Problems of Information Transmission, Vol. 39, No. 1, 2003, pp. 118-131. Translated from Problemy Peredachi Informatsii, No. 1, 2003, pp. .
Original Russian Text Copyright © 2008 by Magaril-Il"yaev, Osipenko, Tikhomirov.

Indefinite knowledge about an object
and accuracy of its recovery methods
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Abstract—An approach to the problem of optimal recovery of functionals and operators on
classes of functions under the conditions of infinite knowledge of functions themselves is dis-
cussed. The capabilities of this approach are demonstrated in a number of examples. In the
end of the paper a general result about optimal recovery of linear functionals is given.

1. INTRODUCTION

Many aspects of human activity are connected with the fact that a man has to judge about
objects under investigations using incomplete and/or inaccurate information about them. As a
rule, it is impossible to recover an object exactly from such information so an indefiniteness is
appeared usually in the form of some region where the object may be found. Sometimes making
more precise the input information we may approach to the object closer and closer (in this case
one may consider the object as “knowable”) but the “price” of such cognoscibility quite often turns
out excessively high.

For a long time it was assumed that the world is knowable but it is not insisted on it now
since there were found fundamental bounds of cognoscibility (in mathematical logic, in quantum
mechanics, and so on). On the other hand, if there is some information, then we want to restrict
bounds of indefiniteness at most using this information as much as possible. For this purpose some
methods of recovery of an object by the information which we have at our disposal are applied. If a
method of recovery gives the bounds for an object which coincide with its measure of indefiniteness
for a given information, then one may say about the optimality of this recovery method.

Andrei Nikolaevich Kolmogorov was interested in such problems during all his creative life and
in any case he faced with them in his scientific activity (in theory of probability, in information
theory, in theory of firing, and in many other problems). Several of quantities introduced by him
(for example, e-capacity and e-entropy) are the characteristics of measures of indefiniteness and his
results on extrapolation of stochastic processes led to appropriate optimal methods of recovery.

In this paper for a sufficiently extensive class of problems (quite natural from the application
standpoint) the notion of optimality of recovery method from various types of information is intro-
duced. This approach is demonstrated on a number of examples having an illustrative nature and
given to show a variety of problems covering by the proposed setting.

2. STATEMENT OF THE PROBLEMS

The general statement of the problems of indefiniteness and recovery discussed here is in finding
of values of a given functional or operator at some functions. We have two types of information
about these functions. One of them is “global” described the class of functions which may occur
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INDEFINITE KNOWLEDGE AND ACCURACY 119

and other is “local” (individual) connected with the characterization of an individual function.
Usually classes connected with the properties of smoothness or analyticity of included functions.
Generally the local information is in the fact that some characteristics of a function (for example,
values at some points, moments, Fourier or Taylor coefficients, Fourier transform, and so on) are
available to a researcher. This information may be given accurately or inaccurately. By these two
types of information the estimation of indefiniteness of a function or operator value is given and a
method of its recovery is constructed. We proceed now to precise statements.

Let C be a set (class) and f: C' — Z be a map where (Z,d) is a metric space. The fact that an
element belongs to the class (' is the “global” information about it. Moreover, there is the “local”
(individual) information about it which is in the fact that we know a map (in general, a multivalued
map which corresponds to inaccurate information) F': C' — Y where Y is some set. The map F is
called the information operator.

The problem is in recovering of the value f(z), x € C, by the information y € F(x) as good as
possible.

The examples are the problems of recovering of a function value at some point from it values at
other points or from Fourier coeflicients, or the problem of recovering of an integral of a function,
or its derivative at some point, or recovering of a function itself by the same or other information.

Let us explain the sense which we mean by the words “to recover as good as possible”.

Any map m: F(C) — Z is called a method of recovery. The error of such method is the quantity

dﬁCJﬂmﬁ=ecw&w)ﬂﬂ@%m@D
zeC, y z

and the error of optimal recovery (f on C' by F), which we denote by E(f,C,F),is defined as a
solution of the following extremal problem:

infe(f,C, F,m), (1)

where the infimum is taking over all maps m: F'(C) — Z. A method m for which the infimum
in (1) is attained is called an optimal method of recovery. It may occur that there is a possibility
to use various types of information, that is, we have a set of information maps F. Then by the
problem of choosing of optimal information we mean the problem of finding the value

B(f.C.F)= jnf B(f,C,F).

For the first time the problem of optimal recovery was stated by S. A. Smolyak [1] for the case
when C'is a convex balanced (that is, C'= aC for all a such that |a| = 1) subset of a linear space
X, Y is a finite-dimensional linear space, f is a linear functional on X, and F': X — Y is a linear
map. Smolyak proved that in this case there exists a linear method among optimal methods. Later
on the problems concerned with optimal recovery were intensively developed (see [2]-][7]). The
results related to the class of problems considered in the present paper may be found in [8]-[10]
where, in particular, various generalization of most examples being discussed below are given.

3. EXAMPLES

1. Recovery of a function at a point by its values at other points. Denote by
WL ([-1,1]) the class of real functions z(-) defined on the interval [~1,1] absolutely continuous
and satisfying the condition

|#'(t)] <1, for almost all ¢ € [—1,1].
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120 MAGARIL-IL’YAEV, OSIPENKO, TIKHOMIROV

Let —1 <t < ...<t, < 1. Consider the problem of optimal recovery of the value of a function
z(-) € WL ([-1,1]) at a point 7 € [—1, 1] by its values at the points ¢ = (f1,...,¢,). In accordance
with the general setting we have here C' = WL ([-1,1]), Z = R, f(z()) = 2(7), ¥ = R", and
Fr: C =Y, Fa() = (2(t1),...,z(ty)).

Any functions m: R” — R are admitted as recovery methods. The error of a given method m
is the value

e(a(r), Wo([-1, 1), Fom) = sup|a(7) — m(F())],
#()EWL([-1.1)

and the error of optimal recovery is the value

E(ac(r),W(}o([—l,l]),Fg) = inf E(x(T)vwgo([_lvl])vFﬁm)'

m: R?—R

Let us find this value and also an optimal method of recovery.

Denote by a(t) the nearest point to ¢ from the set {t1,...,¢,} (in the case when ¢ is in the
middle between ¢; and t;4; for definiteness we set a(t) =¢t;). Set

#1) = |t - a(t)]

It is obvious that z(-) € WL ([-1,1]), —2(-) € WL ([-1,1]), and Fsz(-) = Fy(—z(-)) = 0. For any

method m we have

22(r) < [2(7) = m(0)| + | = F(r) = m(0)] < 2e(x(r), Wo([-1,1]), Fy, m).

Hence
E(a(r), Wo([-1,1]), Fp) > &(7).

Let a(7) = tg, 1 < k < n. Define the method m by the equality m(y) = yi, y = (y1,---,Yn)-
Then for any function z(-) € WL ([-1,1]) we have

|2(7) = m(Fgz ()] = |o(7) = 2(te)] < 7 — 4l = 2(7).

Consequently,
Be(r), Wh([-1,1)), F) = ()
and the method
() & z(a(r))
is an optimal method of recovery.

2. Recovery of an integral of a function by its values at points. For the same class
W2 ([-1,1]) and the same information operator Fj consider now the problem of optimal recovery
of the integral

Ta(-) = /1 2 (1) dt.

-1

As before any functions m: R” — R are admitted as recovery methods. Here the problem of
optimal recovery is in finding the value

PUWLL B = o e a0 mirat)
: RPSR o(- EWl —1,1])

and an optimal method of recovery mg for which the infimum in this equality is attained.
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INDEFINITE KNOWLEDGE AND ACCURACY 121

Using for the function Z(-) the same notation as in the preceding example we obtain that for
any method m

2/ dt<‘/ t)ydt —m ‘ ‘/ ) dt — ()‘

<2 sup ‘/1 x(t) dt — m(Fz(-))|.

() eWk([-1.1]) IV -1
Thus,
1
ELWL-L ). F) > [ &) de

~1
On the other hand, putting

mo(y) = /1 y(t) dt,

-1

where ot
Y1, -1 Stg L 27
t;_ t; t;, +t;
y(t): Ui, 212‘|‘2<tS i T Z+1,2§i§n—17
_ 4
yn7 n 12—|_ T tS 17

we have for all z(-) € WL ([-1,1])

‘/ dt—mo(th())‘ ‘/1 (ac(t)—ac(oe(t)))dt‘ g/l |t—a(t)|dt:/1 F(1) dt.

-1 -1 -1

Consequently,

E(IL,WL([-1,1]), Fy) = /1 )y = D Z_: (i~ 13)* | (1= ta)?
and

/1 o(t) dt 2 Fro(Fa () = (tl Ty 1) o(th) +§ bt Zhn 1) 4 (1 - #) 2(tn)

-1

is an optimal method of recovery.

If it is possible to choose the system of points ¢ = (t1,...,t,) at which values of function
z(-) € WL ([-1,1]) will be calculated (in other words, it is possible to choose an input information),
then it is natural to choose these points so that the value E(I,WZL([-1,1]), F}) be as small as
possible. It is easy to verify that

1
inf E(Iv Wolo([_lv 1])7 FLT) =
7 n
and the optimal points (that is, the points for which the infimum is attained) are

2—1
f=—-1422

7=1,...,n.

Although the information about a function in the examples considered above was incomplete
but it was accurate. Practically any input information contains some error. Further examples are
devoted to the cases when an information about functions is given with some error.
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122 MAGARIL-IL’YAEV, OSIPENKO, TIKHOMIROV

3. Recovery of the derivative of a function by inaccurate values at other points.
Denote by W2 ([—1,1]) the set of functions x(-) defined on the interval [—1,1] for which 2'(-) €
WL ([-1,1]). Let there are known approximate values of #(—h) and x(h), 0 < h < 1, for a function
z(-) € W2([-1,1]). Tt is required to recover the value z’(0) in the optimal way. We assume that
for every function z(-) € W2 ([~1,1]) we know the values 7_; and Z; such that

where § > 0 is the error of input information. Here the information operator is the multivalued map
F, 5 associated with every function z(-) € W2 ([—1,1]) the set Fjs2(-) = {(F-1,71)} where T_
and 7 satisfy the condition (2). Consider arbitrary functions m: R? — R as methods of recovery.
The quantity

e(2'(0), Wi ([~1,1)), Fhs,m) = sup sup |2"(0) — m(Z_1,71)|

w()EWZ ([-1,1]) T_1,m1
lz(jh)—7;]<8, j=—1,1

is called the error of the given method m. We are interested in the error of optimal recovery

E@'(0), WE([~1,1]), Frs) = inf e(2'(0), W2 ([~1,1]), Ehs, m)

m: R2—=R

and in an optimal method of recovery, that is, in a method for which this infimum is attained.

Set
t2—|—<h—|—5)t o<t<1
2 2 h) - =7
(t) =
2o (e ) crgico
2 2 h) - '

It is easily verified that +2(-) € W2 ([-1,1]) and z(—h) = =6, Z(h) = §. For any method m we
have

23'(0) < 12'(0) — m(0,0)| + | — 27(0) — m(0,0)] < 2e(z’(0), W2 ([~1,1]), Fp 5, m).

Consequently,
' 2 — h ¢
B@(0). W (-1, 1) Fug) 2 #(0) = o + 7 g
Consider the method
e~ Ty — 2
_ = -\ 4
m(T_1,21) 57 (4)

Taking into account that Z; = x(jh) + §; where |§;| < 6, j = —1,1, we have

$(h) — $(—h> (Sl — (S_l

e(2'(0), W2 ([-1,1]), Fps, ) = sup sup 2'(0) — -
O WL Py = sp () - T -
z(h) —az(=h)| o
< sup 2'(0) — ‘—I——.
#(EWE,([=1,1]) 2h h

Using the equalities

h2
z(h) = z(0) + 2’ (0)h + Ml?’
h2

z(=h) =2(0) — 2" (0)h + M*?’
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INDEFINITE KNOWLEDGE AND ACCURACY 123
where My, M_; € [—1, 1], we obtain

/ z(h) —x(=h) h h
_ _n YR
'(0) 57 My = M| < 5
Thus,
/ 2 =N h 5
(@' (0), W2 (=1, 1)) g ) < o4 2.
Taking into account (3) we see that
/ 2 h 4
E(@(0), WE([=1.1]), Fhg) = 5 + 5

and the method (4) is optimal.

We may raise the question about optimization of input information by means of choosing of step
h. Simple calculations show that

. . - _
0?}321]5(96 (0), WS ([-1,1]), Fhs)

V28, §<1/2,
§+1/2, §>1/2,

moreover,

=

V28, s <12
1, §>1/2,

is the value of the step for which the minimum is attained.

4. Recovery of a function by its inaccurate Fourier coefficients. Denote by T the unit
circle realized as the interval [—7, 7| with identified endpoints. We denote by Ly(T) the set of
square integrable functions z(-) on T with norm

Ol = (s [roEar) "

The class W3 (T) is the set of 27-periodic functions x(-) for which the first derivative is absolutely
continuous and [|2”(-)|[r, () < 1.

For this class we consider the recovery problem of the first derivative of a function z(-) in the
metric Ly(T) by the finite system of Fourier coefficients

1 i
r; = ﬁ/jrx(t)e I dt

given with an error. More precisely, we assume that for every function z(-) € W2(T) we know the
numbers y;, |j| < N, such that

zj —yil <6, [JI <N, 6>0. (5)

Here the information operator is the multivalued map Fg\f which associates with every function
z(-) € W3(T) the set F{*z(-) = {y;};j<ny Where y; satisfy the condition (5). The problem is in
finding the value

E('(),W3(T), F{") = inf sup —|[2'(-) = m(y) (M Loy
m: CN+L 1o (T) z(-)eWZ(T)
yeFNz(-)

and an appropriate optimal method.
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Analogously to the forgoing it is easy to obtain the lower bound

E(@'(:),WH(T), £5) > sup  [2'()ll(m)-
w(-)EWZ(T)
o5, 1<V

In view of the Parseval equality the problem in the right-hand side may be written in the form (for
convenience we go over to norm squared)

D%y —max, gt <1, 0<u; <% I[N, (6)
JEZ JEZ
where u; = |z;|%, j € Z.
This is a problem of convex programming. It can be easily verified that for finding its solution

it is sufficient to find A > 0, Xj >0, |j| < N, and an admissible sequence {u;};cz such that for all
u; > 0,7 € Z, we have

(@) D (=72 + N N wg > D (=54 A A
JEZ JEZ

and
® M i-1) =0 A -3 =0, 1< N,
J€Z

where y; =1, if |j| < N, and zero in other cases. Let

pozmax{p€Z+:52 Z:j4<17 nggN}.
lil<p
We set A = (po+1)72%,

s {f — (po+1)72%5% 5] < po,
=

We define the sequence {u;};ez by the equality

527 |]| S Po,
~ 1= 8 Yepe B
;= MSro = |j] = po + 1,
2(po+1)

It is easy to check that the sequence & = {u;};ez is admissible and conditions (a) and (b) are
fulfilled. Thus % is a solution of the problem (6). Substituting  in the functional to be maximized
and extracting the square root we obtain

1/2

(1 + 02 X ji<py (G2 (o +1)% = J’“))

E(2'(),W3(T), 1) > (7)

po+1
By the analogous sufficient arguments it is easy to verify that % is also a solution of the following
problem
iju]'—>max, XZ]’%@—I— Z j\]‘u]‘ §X+52 Z Xj, u; > 0. (8)
J€L J€L <N <N
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Consequently, the values of the problems (6) and (8) are the same.

Put
y07A ]:07
7 Aj 1< |jl <
Ti=NT, <~ Y SIS Po
J /\]4‘|‘A]‘ 79 )
07 |]|>p0

By direct verification it is easy to verify that for all z(-) € WZ(T) the equality

A M =P+ DD Mles = 2P+ 5NEP+ DD Al -yl
JEL l71<N JEL l71<N
=AD e+ Y Ajle -l

JEL <N

holds. If z(-) € W(T) and |z; — y;| < §, then putting v; = |z; — T;|* we have

AD M D0 A <Al 4 D0 Nlas—yP < A6 Y A
jeL Jil<N j€z Jil<N iI<N

Hence

2

d(t) = > ijasett

<N

> 5%

Ly(T)  jez

gsup{ZjQUj:XZj4Uj+ Z j\jUj§X+52 Z Xj, UJ‘ZO}.

JEL Je€Z l7I<N <N

Since the value of the extremal problem in the right-hand side which is the problem (8) coincides
with the value of the problem (6) we obtain the upper bound for the error of optimal recovery
coinciding with the lower bound (7). Thus,

. 172
(1482 Dy (G2mo +1)% = j1)
po+1

B (), Wi (T), ") =

and the method

.. ’ 2 ..
Y n Y i = Y (1 () ) e
liI<N li1<po po

is optimal.
Note that if pg < N, then the further increase of the number of Fourier coefficients known with

the same error does not decrease the error of optimal recovery. Thus, for a fixed ¢ the system of
2N (6) Fourier coefficients (the zero coefficient is not used in the optimal method) where

N(5):maX{N€Z+:52 Z j4<1}
lil<N
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allows to recover the derivative of a function from Lo(T) with the best accuracy. We give some
values of the function N(J) and the corresponding error of optimal recovery.

52 N(@) | B2 (2 (), w2 (T), 1Y)

é,—l—oo) 0 1
L) | L 607
13472 4
1 i) 5 1+ 5682
11967 34 9

1 L) 5 1 + 25282
| 1446 196 16

In the general case if
—1/2
<b< (Z j4) ,
l7l<k
then N(6) =k and

1452 4 2% 4 1)2 _ 4 1/2
B (o (), W), N ) :( 0721z (ﬁ;r 2= i) |

5. Recovery of a function at a point by the function itself given with an error in
the Lz-norm. Denote by L3(R) the space of functions z(-) defined on R for which

1/2
el = ([ JeP i) < oo

We denote by W5 (R) the space of functions z(-) € Ly(R) for which ||2’(-)]| @) < oo and by W3 (R)
the class of functions from W;3(R) for which ||2/(-)||;,ry < 1. For the Class W} (R) we consider
the problem of optimal recovery of the value z(0) by the 1nf0rmat10n about the function z(-) itself
given with the error 6 > 0 in the norm of Ly(R). In other words, we assume that for each function
z(-) € W1(R) we know a function y(-) € Ly(R) such that

() =y ()l Loz < 0 (9)

Thus, for the information operator Fs we take here the multivalued map which associates with
every function z(-) € W} (R) the set of functions y(-) € La(R) satisfying the condition (9). As in
the previous examples we interested in the error of optimal recovery
E(x(0), Wy (R), F5) = inf sup |2(0) — m(y(-))|
m: Ly (R)—=R ()W} (R), y(-)€L2(R)
=)=yl m <6
and also in an optimal recovery method (a method for which the infimum is attained).
In the same way as above we prove the estimate
E(x(0), W3(R), F5) > sup  |z(0)].

z(-)EW (R)
[l (Lo m <8
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Since the function

E(t) = Ve lt/?
belongs to the class W3 (R) and, moreover, ||Z(-)||z, ) = 6, we have
E(z(0), W%(R)v Fs) > 2(0) = V.

To find an optimal method of recovery we use the easily verified identity
1 1
2(0) = —/ S5 (1) dt — —/ 33 (1) sign t di (10)
26 Jr 2 Jr

which is valid for all z(-) € W;(R). Consider the method

1
() = 55 [ oyt d. (1)
286 Jr
Using the identity (10) and applying the Caushy-Schwartz—Bunyakovskii inequality we have

2(0) = — [ M55y dt

E(x(0), W3(R), F5) = sup sup % |

z(JEWZ(R)  y()eLl2(R)
lz() =yl m <6

“g5 Lo - ey < sup
20 Jr £()EWL(B)

l/ e~/ () sign t dt| +
2 J/r

Hence and from the corresponding lower bound it follows that the equality
E($(0)7W21(R)7F5) =5

holds and the method (11) is optimal.
Moreover, by the fact proved above it follows that the value of the problem

2(0) = max, |le()ll,@) <6 2" (e <1, (12)

is equal to V/§. For all z(-) € W}(R) the function z()/l12' ()|l ,(r) is admissible in the problem
(12) with § = || (-)|lz,®)/l12' ()| o). Consequently, for all z(-) € W3 (R) the inequality

2 _ O
12/ Ollage) = o (1132,

holds, that is,
1/2 1/2
[2(0)] < eI 5 12 Ol G-
In view of the translation invariance of the norm the point 0 may be replaced by any point 7 € R.

The obtained inequality may be considered as some uncertainty principle for functions from
W3 (R) which means that for a fixed value of a function at an arbitrary point the norms of the
function and its derivative cannot be small simultaneously, their product is always no less than this
squared value.

6. Recovery of a function by its inaccurate values in a weighted norm. Denote by
Ly(R,t%) the space of functions z(-) defined on R such that

9 9 1/2
12 (M) = ( /R 22 (0)] dt) -
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We denote by W} (R, t?) the space of functions from L(R,t?) for which 2/(-) € L2(R). Set

Wy (R, %) = { () € Wy (R,2%) « || ()] ) < 13-

For the class W} (R,t?) we consider the problem of optimal recovery of a function x(-) by the
information about its inaccurate values in the Ly(R,t%)-norm. We assume that for any function
z(-) € Wi(R,t?) we know a function y(-) € Lo(R,t?) such that

[2() = y()llLoe.e) < 9 (13)

Here for the information operator F3 we consider the multivalued map which associates with each
function z(-) € W3 (R, %) the set of functions y(-) € La(R, %) satisfying the condition (13). We are
interested in the error of optimal recovery

E(z(-), W3 (R, t%), Fy) = inf sup 12(:) = m(y) ()l .w)
m: Ly (R,2) =Ly (R) 5(-)EWLR,2), y(-)ELa (R, 12)
()=l 2, <5

and in an optimal method of recovery, too.

The arguments analogous to the ones given in the previous examples lead to the inequality

E(x(), Wy(R,1%),F5) > sup lz()llye)-
Nz Ly w2y <6
=" (I £ <1
To solve the extremal problem

12Ol @) = max, |z, @) < 0% 2" OI,m@) <1 (14)

we consider the Lagrange function

L) A h) = - [

22(t) dt + /\1/ 222 (t) dt—l—A2/ 2 (t) dt.
R R R

It is easy to show that for the function Z(-) € W3 (R, %) to be a solution of the problem (14) it is
sufficient to find Ay, Ay > 0 for which

P()EWI(R.2) (0 A 42) = £L70), A1, A2)

A (/Rt2§2(t) dt — 52) =0, A (/Rf’z(t) dt — 1) =0.

Set Ay = 6=! and Ay = 4. Integrating by parts the first term of the Lagrange function we obtain

and

~ e 1
L(2(-), Aty Ag) = g/ (t2(t) + 62 (1)) dt.
R

It is obvious that the Lagrange function vanishes on the function

P 1/4 2

B(t) = v2 (_) 5

T

that is, the minimum is attained for this function. Since

/t2§2(t) dt = &%, /i’Q(t) dt =1,
R R
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Z(-) is a solution of the problem (14). Thus,

E(a(-), WAR, ), F5) > (/R F2(1) dt)1/2 — /2.

It follows from the analogous sufficient arguments that the function Z(-) is also a solution of the
extremal problem

e OIE, ) = max, 3 2 ()7, @) + 0ll2" ()T, @) < 26 (15)

We now proceed to the construction of optimal method of recovery. Set

o) = H, () 5
n =Hpl—=]€ 2
Ve
where H,,(-) are the Chebyshev—Hermite polynomials ({H,(-)}52, is an orthogonal system of poly-
nomials on R for the weight function e=** with leading coefficients a,, = 2"). The functions ¥,,(-),

n=0,1,..., form an orthogonal basis in L3(R). Let y(-) € L2(R,??) and

, n=0,1,...,

n=0
Set -
2(t) = Tatha(t),
n=0
where

Dt + yns /2
O S U 0 | 5% B [ Vi ST

0 \/gv n \/5(271 + 1) 9
Using properties of Chebyshev—Hermite polynomials one can show that for all z(-) € W1(R,?) the

equality
t*(2 t)dt 46 / '
5L " ~0

holds. It follows that for any z(-) € W3 (R, %)

%/th(x(t) dt+5/ dt+5/t2 (t)? dt+5/”2 t)dt
:g/th(x(t)—y(t)) dt—l—é/Rx () dt

If 2() € W3 (R, %) and ||z (-) = y(-)|l1,(r2) < 9, then putting 2(-) = 2(-) — Z(-) we have

5/t22 dt+5/ dt<5/t2 dt+5/ t) dt < 26.
Hence

() = 2O o) = 12O laey < sup { e llagey 57 102 ) + 3l Oz < 26}

The squared value of the extremal problem in the right-hand side coincides with the value of the
problem (15) and thus with the value of the problem (14). Consequently, we have obtained the
upper bound for the error of optimal recovery coincided with the lower bound. Thus,

E(x(), W} (R, ), Fy) = V25 (16)
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and the method

— . I & ty 2
x(t) & nzz%xnzbn(t) = ﬁ;@an (%) e 23,
where
1 tN _2
a, = m/ﬂ%y(tﬂ{n <%) e 2t dt,
is optimal.

By the same arguments as in the previous example from (16) follows the following exact inequal-

ity
22y dt <2 | 22(t) dt v 2 (t) dt 1/2. (17)
R R R

If we consider functions z(-) normalized by the condition

/RxQ(t) dt =1,

then from (17) follows the inequality

/Rt%?(t) dt/ 2 (t)dt > 1/4

R

which is known as the Heisenberg Uncertainty Principle.

4. THEORY

The examples given above were solved directly without using any general assertions. We did
it deliberately to concentrate the reader’s attention on the examples themselves. Here we give a
general result connected with optimal recovery of linear functionals (we have used it, in fact, in
some examples).

Using the notation from Section 2 let C' be a subset of real or complex linear space X, X’ be
the algebraic dual of X, and f =2’ € X', that is, Z = R or C. Denote by (z’,z) the value of the
linear functional z’ at the element # € X. Let Y be another real or complex linear space, Y’ be
the algebraic dual of it, and F': C'— Y be a map (in general, a multivalued map). The problem is
to recover the values of the linear functional 2’ on the set C' by the information F.

For definiteness we assume that X and Y are complex linear spaces. Any map m: F'(C) — C,
as before, we call a method of recovery. The error of such method is the quantity

e(@,C,F,m) = sup  [(a’,2) — m(y)| (18)
zeC, yeF(z)

and the error of optimal recovery (2’ on C' by F), which we denote by F(z',C, F), is defined as a
solution of the problem:

e(a’,C, F,m) — min, (19)

where the infimum is taking over all maps m: F(C') — C. Any method m which is a solution of
this problem is called an optimal method of recovery.

We associate with the problem (19) the following extremal problem
Re(z’ ) — max, =€ F7'(0), z¢cC, (20)
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where F7'(y) ={z € C' | y € F(2)}.

The function

L <($7 y)7 A07 y/) — A0 Re<xl7 $> + Re<y/7 y>

is called the Lagrange function of the problem (20), and the number Ay and functional y' € Y are
the Lagrange multipliers.

Theorem 1. Let the sets C and gr F' = {(z,y) : @ € C, y € F(z)} from the problem (20) be

convex and balanced. Then the admissible in (20) point T is a solution in this problem if and only
if there exists the Lagrange multiplier §j' € Y' for which

min £ ((z,y),~1§) = £ (.0}, ~17).
yEF ()

In this case §' is an optimal method of recovery in the problem (19) and E(a',C, F) = Re(2', &).

It is clear from this theorem that for finding an optimal method in (19) it is sufficient to solve
the problem (20) which is convex. Solving it by the standard methods of convex optimization,
we find at the same time the Lagrange multipliers, that is, we find an optimal method of recovery
(which turns out to be linear). From the point of view of convex duality it means that the problems
(19) and (20) are dual to each other.

For optimal recovery of linear operators the lower bound of the error of optimal recovery is also
reduced to solving a problem analogous to (20) but the upper bound needs individual arguments.
There are some general concepts about it but we shall not dwell on them here (see [10]).

The proof of the formulated theorem may be found in [9].
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