ON BEST QUADRATURE FORMULAS ON
HARDY-SOBOLEV CLASSES

K. YU. OSIPENKO

ABsTRACT. For functions from Hardy—-Sobolev classes defined as
the set of functions analytic in the unit disk and satisfying the
condition |f(")(2)| < 1 best quadrature formulas which used val-
ues of functions and their derivatives at the fixed system of points
from the interval (—1, 1) are constructed. For the periodic Hardy—
Sobolev class HE, 5 which is defined as the set of 2m-periodic func-
tions analytic in the strip |Imz| < § and satisfying the condition
|F0)(2)] < 1 it is proved that the rectangle formula is best for
the equidistant system of points and the error of this formula is
calculated. Best quadrature formulas on the class H, g which is
defined in the similar way as the class H., g but the boundary
values of functions are taken in L,-norm are constructed. An op-
timal method of recovery of functions from H, using the Taylor

information f£(0), f/(0),..., f*+"=1(0) is obtained, too.

INTRODUCTION

Let X be a linear space over the field K = R or C, W a subset of
X,and L,ly,...,l, linear functionals on X. The problem of optimal
recovery of functional L on the set W from the values of the information
operator [x = (lyx,... ,l,2), x € W,is the problem of finding the value
(1) e(L,W,I):= inf sup |Lz — S(Ix)|

S: KnsK ceW
and a method S for which the infimumin (1) is attained (if such method
exists) which is called an optimal method of recovery.

Optimal recovery problems beginning with the paper [1] are studied
by many authors (see [2]-[5] and the literature cited there). We mention
here only one result which was proved in [1] for the real space and in
[6] for the complex one: for a convex balanced set W among optimal
methods of recovery there exists a linear method and the equality
(2) (LW, T) = sup |Lal

il
holds. Any element xq for which the supremum in (2) is attained we
call extremal.

This research was carried out with the financial support of the Russian Founda-
tion for Basic Research (grants N299-01-01181 and Ne00-15-96109).
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The problem (2) often turns out more simple than the problem of
finding an optimal recovery method. In this connection in [7] it was
proposed a method allowing to obtain an optimal method of recovery if
there exists some parametrization of extremal element in the problem
(2). Here this method is used for obtaining best quadrature formulas
and an optimal recovery method by Taylor information on the Hardy—
Sobolev classes.

We shall call the Hardy—Sobolev class H) the set of functions f
analytic in the unit disk D := {# € C: |z| < 1} and satisfying the
condition

1 2

sup — |f(r)(,oei€)|p do <1, 1<p<oo,
0<p<1 2T Jo

sup |[(2)] <1, p=co.

z€D
We call the periodic Hardy—Sobolev class H] ; the set of 27-periodic
functions f analytic in the strip Sz := {# € C : |Imz| < #} and
satisfying the condition

1/p

sup (L/O (LFO @+ il + 177 — i) dt) <1,

o<n<p \ 4T

sup | V()] < 1.
ZESﬁ
For r = 0 we denote the appropriated classes by H, and H, .
In §1 for H! and the information operator

3)  If=(f@r), o F @) fln), e T (@),

where x4,...,x, are distinct points from the interval (—1,1) and
Vi,...,V, are even, a linear optimal method of integration (a best
quadrature formula) for the integral

[ sty

in which p(x) is a nonnegative weight function is constructed.

In §2 for equidistant system of points a best quadrature formula for
the class H] ;5 is constructed. It is proved that this formula is the
rectangle formula and its error is found. For r = 0 best quadrature
formulas on the classes H., and H., s were investigated in [8]-[10].

In §3 best quadrature formulas on the class H, 3 by the infor-
mation operator (3) in which zq,...,2, are distinct points from
T := [0,27) are constructed. The similar problem in the non-
periodic case was solved in [11, p. 175]. In §4 an optimal method
of recovery of functions from H] by the information operator [f =
(£(0), (0),..., f**=1(0)) is constructed. In this problem optimal
methods were previously investigated in [12] (p = oo, r = 0), [2]
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(0= o0, r=1), [18] (1< p < o0, = 0), [14] (p = 00, 7 € . many-
dimensional case), [11, p. 65] (1 < p < oo, r = 0, many-dimensional
case).

We need the following result from [7].

Theorem 1. Let X be a real linear space, W a convex centrally sym-
metric set from X, and xq an extremal element in the problem of op-
timal recovery of a linear functional L on the set W by the values
of linear functionals lix,... l,x. Let every M = (t1,...,t,) € R”
from some neighborhood of My € R™ associates with x(M) € W where
#(My) = xo. Then if the functions (M) = Lx(M), ¢;(M) :=
Lix(M), 3 =1,...,n, have continuous partial derivatives with respect
to all variables in a neighborhood of My and the determinant of the
matrix

o1 Fpn
ot 0k
JM)y=| ..o,
ag‘ol ag‘on
ot, = 0Ot

does not vanish at My, then the method

La =~ Z C]‘l]‘l',
7=1
where Cy,...,C, are solutions of the system
J(My)C = grad c,o‘MO

in which C = (Cy,...,C,), is the unique linear optimal method of
TeCOveTy.

1. BEST QUADRATURE FORMULAS ON THE CLASS Hgo

Consider the problem of optimal recovery (1) for W = H._,

() Lf = [ flapta)ds

where p(x) is a nonnegative weight function, and the information op-

erator [ defined by (3). Put

(5) N = Zl/]‘.

First, we prove some auxiliary assertions. Recall that the system
of real functions {ug(t)}7_, m times continuously differentiable on the
interval (¢, d) is called ET-system, if every generalized polynomial

chuk 2027&0
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has at most m zeros on (¢, d) with regard to the algebraic multiplicity.
The Blaschke product of degree n is a function of the form

- Z — Z;
B(z)=A !

where [A\| =1,az; € D, j=1,...,n. Foru; €N, j=1,... ,n, and
a; € (—1,1) set

Wila) = W@)::ﬁ(“%)%

1 —a;z

Lemma 1. The system of functions
(6) gin(w) := W(x) (W7 (x) = Wi(x)).

E=1,...pu5, g=1,...,m,
is a ET-system on (—1,1).

Proof. Consider the generalized polynomial

m Hy m Hy
P(x) =YY Cugplz). Y Y Ch#0.
i=1 k=1 7=1 k=1

In view of the fact that W;(41) = +1 this generalized polynomial may
be written in the form

(1 =)' T} (2 — a))
[[2 (1 —aja)?es
where ag, ay, ... ,a; # 0. Since W;(z7!) = W:(z) we have

J

P(z) = ag

Wl(x) Z Z Cjk <WJk(x) - W]‘_k(l’)> = _WQ(J?)P(J/'),

7j=1 k=1

Plz™") =

;From the last equality it is easy to obtain that with every zero a; # 0
of P coincides the zero of this function aj_l with the same multiplicity,
and moreover, [+ s/2 = E;nzl ft; — 1. Thus the generalized polynomial
P has at most E;nzl pj — 1 zeros on the interval (—1,1) with regard to
the algebraic multiplicity. O

For functions f analytic in the unit disk set Tpf := f and

™ @06 = [ e

Obviously, (T,f)") = f and consequently, T, f € H’_ for all f € H,.

Let
Z/,Lj +r=N.
7=1
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Define the functions wy, ... ,wn by the equality

(8) (wi(2)y... wn(2) = (1,2,..., 2"

(Tr’gll)(Z)v"' 7(T7’91M1)(Z)7"' 7(Tr’gm1)(2)7"' 7(Tr’gmum)(2))'
Set
(9) (Cljl,. .. ,a]‘N) = [wj, ] == 1,. .. ,N, A= {ajk}é‘\jk:y
Lemma 2. det A # 0.

Proof. It det A = 0, then there exist Cy,... ,Cy not all equal zero for
which the function

F(z):= Z Ciwj(z)

has at least N zeros on the interval (—1, 1) counting multiplicities. In
this case by Rolle’s theorem F") must have at least N —r zeros on the
same interval. Since

F(r)(z) — Cr+1911(2) ‘I‘ ‘e —I_ CNgmMm(Z)7

by Lemma 1 it follows that C\,1; = ... = Cxy =0, but then C; = ... =
C, = 0. The contradiction so obtained proves that det A # 0. O

Denote by H”® the set of functions from H’_ real on the interval
(—1,1).

Proposition 1. Let —1 < xy < a9y <...<x, < 1. Then for all even
Vly..., v, there exists a function F € H'® of the form

F = Pr—l —I'TrWa

where P,_1 is a polynomial of degree r —1 and W s a Blaschke product
of degree N —r

W(Z):l_m[ Z— 5 Hy in:ﬂ‘:N_r
1—04]‘2 s o J ’

i=1

<oy <...<ay, <, such that TF =0 and

1 1
swp [ faorde= [ Plapta)de
feHL* /-1 -1
If=0

Proof. Tt follows from [15] that there exists a function F' € H"F nor-
malized by the condition F(1) > 0 for which IF = 0 and F) is a
Blaschke product of degree N —r. Moreover, in the same paper it was
proved that for all € (—1,1) the equality

(10) sup_[f(2)] = [F(x)|

JeHD®
If=0

holds. By Rolle’s theorem it follows that [’ has no other zeros on the
interval (—1,1) except the zeros at the points xq,...,x, with even
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multiplicities v1,... ,v,. Thus in view of the normalization F'(1) > 0
for all @ € (—1,1), F(«) > 0. Taking into account (10) we obtain the
assertion of the proposition. O

Theorem 2. Let —1 < z; < a3 < ... < x, <1, v1,...,1, be even
numbers, W a Blaschke product from Proposiltion 1, and g;;, w;, and
the matriz A be defined by (6), (8), and (9), respectively. Then the
method

n o vi—1
1) [RCIETIES 3) SR LIS
-1 j=1 k=0
in which cj, are defined by the system
(12) Ac=d,
where € = (€104« s Clu 1y« 3Cn0y - v s Cnum—1), d = (d1,... ,dn),

1
dj:/ wi(@)p(z)de, j=1,... N,

1

is optimal on the class H.

Proof. First, we prove that the method (11) is optimal on the class
H'E Put Wip(2):=1,57=1,... ,m, and

Wi(2)Wik(2) + g
W{ :: j J Js
ik1(2) L+ et Wi(2)Wik(2)’

For all £;1,...,¢5,, € (=1,1), W, ,, € Ho,. Set

—_

r—

fp(z) =) a;z" + (LWp)(2),
7=0
where P = (@oy ... s @ 1,611+ sE1 1+ sEmls-v - »Emum) € RY and
Wp(z) = [[ Wi, (2).
7=1

Let the polynomial P,._; from Proposition 1 be of the form

r—1
P._i(z) = a?z:]
7=0
Then in view of Proposition 1 for P = Py := (af,... ,a’_,,0,...,0) the

function fp, is extremal in the problem of optimal recovery of the inte-
gral (4) on the class H"® by the information (3). Define the function

©1,... N by the equality
(p1(P), ..., on(P)) :=Ifp.
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It is easily seen that at the point Fy we have

8991 a@N .

= Jw; 0<7<r—1

(8% ’ ’ 8% Wji+1, )T )

8991 a@N .

=I1(T,g;x), 1<3<m, 1<k<upu,.

Putting
1
e(P)= [ fr(z)p(x)dz,

-1
it is easy to verify that at the point Fy

1
ggzsz@m,OSﬁg—L
Dy

aafjk

1
:/ (Togie)(@)ple)de, 1<j<m, 1<k <p,
-1

By Theorem 1, taking into account Lemma 2, it follows now that the
coefficients of optimal method for the class H"* are defined from the
system (12). Now we prove that the constructed method (we denote
it by S) is also optimal for the class H! . Assume that there exists a
function fo € H, for which

|Lfo—S(Ifo)| >e(L,H,1I).

Then the function fo(Z) € H._ also satisfies this inequality. Since the
class H! is balanced without loss of generality we may assume that
Lfo— S(Ifo) > 0. Consequently, for the function

g(z) — fO(Z) —g fO(E) e H(;’)R

we have
Lg— S(lg) > e(L,H,I) > e(L,H: 1)
which is impossible in view of optimality of the method S on the class
H"E, O
2. THE PERIODIC CASE

We construct now an optimal method of integration for the integral

Lf:/Tf(x)dx

on the class H, ; by the information operator

(13) Iy = <f<0>,f (%”) o (W)) |

For sufficiently general conditions on the class of functions it can be
proved that the rectangle formula is an optimal method of integration
using the information operator (13). Let H be a convex and balanced
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class of continuous on the whole real axis 27w-periodic functions f such

that for all real constants C' and «a, f(x) + C € H and f(x + a) € H.

Lemma 3. The rectangle formula

(14) [ e~ Zf (QJ—)

is an optimal method of integration on the class H and for its error the
equality

e(L,H,I) =2 sup |f(0)]
fEHR

holds where H, is the set of 2m [n-periodic functions from H for which

2 /n
(15) /0 flz)dx =0.

If functions from H are differentiable, then the rectangle formula is also
an optimal method of integration for the information operator

nf = (s 100 (2) . (2,
‘7f<2(n;1)7r> f,<2(n;1)7r>>‘

Proof. It was proved in [16] (see also [17, p. 208]) that

[ f@yae- T3 s (QJ—)‘ = 27 sup |f(0)].

fe€Hn

sup
FEH

Thus

e(L,H,I) <2m sup |f(0)].
fEHR

On the other hand, for all ¢ > 0 there exists a function g € H,, for
which

9(0) > sup [f(0)] —e.
fEHR

In view of the properties of the class ‘H, we may assume that

0) = — .
g(0) Lemax lg()|

Consider the function
Jfo(x) := g(x) — 9(0).
Since fo € H and [ fy =0, from (2) we have

/Tfo(:z;) dx

e(L,H,I) =2 sup |f(0)]
fEHR

(LM ) >

= 2m|g(0)]| > 27 sup |f(0)| — 27e.
f€HA

Hence
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and the rectangle formula is an optimal method of integration for the
information operator I.

In the case when functions from H are differentiable for the proof
of optimality of rectangle formula for the information operator [ it
suffices to note that I fo = 0 and in view of (2)

G(L,H, [) 2 G(L,H, [1)
0

Theorem 3. For all r > 1 the rectangle formula (14) is an optimal
method of integration on the class H!_ 5 for the information operators
I and Iy and for its error the equahtzes

22
VAAR"

%] (r41) —508n
X Z ) = 4—7Te_ﬁ” + 0 €
(2m + 1) sinh((2m + 1)2n3) n" n"

m:O

hold where

e(L,H, 5, 1) =e(L,H 5, 1,) =

A=1 —20n Zm—o 6—4ﬁnm(m+1) 2
€
1 2 § m=1 e—4ﬁnm2

and

B /1 di
o =) -
is the complete elliptic integral of the first kind for the modulus X.

Proof. For the information operators I and [ the optimality of rectan-
gle formula on the class H ; immediately follows from Lemma 3. Tt
remains to find the value

sup [ f(0)],

feHr

©0,B8,n

where H_ ;. is the set of functions f from H_ ; with the period 27 /n

satisfying the condition (15). Set
1
a;(f):= —/f(:z:)cosj:z;d:z;, J=0,1,...,
TJT
1
bi(f):= —/f(:z;)sinj:z;d:z;, =12 ....
TJT

Obviously,

(16) sup [ f(0)] < sup |£(0)].

feH; feH;

©0,B8,n 0,8

ao(f)=a1(f)=b1(f)=..=an—1(f)=bn_1(f)=0
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The value in the right hand side of (16) was calculated in [18]. It
attains for the function

i34 < l) — 9]
P2y = g e U gy ) TR
7 L (2), r=2+1,

T

is the Bernoulli kernel, and

(e 5= [ =gl

It was shown in [19] that

o & sin((2m o+ Dnz —7r/2)
(I)gr(z) = VAR Z (2m + 1)7 sinh((2m + 1)2715)‘

Thus c,ogﬁ, € H, 5, and consequently,

m=0

sup [ £(0)] > |¢}7,.(0)]
JeH

co,B,n
- (1))
VAR mz::o (2m + 1) sinh((2m + 1)2n3)

To obtain the asymptotics of the error it remains to use the well-known
equality (see, for example, [20])

0o 2
_7T —48nm?
A—§<1+22—:16 ) .

3. BEST QUADRATURE FORMULAS ON THE CLASSES H, 3

Consider now the problem of constructing of optimal integration
method for the integral

Lf= / F(Op(t) di.

where p(t) is a nonnegative weight function, for the class H, s by the
information operator (3) in which x,... , 2, are distinct points from

T.
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Put

o] —2B8m(m+1 2

(17) k=4e’ DD :
1 —I_ 2 Em 1 e_zﬁM2

Denote by K and K’ the complete elliptic integrals of the first kind for
the moduli k& and & = v/1 — k%, respectively (the equality (17) is equiv-
alent to 7 K’/ K = 23). For the strip Sz a 2r-periodic Blaschke product
with zeros at the points x; with even multiplicities is the function (see

[10])
B(t) = kN/? Hsn”ﬂ (5@ — :z:j),k> \
j=1 i
where N is defined by (5).
Denote by Hgﬁ the set of functions from the class H, s real on the
real axis.

Lemma 4. Let vq,... v, be even numbers and 1 < p < oc. Then

1) there exists the unique function gg, € Hgﬁ for which

(L, Hyp T) = / g (1) B(Op(t) di,

2) gp,p does not vanish in the strip S and gg,(t) > 0 fort € T,
3) for 1 <p < oo and almost allt € T the eqality

(18) (L, Hyp 1)lgnplt +iB) = / 05.5(7) B(r) Kot — 7)p(r) dr

holds, where
2A A
Koty = 2w (—t, )\>

T T

and A is the complete elliptic integral of the first kind for the
modulus A which is defined by the condition TA'JA = 5.

Proof. 1t follows from [21] that in the problem

= [irelso
feHy; ,

there exists the unique function g5 , € Hpﬁ normalized by the condition
98,(0) > 0 for which this supremum is attained. Moreover, from the
same paper it follows that this function does not vanish in the strip Sz
(and consequently, g ,(t) > 0 for t € T) and for all 1 < p < o

Pilgs ot £ i6]P = / 195 (P B(r)Ks(t — 7)p(r) dr.

Since every function f € H, s for which [ f = 0 may be represented in
the form

f(z) = B(2)g9(z), g€ H,p,
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[

Similar to the method which was used in the proof of Theorem 2 it is
easy to show that

in view of (2)

e(L,H,p,1)= sup
fer/3

‘:ipg.

G(L, Hpﬁv [) = G(L, HEﬁ? [)

Since
Py>e(L, H g 1) > /ng(t)B(t)p(t) dt = P,
we have '
Pi=e(L.Hyg1I)=P,.
]
For p = oo and even 1v4,... , v, it is obvious that g ,(z) = 1.

Let p = 2. The space of 2m-periodic functions H; g analytic in the
strip S and satisfying the condition

1 . .
sup —— | (I/(t+in)[* + [F(t —in)[*) dt < o
0<n<p AT JT

is a Hilbert space with the inner product

(.90 = = /f 9(E) d,

where I' = [i3,27 4+ i8] U [—18, 21 — i3]. It follows from [18] that for
all f € Hyp and any t € T the equality

f(t) = (fv gt)?-l2,,6

alz) = Nan (g(t - Z),k>

s

holds, where

and K is the complete elliptic integral of the first kind for the modulus
k defined by the condition K'/K = 23/m.

We have
(1t )= g | S0P
- | / HENITET deBtonte)
" sety |4 /f / ()p(t)dtdg‘ iu@iig(ﬂ@%w
where

66 = 2 [an(E0-0) Bop i

T T
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Hence it follows that
G(z)
gB72(Z) = °
Gl

Theorem 4. Let vy,... v, be even numbers and 1 < p < oco. Then
the quadrature formula

(19 [ropt =3 Y w e,
where
= [ eattintt)
C]‘l,(t) _ 5 B(t)ng(t)

Tl —v—1)!

Y K (vj—v—1)
x lim <7(Z %) ctn (i(t — Z),k)) \
=iy \ B(2)gB (%)

en(z, k) dn(z, k)
sn(z, k) ’

is an optimal method of integration on the class H, g.

ctn(z, k) =

Proof. Consider the integral

K 1 f(2) K
2 = —DB(t H— | ——— _ctn| —(z—1),k) d
(20) Jf = —B(1)gsp(t)5— /F B(Z)gBW(Z)Cn(W(Z ), ) 2

where I'; is the boundary of the rectangle —¢ < Rez <27 —¢, [Imz| <
(3, and ¢ is chosen from the requirement that the points zy,... ,z, lie
inside this rectangle. In view of the fact that gg ,(z) does not vanish
in the strip Sz by the residue theorem we have

n v;—1

JF= =Y > enlt)fWa;).

7j=1 v=0

It follows from the properties of elliptic functions (see, for example,

[20]) that

K K K’
ctn (i(t + zﬁ),k) = ctn (it + zi,k>
T T 2

[,7
1 — ksn? (it, k) A A
= +i(1 + k) g =iz dn (—t, )\> :
1+ ksn? (—t,k) * i
s
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where A = 2\/%/(1—%1{) and A is the complete elliptic integral of the first
kind for the modulus A (in other words, A is defined by the condition
AN /A = K'/(2K)). Thus the integral (20) may be written in the form

Jf = B(t)gBJ,(t)i /r %Kﬁ(f{ez —t)dz,

where I' = [i3,2r + i8] U [—i3, 27 — i[3]. Let 1 < p < co. Then for the

error of the quadrature formula (19) we have

n v;—1

Rf_‘/f t)dt — ZZa]yf
7=1 v=0
g/B( 9B (1 s(Rez —t)dzdt
T 47T |9Bp

- /F |ng & /T B(1)gs.,(1)Ks(Re = — t)p(t) dt d=.

Using (18) we obtain

1 _
By < el D) [ 18w,

By the Holder inequality

1 e /1 (p=1)/p
f < ettty ) (3= [1r00as) (5 [lamstora:)

< e(Lvaﬁv[)‘
If p = oo, then gp (= )E 1 and

|Jf] < B(t) /|f J|Kg(Rez —t)dz < B(t),

because

1

pp [xﬁ(Rez—t)dz— 1.

Consequently,

Ry g/B(t)p(t) dt = e(L, Hoo g, I).

4. RECOVERY OF FUNCTIONS FROM H; BY THE TAYLOR
INFORMATION

Consider the problem of optimal recovery of the value f(¢), £ € D,
on the class H) by the values of the information operator

Lf = (f(0), £/(0),..., f"=(0)).
We denote by e(&, H), I') the error of optimal recovery method in this
case.
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It is easily seen that if f € H) u [f = 0, then f0(2) = 2"p(2) where
¢ € H,. Consequently, f(z) = T,(t"¢(t))(z) where the operator T, is
defined by (7). It is obvious that for all o € H,, f(z) = T.(t"¢(t))(z) €

H}, moreover, [ f = 0. Thus, taking into account the duality formula

(2),
r _ _ ¢ (5 - t)f’—l n
(21) el Hp 1) = fseu%lf(fﬂ = sup /0 oo to(t)dt).
If=0

Let £ € (0,1). Then it follows from [11, p. 176] that there exists the
unique function ¢ € H, such that ¢¢(t) > 0 for t € (=1,1) and

3 _ =1
(22) .ty = [ %

Theorem 5. For all £ € D and 1 < p < oo the method

" pe(t) di.

n+r—1 3 4
2 O~ Y at o),

where ag = ... = a,_; = 1,

n+r—1 .
P S— (hk— T s |§|f—’fsof§|"“><0>),

2 G
k=n+4+r—2,...,r,

= /0 %TH (1= (elm)?™ =) (€ r) dr.

k=r,... ,n+r—1,
is an optimal method of recovery on the class H.

Proof. Denote by H;’R the class of all functions from H real on the
interval (—1,1). First, we shall show that the method (23) is optimal
on the class H;’R for £ € (0,1). Since ¢ € HE the equality (22) is also
valid for the class H;’R, that is the function

(25) o= [ EE e

is extremal in the problem of optimal recovery of the value f(£) on the
class H;’R by the Taylor information [ f.
Set wo(z) :=1,

w(z) - Zw]—l(z) + Entr—j
T Tt eprmjrwioa (2)]

i=1

9o ey
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For all e,,... ,enq4rm1 € (=1,1), wppe € HE. For the points P =

(€0,€1y -+ yEntr—1) € R™" consider the function
r—1
fr(z) =iz + To(wape)(2).
7=0

For all P € (—1,1)"*", fp € H}, and for P = 0 this function coincides
with the extremal function (25). It follows from Theorem 1 that the
coefficients a; of optimal recovery method on the class H;’R are found
from the system

n+r—1 j (7)
ajé’afp ©) :afp(f) , k=0,1,... n+r—1.
j=0 J: agk ‘P:O agk ‘P:O

For 0 < k <r —1 we have

o) fo k#£4 9fe(9)
agk ‘P:O .]’7 k= j? agk ‘P:O

= ¢*
and forr <k<n-+r-—1

oo  _ Jo. | 0<j<k-1,
e ‘pzo CEr (k= r)lel™M(0), k<j<n+4r—1,

dfp(€)

Dey, ‘P:O

where

ge(z) = 28T (1 = 20 g (z).
Hence ag = ... = a,_; = 1 and for finding other coefficients we obtain
the system

n+r—1 7 )
> SO = I O0) = (T k=L
i=k '
Thus,
a _ (n +r = 1)! (Tr’gn-l-r’—l)(f)
ntr—1 (n _ 1)!995(0) gntr—1 ’

e k! ((Trgk)(f) _ ni aj%ﬁj‘keoéj‘k)(o)) 7

Eoe@ & 2 G-
k=n+4+r—2,...,r

Making the substitution ¢ = &7 we get that (T,.g,)(€) = %Ry and
consequently the equalities (24) hold.

The optimality of the constructed method on the class H is proved
by the method similar to the one used in the proof of Theorem 2.
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Now let ¢ be an arbitrary point of the disk D. If ¢ = [£]e and
[ € H, then the function F'(z) = f(2€%) belongs to HY, F([E]) = f(€),
and

IF = (f(0)7 ei&f/(0)7 o 7€i(n—l—7’—1)€f(n-|—r—1)(0))‘
Applying the obtaining method to the function F' at the point [£], we

have
n+r—1

i
0= 2 a0 < ellél #, D).
j=0 '
Using the first equality of (21) it is easy to verify that
e(|¢], Hy, 1) = e(&, Hy, 1)
Thus the constructed method is optimal for all £ € D. O
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