence,

E(W 1
2 (T), F, δ) ≥ (â + δ2)

( ∞∑

k=1

k2

(1 + âk2)2

)1/2

. (9)

Note that the function x̂(·) is actually a solution of problem (2), but this will play no role here and
so we do not dwell on this.

Now let us estimate from above the quantity E(W 1
2 (T), F, δ) and check that the method ϕ̂ from the

statement of the theorem is optimal. To estimate the error of this method we consider x(·) ∈ W 1
2 (T)

and y = (ã0, ã1, b̃1, . . .) ∈ l2 such that ‖Fx(·) − y‖l2 ≤ δ. It is easily verified that ϕ̂(y) = 2λ̂2〈Fx̂(·), y〉.
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By (8), and using the Cauchy–Schwarz inequality, the Parseval equality, equalities (7), and conditions on
x(·) and y, we have that

|x(τ) − ϕ̂(y)| = |2λ̂1〈F ˙̂x(·), F ẋ(·)〉 + 2λ̂2〈Fx̂(·), Fx(·) − y〉|
≤ 2λ̂1‖F ˙̂x(·)‖l2‖Fẋ(·)‖l2 + 2λ̂2‖Fx̂(·)‖l2‖Fx(·) − y‖l2

≤ 2λ̂2â + 2λ̂2δ
2 = (â + δ2)

( ∞∑

k=1

k2

(1 + âk2)2

)1/2

.

Hence, by (9) the method ϕ̂ is optimal, giving the desired expression for the quantity E(W 1
2 (T), F, δ).

2. Optimal Recovery of Functions and Their Derivatives
from Finitely Many Fourier Coefficients

In the previous section, we were given approximate values of Fourier coefficients in the l2-metric.
From practical considerations, it is more natural when there a possibility to approximately measure each
Fourier coefficients of a function from a certain finite family of coefficients. In this section, we shall be
concerned with this setting, and the function and its derivatives will be recovered not at a point, but
rather “entirely” in the metric of L2(T). This gives rise to an interesting phenomenon that not all the
approximate Fourier coefficients are used by the optimal recovery method. In order to demonstrate that
this phenomenon is related not only to the presence of errors in input data, we first consider the case
where we are given a finite family of exactly measured Fourier coefficients.

2.1. Recovery in the Mean-Square Metric from Exact Values of Fourier Coefficients. Assume
that n is natural. We let Wn

2 (T) denote the space of 2π-periodic functions x(·) for which the (n − 1)th
derivative is absolutely continuous and x(n)(·) ∈ L2(T). In the space Wn

2 (T), we consider the class of
functions

Wn
2 (T) = {x(·) ∈ Wn

2 (T) | ‖x(n)(·)‖L2(T) ≤ 1}.
We pose the following problem. Let A ⊂ Z+ = {0, 1, 2, . . .}, and let B ⊂ N = {1, 2, . . .} be finite sets

(of which one may possibly be empty). Assume that about each function x(·) ∈ Wn
2 (T) we know its Fourier

coefficients {ak}k∈A and {bk}k∈B; i.e., corresponding to x(·) there is a tuple FA,Bx(·) = ({ak}k∈A, {bk}b∈B)
of N numbers, where N = cardA + cardB. How can we best recover functions from Wn

2 (T) and their
rth derivatives, 1 ≤ r ≤ n − 1, in the L2(T)-metric from this information? We proceed as follows. Any
candidate method ϕ for recovering x(r)(·) (0 ≤ r ≤ n − 1) from the tuple FA,Bx(·) should associate
a function ϕ

(
FA,Bx(·))(·) ∈ L2(T) with this tuple; i.e., ϕ is a mapping from R

N into L2(T).
By the error of a method ϕ we understand the quantity

e(Dr, Wn
2 (T), FA,B, ϕ) = sup

x(·)∈Wn
2 (T)

∥∥x(r)(·) − ϕ
(
FA,Bx(·))(·)∥∥

L2(T)

(here Dr is the rth order differential operator and D0 is the identity operator), which is the quantity
delivering the maximum deviation on the class Wn

2 (T) of the function x(r)(·) from the function, which
“recovers” this function in accordance with this method.

As above, we will be interested in the method with smallest error. To be more precise, we are
concerned with the quantity

E(Dr, Wn
2 (T), FA,B) = inf

ϕ : RN→L2(T)
e(Dr, Wn

2 (T), FA,B, ϕ),

which will be called the optimal recovery error ; the methods on which the infimum is attained will be
called optimal recovery methods; i.e.,

E(Dr, Wn
2 (T), FA,B) = e(Dr, Wn

2 (T), FA,B, ϕ̂).
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With the sets A and B we will associate the number

k0 = k0(A, B) = min
{

min
k∈N\A

k, min
k∈N\B

k
}

.

Also let χr be the function on Z+ that takes value 1 at zero and vanishes at other points.

Theorem 2. If 0 /∈ A, then
E(D0, Wn

2 (T), FA,B) = +∞.

If 1 ≤ r ≤ n − 1 or r = 0 and 0 ∈ A, then

E(Dr, Wn
2 (T), FA,B) =

1
kn−r
0

.

Moreover, for any finite tuples of numbers α = {αk}k∈A and β = {βk}k∈B such that

|αk − 1| ≤
(

k

k0

)n−r

, k ∈ A, |βk − 1| ≤
(

k

k0

)n−r

, k ∈ B,

the method

ϕ̂α,β

(
FA,Bx(·))(t) =

a0
2

χr +
∑

k∈A\{0}
krαkak cos

(
kt +

πr

2

)
+

∑

k∈B

krβkbk sin
(
kt +

πr

2

)

is optimal.

A few comments on this result may be made.

(1) The condition E(D0, Wn
2 (T), FA,B) = +∞ for 0 /∈ A means that by no means can one recover

functions from the class Wn
2 (T), and so the method is optimal in this sense.

(2) All optimal methods are linear and there exists an optimal method using the Fourier coefficients
only with numbers up to k0 − 1 (it is easily verified that for k ≥ k0 the coefficients αk and βk

may be taken to be zero). Moreover, if k0 = 1 and r ≥ 1, then the optimal method is zero.
(3) Among optimal methods there are “natural” ones, when αk = βk = 1, i.e., in the Fourier series

we substitute the known Fourier coefficients.

Proof of Theorem 2. Let 0 ≤ r ≤ n − 1. As in the proof of Theorem 1, we start with estimating from
below the quantity E(Dr, Wn

2 (T), FA,B). A similar argument shows that

E(Dr, Wn
2 (T), FA,B) ≥ sup

x(·)∈Wn
2 (T),

FA,Bx(·)=0

‖x(r)(·)‖L2(T). (10)

Let r = 0. If 0 /∈ A, then any constant function x(·) satisfies the conditions x(·) ∈ Wn
2 (T) and

FA,Bx(·) = 0, whereas the quantity ‖x(·)‖L2(T) can be made arbitrary large. Now E(D0, Wn
2 (T), FA,B) =

+∞ by (10).
Now assume that 0 ∈ A. Setting k0 = min{ k ∈ N \ A}, we consider the function t �→ x0(t) =

k−n
0 cos k0t. It is easily checked that x0(·) ∈ Wn

2 (T), FA,Bx0(·) = 0, and ‖x0(·)‖L2(T) = k−n
0 . If now we

set k0 = min{k ∈ N \ B}, then one needs to deal with the function t �→ k−n
0 sin k0t, which has similar

properties. Consequently, the right-hand side of (10) is not smaller than k−n
0 , and hence,

E(D0, Wn
2 (T), FA,B) ≥ 1

kn
0

. (11)

Now we estimate from above the quantity E(D0, Wn
2 (T), FA,B) and check the optimality of the meth-

ods ϕ̂α,β from the statement of the theorem.
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Let x(·) ∈ Wn
2 (T). Using the Parseval equality, we see that

∥∥x(·) − ϕα,β

(
FA,Bx(·))(·)∥∥2

L2(T)

=
∑

k∈A\{0}
(1 − αk)2a2k +

∑

k∈B

(1 − βk)2b2k +
∑

k∈N\A
a2k +

∑

k∈N\B
b2k

≤ max
k∈A\{0}

(1 − αk)2

k2n

∑

k∈A\{0}
k2na2k + max

k∈B

(1 − βk)2

k2n

∑

k∈B

k2nb2k +
1

k2n
0

∑

k∈N\A
k2na2k +

1
k2n
0

∑

k∈N\B
k2nb2k.

Taking into account the conditions on the vectors α and β, we see that, for any method ϕ̂α,β with such
α and β,

∥∥x(·) − ϕ̂α,β

(
FA,Bx(·))(·)∥∥2

L2(T)
≤ 1

k2n
0

∑

k∈N
k2n(a2k + b2k) ≤

1
k2n
0

for all x(·) ∈ Wn
2 (T). Hence,

e(D0, Wn
2 (T), FA,B, ϕ̂α,β) ≤ 1

kn
0

.

Comparing this with estimate (11), we obtain the conclusion of the theorem for the case r = 0 and 0 ∈ A.
Now assume that 1 ≤ r ≤ n − 1. Considering the same functions t �→ k−n

0 cos k0t and t �→ k−n
0 sin k0t

as before, we see that the quantity on the right in (10) is not smaller than k
−(n−r)
0 , and hence,

E(Dr, Wn
2 (T), FA,B) ≥ 1

kn−r
0

. (12)

The error of the method ϕ̂α,β is estimated in a precisely similarly way as for the case r = 0.

2.2. Recovery in the Mean-Square Metric from Fourier Coefficients Given with Some Error.
Here we are concerned with the problem of recovery of a function and its derivatives on the same class
Wn

2 (T), with the same sets A and B, but instead of the exact values of the Fourier coefficients ak =
ak(x(·)), k ∈ A, and bk = bk(x(·)), k ∈ B, of a function x(·) ∈ Wn

2 (T), we will be given only their
approximate values; i.e., the numbers {ãk}k∈A and {b̃k}k∈B such that

|ak − ãk| ≤ δ, k ∈ A, |bk − b̃k| ≤ δ, k ∈ B.

This can be written in a more convenient form. Let lN∞ be the space R
N with norm ‖y‖∞ = max

0≤j≤N−1
|yj |,

where y = (y0, y1, . . . , yN−1).
We shall assume, for definiteness, that

FA,Bx(·) = (ak0 , ak1 , . . . , akN1
, bl1 , . . . , blN2

),

where k0 < · · · < kN1 and l1 < · · · < lN2 , N1 + 1 + N2 = N . Now we may say that we know a vector
y = (y0, . . . , yN ) such that ‖FA,Bx(·) − y‖∞ ≤ δ.

By the error of a method ϕ : RN → L2(T) in this case we shall mean the quantity

e(Dr, Wn
2 (T), FA,B, δ, ϕ) = sup

x(·)∈Wn
2 (T), y∈lN∞,

‖FA,Bx(·)−y‖∞≤δ

‖x(r)(·) − ϕ(y)(·)‖L2(T).

The optimal recovery error is, by definition, the quantity

E(Dr, Wn
2 (T), FA,B, δ) = inf

ϕ : lN∞→L2(T)
e(Dr, Wn

2 (T), FA,B, δ, ϕ).

We continue to call a method ϕ̂ on which the infimum is attained an optimal recovery method.
We set

p̂ = p̂(δ) = max
{

p ∈ Z+ : 2δ2
p∑

k=0

k2n < 1
}
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and p0 = p0(A, B, δ) = min{p̂, k0− 1}, where k0 = k0(A, B) and the function χr on Z+ are defined before
Theorem 2.

Theorem 3. If 0 /∈ A, then
E(D0, Wn

2 (T), FA,B, δ) = +∞.

If 1 ≤ r ≤ n − 1 or r = 0 and 0 ∈ A, then

E(Dr, Wn
2 (T), FA,B, δ) =

√√√√ 1
(p0 + 1)2(n−r)

+
δ2

2
χr + 2δ2

p0∑

k=1

k2r

(
1 −

(
k

p0 + 1

)2(n−r)
)

and the method

ϕ̂({ãk}k∈A, {b̃k}k∈B)(t) =
ã0
2

χr +
p0∑

k=1

(
1 −

(
k

p0 + 1

)2(n−r)
)

kr

(
ãk cos

(
kt +

πr

2

)
+ b̃k sin

(
kt +

πr

2

))

is optimal.

It is worth noting that if p̂ ≤ k0 − 1, then the Fourier coefficients with numbers exceeding p̂ can be
neglected—they are not used in the optimal method.

We also note that for δ = 0 we formally obtain the value of the optimal recovery error from the
preceding theorem, because in this way it is natural to assume that p0 = k0 − 1. Moreover, for δ = 0 we
obtain one of the methods indicated in Theorem 2: this is indeed so when

αk = βk = 1 −
(

k

k0

)2(n−r)

, k = 1, . . . , k0 − 1,

and the remaining αk and βk are zero.

Proof of Theorem 3. Let 0 ≤ r ≤ n − 1. Using the same trick as in the proof of Theorem 1, one easily
shows that the optimal recovery error is estimated as follows:

E(Dr, Wn
2 (T), FA,B, δ) ≥ sup

x(·)∈Wn
2 (T),

‖FA,Bx(·)‖∞≤δ

‖x(r)(·)‖L2(T). (13)

Let r = 0. We note that if 0 /∈ A, then any constant function x(·) satisfies the conditions x(·) ∈ Wn
2 (T)

and ‖FA,Bx(·)‖∞ ≤ δ (FA,Bx(·) is the zero vector). By doing so, the right-hand side in (13) can be made
arbitrarily large; i.e., E(D0, Wn

2 (T), FA,B, δ) = +∞.
Now let 0 ∈ A. In order to find the value of the quantity on the right-hand side in (13), we consider

the following extremal problem:

‖x(·)‖L2(T) → max, x(·) ∈ Wn
2 (T), ‖FA,Bx(·)‖∞ ≤ δ. (14)

By finding a solution to this problem, we shall find the value of the above quantity.
Passing to the Fourier coefficients and using the Parseval equality, we find that the squared value of

problem (14) is equal to the value of the problem

a20
2

+
∞∑

k=1

(a2k + b2k) → max,
∞∑

k=1

k2n(a2k + b2k) ≤ 1,

a2k ≤ δ2, k ∈ A, b2k ≤ δ2, k ∈ B,

(15)

where ak = ak(x(·)), k ∈ Z+, and bk = bk(x(·)), k ∈ N, and x(·) ∈ Wn
2 (T).

In analogy with the above procedure for problems (2) and (3), we note that problem (15) qua a problem
on l2-sequences {ak, bk} such that the sequence {knak, k

nbk} also lies in l2 (we denote the set of all such
sequences by ln2 ) is equivalent to problem (14) with ‖x(·)‖L2(T) replaced by ‖x(·)‖2L2(T)

.

125



Problem (15) is convex, its Lagrange function is as follows:

L({ak, bk}, λ, {λk}k∈A, {μk}k∈B) = −a0
2

−
∞∑

k=1

(a2k + b2k) + λ

∞∑

k=1

k2n(a2k + b2k) +
∑

k∈A

λka
2
k +

∑

k∈B

μkb
2
k.

If there exist an admissible sequence {âk, b̂k} for problem (15) and Lagrange multipliers λ̂ ≥ 0, λ̂k ≥ 0,
k ∈ A, and μ̂k ≥ 0, k ∈ B, such that

(a) min
{ak,bk}∈ln2

L({ak, bk}, λ̂, {λ̂k}k∈A, {μ̂k}k∈B) = L({âk, b̂k}, λ̂, {λ̂k}k∈A, {μ̂k}k∈B),

(b) λ̂

( ∞∑

k=1

k2n(â2k + b̂2k) − 1
)

= 0, λ̂k(â2k − δ2) = 0, k ∈ A, μ̂k(b̂2k − δ2) = 0, k ∈ B,

then {âk, b̂k} is a solution of problem (15). This can be verified by exactly similar arguments as in the
previous section.

Now we need to produce an admissible sequence {âk, b̂k} for problem (15) and Lagrange multipliers
λ̂ ≥ 0, λ̂k ≥ 0, k ∈ A, and μ̂k ≥ 0, k ∈ B, to satisfy conditions (a) and (b).

Let p0 = p̂ < k0 − 1. We set âk = δ, k = 0, 1, . . . , p0, b̂k = δ, k = 1, . . . , p0, âp0+1 = b̂p0+1 = α, where

α =

√
1
2
− δ2

p0∑
k=0

k2n

(p0 + 1)n

and âk = b̂k = 0 if k > p0 + 1.
We claim that α ≤ δ. Indeed, if it were not so, then we would have

1 − 2δ2
p0∑

k=0

k2n > 2δ2(p0 + 1)2n

or, what is the same,

2δ2
p0+1∑

k=0

k2n < 1,

which contradicts the equality p0 = p̂.
Further,

∞∑

k=1

k2n(â2k + b̂2k) = 2δ2
p0∑

k=1

k2n +
1 − 2δ2

p0∑
k=0

k2n

(p0 + 1)2n
(p0 + 1)2n = 1,

and so {âk, b̂k} is an admissible sequence for problem (15).
Now let p0 = k0 − 1. If k0 = min k∈N\A k (k0 = min

k∈N\B
k), then we set âk = δ, k = 0, 1, . . . , p0, b̂k = δ,

k = 1, . . . , p0, âp0+1 =
√

2α (b̂p0+1 =
√

2α), and the remaining coefficients are zero.
That these sequences are admissible for problem (15) is verified by the same argument as in the

previous case, but now p0 + 1 = k0 /∈ A, and hence the inequality |√2α| ≤ δ is no longer supposed to
hold.

We set λ̂ = (p0 + 1)−2n, λ̂0 = 1/2, λ̂k = μ̂k = 1 − λ̂k2n, k = 1, . . . , p0, and λ̂k = μ̂k = 0, k > p0. It
is easily checked that all the Lagrange multipliers are nonnegative. Let us see whether condition (a) is
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satisfied. Given any sequences {ak, bk} ∈ ln2 , we have

L({ak, bk}, λ̂, {λ̂k}k∈A, {μ̂k}k∈B)

=
p0∑

k=1

(−1 + λ̂k2n + λ̂k)a2k +
p0∑

k=1

(−1 + λ̂k2n + μ̂k)b2k +
∞∑

k=p0+1

(−1 + λ̂k2n)(a2k + b2k)

=
∞∑

k=p0+1

(−1 + λ̂k2n)(a2k + b2k) =
∞∑

k=p0+2

(−1 + λ̂k2n)(a2k + b2k).

The expression on the right is nonnegative by the definition of λ̂. On the other hand, the above sequences
{âk, b̂k} are zero starting from some number p0 + 2, and hence the Lagrange function vanishes on these
sequences. This verifies condition (a).

Condition (b) is verified by elementary arguments.
Thus, the sequences {âk, b̂k} are solutions of problem (15) (in the corresponding cases), and the value

of this problem in each of these cases is as follows:

â20
2

+
∞∑

k=1

(â2k + b̂2k) =
δ2

2
+ 2δ2p0 +

1 − 2δ2
p0∑

k=1

k2n

(p0 + 1)2n
=

δ2

2
+ λ̂ + 2δ2

p0∑

k=1

(1− λ̂k2n) = λ̂ + δ2
(

λ̂0 + 2
p0∑

k=1

λ̂k

)
.

Hence, in view of (13),

E(D0, Wn
2 (T), FA,B, δ) ≥

√√√√λ̂ + δ2
(

λ̂0 + 2
p0∑

k=1

λ̂k

)
. (16)

We now handle the upper estimate and next proceed to construct optimal methods. If a method
ϕ : RN → L2(T) is optimal, this means that its error, i.e., the value of the problem

‖x(·) − ϕ(y)(·)‖L2(T) → max, ‖FA,Bx(·) − y‖∞ ≤ δ, y ∈ lN∞, x(·) ∈ Wn
2 (T), (17)

is equal to E(D0, Wn
2 (T), FA,B, δ).

With each tuples α = (α1, . . . , αp0) and β = (β1, . . . , βp0) we associate the method ϕα,β : RN → L2(T)
defined by

ϕα,β(y)(t) =
y0
2

+
p0∑

k=1

(αkyk cos kt + βkyN1+k sin kt),

where y = (y0, y1, . . . , yN−1). We shall seek optimal methods among the methods of this form (if p0 = 0,
then the sum in the definition of the method is zero).

Passing to the Fourier coefficients and using the Parseval equality, we see that the squared value of
problem (17) for the method ϕα,β is equal to the value of the problem

(a0 − y0)2

2
+

p0∑

k=1

(
(ak − αkyk)2 + (bk − βkyN1+k)2

)
+

∞∑

k=p0+1

(a2k + b2k) → max,

y = (y0, . . . , yN−1) ∈ R
N , ‖FA,Bx(·) − y‖∞ ≤ δ,

∞∑

k=1

k2n(a2k + b2k) ≤ 1, (18)

where {ak, bk} ∈ ln2 .
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Using the Cauchy–Schwarz inequality, we estimate the terms under the first summation sign in the
functional to be maximized, taking into account that λ̂ > 0 and λ̂k > 0, k = 1, . . . , p0. Hence,

(ak −αkyk)2 =

(
1 − αk√

λ̂ kn

√
λ̂ knak +

αk√
λ̂k

√
λ̂k (ak − yk)

)2

≤
(

(1 − αk)2

λ̂k2n
+

α2
k

λ̂k

)(
λ̂k2na2k + λ̂k(ak − yk)2

)

and similarly,

(bk − βkyN1+k)2 ≤
(

(1 − βk)2

λ̂k2n
+

β2
k

λ̂k

)(
λ̂k2nb2k + λ̂k(bk − yN1+k)2

)
.

Adding these estimates and denoting

Sα,β = max
1≤k≤p0

(
(1 − αk)2

λ̂k2n
+

α2
k

λ̂k

,
(1 − βk)2

λ̂k2n
+

β2
k

λ̂k

)
,

we have that
p0∑

k=1

(
(ak − αkyk)2 + (bk − βkyN1+k)2

)

≤ Sα,β

(
λ̂

p0∑

k=1

k2n(a2k + b2k) +
p0∑

k=1

λ̂k

(
(ak − yk)2 + (bk − yN1+k)2

))

≤ Sα,β

(
λ̂

p0∑

k=1

k2n(a2k + b2k) + 2δ2
p0∑

k=1

λ̂k

)
.

Further, if k ≥ p0 + 1, then k−2n ≤ (p0 + 1)−2n = λ̂, and so
∞∑

p0+1

(a2k + b2k) =
∞∑

p0+1

1
k2n

k2n(a2k + b2k) ≤ λ̂
∞∑

p0+1

k2n(a2k + b2k).

If tuples α and β are such that Sα,β ≤ 1, then from the above estimates it follows that the functional to
be maximized in (18) is not larger than the quantity

δ2

2
+ λ̂

p0∑

k=1

k2n(a2k + b2k) + 2δ2
p0∑

k=1

λ̂k + λ̂

∞∑

p0+1

k2n(a2k + b2k) =
δ2

2
+ λ̂

∞∑

k=1

k2n(a2k + b2k) + 2δ2
p0∑

k=1

λ̂k

≤ δ2

2
+ λ̂ + 2δ2

p0∑

k=1

λ̂k = λ̂ + δ2
(

λ̂0 + 2
p0∑

k=1

λ̂k

)
,

i.e.,

e(D0, Wn
2 (T), FA,B, δ, ϕα,β) ≤

√√√√λ̂ + δ2
(

λ̂0 + 2
p0∑

k=1

λ̂k

)
.

Together with estimate (16), this means that the method ϕα,β is optimal.
We claim that there exist tuples α and β for which Sα,β ≤ 1. For each k = 1, . . . , p0, we choose

αk and βk so that they maximize the bracketed expressions in the definition of Sα,β . It is easily checked
that the minimum is attained at the points

αk = βk =
λ̂k

λ̂k + λ̂k2n
= 1 −

(
k

p0 + 1

)2n

, k = 1, . . . , p0. (19)

Now, for such α and β,

Sα,β = max
1≤k≤p0

1

λ̂k + λ̂k2n
= 1.
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Thus, if the vectors α = (α1, . . . , αp0) and β = (β1, . . . , βp0) are defined by (19), then the corresponding
method is optimal. In reference to the notation ãk and b̃k, this is precisely the method indicated in the
theorem. This completes the proof of the theorem for r = 0.

For 1 ≤ r ≤ n − 1 the scheme of the proof is the same as for the case r = 0, so we limit ourselves to
a sketch. To find the quantity on the right-hand side in (13), we consider an analogue of problem (14),
where the functional to be maximized is ‖x(r)(·)‖L2(T). In terms of the Fourier coefficients, the squared
functional assumes the form

∑
k∈N

k2r(a2k + b2k). Next we define in the natural way the Lagrange function

for the analogue of problem (15). Going further, we employ sufficient conditions for the minimum, the
corresponding Lagrange multipliers being as follows: λ̂ = (p0 + 1)−2(n−r), λ̂0 = 0 (if 0 ∈ A), λ̂k = μ̂k =
k2r − λ̂k2n, k = 1, . . . , p0, and λ̂k = μ̂k = 0, k > p0. An upper estimate for the optimal recovery error
and construction of optimal methods follow the same lines as above, the optimal methods being sought
among methods of the form

ϕα,β(y)(t) =
p0∑

k=0

kr

(
αkyk cos

(
kt +

πr

2

)
+ βkyN1+k sin

(
kt +

πr

2

))
.
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