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a b s t r a c t

The paper is concernedwith the recovery problem of derivatives at
the origin from noisy information about functions defined on the
semiaxis for the Sobolev class. The problem of S. B. Stechkin about
approximation of derivatives by bounded linear functionals is also
studied.
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1. Setting of problems

LetWn
2 (R+), n ∈ N, be the Sobolev space of functions x(·) ∈ L2(R+) such that the (n−1)st derivative

is locally absolutely continuous and x(n)(·) ∈ L2(R+). Set

W n
2 (R+) = { x(·) ∈ Wn

2 (R+) : ∥x(n)(·)∥L2(R+) ≤ 1 }.

We consider the problem of recovery of x(k)(0), 0 ≤ k < n, on the class W n
2 (R+) by inaccurate

information about x(·). We assume that for every function x(·) ∈ W n
2 (R+) we know y(·) ∈ L2(R+) such

that

∥x(·) − y(·)∥L2(R+) ≤ δ, δ > 0.

For a given y(·) we have to construct an approximate value of x(k)(0).
As recovery methods we consider all possible mappings m : L2(R+) → R. The error of a method

m is defined as follows

ek(W n
2 (R+), δ,m) = sup

x(·)∈Wn
2 (R+), y(·)∈L2(R+)

∥x(·)−y(·)∥L2(R+)≤δ

|x(k)(0) − m(y(·))|.
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The quantity

Ek(W n
2 (R+), δ) = inf

m:L2(R+)→R
ek(W n

2 (R+), δ,m)

is known as the optimal recovery error and a method for which this infimum is attained is called
optimal.

Note that optimal recovery problems are closely connected with statistical estimation problems.
Details may be found in [2].

We also study the problem of best approximation of x(k)(0) on the class W n
2 (R+) by linear

continuous functionals on L2(R+) with the norm not greater than some fixed positive number N (this
problem is known as Stechkin’s problem). It relies on finding the value

Sk(W n
2 (R+),N) = inf

y∗∈L2(R+)
∥y∗∥L2(R+)≤N

sup
x(·)∈Wn

2 (R+)
|x(k)(0) − ⟨y∗, x(·)⟩|,

and also a functional delivering the lower bound which is called extremal.
Solutions of the formulated problems are closely connected with the problems of exact constants

in Kolmogorov-type inequalities for derivatives. For the semiaxis the corresponding results which
we essentially use here were obtained in [3] and [4]. For R the analogous problems of recovery and
approximationbybounded linear functionalswere considered in [6]. The range of problems connected
with Stechkin’s problem was elucidated in the survey paper [1].

2. Main results

It may be obtained from [4] that there exists a function x̂(·) ∈ W2n
2 (R+) such that for all x(·) ∈

Wn
2 (R+) the following equality

x(k)(0) =

∫
R+

x(t )̂x(t) dt +

∫
R+

x(n)(t )̂x(n)(t) dt (1)

holds. We give the explicit form of x̂(·) and prove the corresponding result for completeness.
Put

λj = e(n+2j−1) iπ2n , j = 1, . . . , n, A =

⎛⎝ λn
1 . . . λn

n
. . . . . . . . . . . . . . . . .

λ2n−1
1 . . . λ2n−1

n

⎞⎠ ,

and As,j is the cofactor of λn+s−1
j . Denote by |A| the determinant of matrix A.

Lemma 1. Set

x̂(t) =
(−1)n−k

|A|

n∑
j=1

An−k,jeλjt .

Then for all x(·) ∈ Wn
2 (R+) (1) holds, moreover,

x̂(k)(0) = Â2
n,k, (2)

where

Ân,k =
1

sin1/2((2k + 1)α)

k∏
j=1

cot jα, α =
π

2n
.

Proof. Since λ2n
j = (−1)n−1 for all j = 1, . . . , nwe have

x̂(t) + (−1)n̂x(2n)(t) = 0.
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In view of the fact that Re λj < 0 for all j = 1, . . . , n, x̂(·) ∈ W2n
2 (R+). Thus, for every x(·) ∈ Wn

2 (R+)
we have∫

R+

x(t )̂x(t) dt + (−1)n
∫
R+

x(t )̂x(2n)(t) dt = 0.

Using integration by parts we obtain∫
R+

x(t )̂x(t) dt + (−1)n
n∑

p=1

(−1)px(p−1)(0)̂x(2n−p)(0)

+

∫
R+

x(n)(t )̂x(n)(t) dt = 0. (3)

For all s, p = 1, . . . , nwe have
n∑

j=1

As,jλ
n+p−1
j = δp,s|A|,

where δp,s is the Kronecker delta. Consequently,

x̂(2n−p)(0) =
(−1)n−k

|A|

n∑
j=1

An−k,jλ
2n−p
j = (−1)n−kδn−p+1,n−k. (4)

Substituting (4) in (3) we obtain (1).
Now let us calculate x̂(k)(0). We have

x̂(k)(0) =
(−1)n−k

|A|

n∑
j=1

An−k,jλ
k
j = (−1)n−k |Ak|

|A|
,

where

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λn
1 . . . λn

n
. . . . . . . . . . . . . . . . . . . . .

λ2n−k−2
1 . . . λ2n−k−2

n
λk
1 . . . λk

n
λ2n−k
1 . . . λ2n−k

n
. . . . . . . . . . . . . . . . . . . . .

λ2n−1
1 . . . λ2n−1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since

λm
j = σmµj−1

m ,

where

|σm| = 1, µm = ei
πm
n ,

matrices A and Ak may be rewritten in the forms

A =

⎛⎝ σn . . . σnµ
n−1
n

. . . . . . . . . . . . . . . . . . . . . . .

σ2n−1 . . . σ2n−1µ
n−1
2n−1

⎞⎠ ,

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σn . . . σnµ
n−1
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ2n−k−2 . . . σ2n−k−2µ
n−1
2n−k−2

σk . . . σkµ
n−1
k

σ2n−k . . . σ2n−kµ
n−1
2n−k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ2n−1 . . . σ2n−1µ
n−1
2n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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If we put x(·) = x̂(·) in (1), then we obtain

x̂(k)(0) = ∥̂x(·)∥2
L2(R+) + ∥̂x(n)(·)∥2

L2(R+). (5)

Thus, x̂(k)(0) > 0. Using this fact and the formula for the Vandermonde determinant we have

x̂(k)(0) =

n∏
j=1

j̸=n−k

|µk − µn+j−1|

|µ2n−k−1 − µn+j−1|
.

Since

|µp − µs| = 2|sin(p − s)α|,

we obtain

x̂(k)(0) =

n∏
j=1

j̸=n−k

|sin(n + j − k − 1)α|

|sin(n + j + k)α|

=
1

sin((2k + 1)α)

∏k+n
j=k+1 sin jα∏k

j=1 sin jα
∏n−k−1

j=1 sin jα

=
1

sin((2k + 1)α)

∏n−1
j=k+1 sin jα

∏n+k
j=n+1 sin jα∏k

j=1 sin jα
∏n−k−1

j=1 sin jα

=
1

sin((2k + 1)α)

k∏
j=1

cot jα

∏n−1
j=k+1 sin jα∏n−k−1
j=1 sin jα

=
1

sin((2k + 1)α)

k∏
j=1

cot jα
n−k−1∏
j=1

cot jα =
1

sin((2k + 1)α)

k∏
j=1

cot2jα. □

Theorem 1. The following equality

Ek(W n
2 (R+), δ) = Ân,k

(
2n

2n − 2k − 1

) 2n−2k−1
4n

(
2n

2k + 1

) 2k+1
4n

δ
2n−2k−1

2n

holds. Moreover,

m̂(y) = βk+1
∫
R+

y(t )̂x(βt) dt, (6)

where

β =

(
2n − 2k − 1

2k + 1

) 1
2n

δ−
1
n ,

is the optimal method of recovery.

Proof. From (1) by the Cauchy–Schwarz inequality we obtain

|x(k)(0)| ≤
(
∥̂x(·)∥2

L2(R+) + ∥̂x(n)(·)∥2
L2(R+)

)1/2
×
(
∥x(·)∥2

L2(R+) + ∥x(n)(·)∥2
L2(R+)

)1/2
.

Taking into account (5) we have

|x(k)(0)| ≤ Ân,k
(
∥x(·)∥2

L2(R+) + ∥x(n)(·)∥2
L2(R+)

)1/2
. (7)
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Put y(t) = x̂(bt), b > 0. Then

∥y(·)∥2
L2(R+) =

1
b
∥̂x(·)∥2

L2(R+), ∥y(n)(·)∥2
L2(R+) = b2n−1

∥̂x(n)(·)∥2
L2(R+).

Substituting y(·) into (7) we obtain that for all b > 0 the inequality

bk̂A2
n,k ≤ Ân,k

(
1
b
∥̂x(·)∥2

L2(R+) + b2n−1
∥̂x(n)(·)∥2

L2(R+)

)1/2

holds. In view of (5) and (2) we get that for all b > 0 the inequality f (b) ≥ 0 is fulfilled, where

f (b) = b2n∥̂x(n)(·)∥2
L2(R+) − Â2

n,kb
2k+1

+ Â2
n,k − ∥̂x(n)(·)∥2

L2(R+).

It is easily seen that f (·) has the unique minimum on R+

b0 =

(
(2k + 1)̂A2

n,k

2n∥̂x(n)(·)∥2
L2(R+)

) 1
2n−2k−1

.

On the other hand, f (1) = 0. Consequently, b0 = 1. Thus,

∥̂x(n)(·)∥L2(R+) = Ân,k

√
2k + 1
2n

.

It follows from (5) and (2) that

∥̂x(·)∥L2(R+) = Ân,k

√
2n − 2k − 1

2n
.

Put x̂1(t) = α̂x(βt), α, β > 0. Choose α and β such that ∥̂x1(·)∥L2(R+) = δ and ∥̂x(n)1 (·)∥L2(R+) = 1.
We have

α2β−1
∥̂x(·)∥2

L2(R+) = δ2, α2β2n−1
∥̂x(n)(·)∥2

L2(R+) = 1.

Hence,

α = Â−1
n,k

√
2n

2n − 2k − 1

(
2n − 2k − 1

2k + 1

) 1
4n

δ1−
1
2n ,

β =

(
2n − 2k − 1

2k + 1

) 1
2n

δ−
1
n .

Substituting x̂(t) = α−1̂x1(t/β) in (1) we obtain

x(k)(0) = α−1
∫
R+

x(t )̂x1(t/β) dt + α−1β−n
∫
R+

x(n)(t )̂x(n)1 (t/β) dt.

We change variables t = βs and put z(s) = x(βs). Thenwe have that for all z(·) ∈ Wn
2 (R+) the equality

z(k)(0) = λ1

∫
R+

z(s)̂x1(s) ds + λ2

∫
R+

z(n)(s)̂x(n)1 (s) ds (8)

holds with

λ1 =
βk+1

α
, λ2 =

1
αβ2n−k−1 .

It follows from general results about optimal recovery of linear functionals (see, for example, [5])
that

Ek(W n
2 (R+), δ) = sup

z(·)∈Wn
2 (R+)

∥z(·)∥L2(R+)≤δ

|z(k)(0)|. (9)
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From (8) by the Cauchy–Schwarz inequality we obtain

Ek(W n
2 (R+), δ) ≤ λ1δ

2
+ λ2. (10)

Let us estimate the error of method (6), which may be written in the following way

m̂(y) = λ1

∫
R+

y(t )̂x1(t) dt.

Suppose that z(·) ∈ W n
2 (R+) and ∥z(·) − y(·)∥L2(R+) ≤ δ. Taking into account (8) we have

|z(k)(0) − m̂(y)|

=

⏐⏐⏐⏐z(k)(0) − λ1

∫
R+

z(t )̂x1(t) dt + λ1

∫
R+

(z(t) − y(t))̂x1(t) dt
⏐⏐⏐⏐

=

⏐⏐⏐⏐λ1

∫
R+

(z(t) − y(t))̂x1(t) dt + λ2

∫
R+

z(n)(t )̂x(n)1 (t) dt
⏐⏐⏐⏐ ≤ λ1δ

2
+ λ2.

Consequently,

Ek(W n
2 (R+), δ) ≤ ek(W n

2 (R+), δ, m̂) ≤ λ1δ
2
+ λ2. (11)

The last inequality together with (10) gives

Ek(W n
2 (R+), δ) = λ1δ

2
+ λ2

= Ân,k

(
2n

2n − 2k − 1

) 2n−2k−1
4n

(
2n

2k + 1

) 2k+1
4n

δ
2n−2k−1

2n .

Inequality (11) implies also that m̂ is the optimal method of recovery. □

Note that the exact solution of extremal problem (9) gives us the exact inequality

|x(k)(0)| ≤ Knk∥x(·)∥
2n−2k−1

2n
L2(R+) ∥x(n)(·)∥

2k+1
2n

L2(R+),

where

Knk = Ân,k

(
2n

2n − 2k − 1

) 2n−2k−1
4n

(
2n

2k + 1

) 2k+1
4n

.

It may be also obtained from exact inequality (7) by Proposition 4 from [7, p. 119].
We now proceed to the Stechkin problem.

Theorem 2. The following equality

Sk(W n
2 (R+),N) = Â

2n
2k+1
n,k

√
2k + 1

2n − 2k − 1

(
2n − 2k − 1

2n

) n
2k+1

N−
2n−2k−1

2k+1

holds. The functional

⟨̂y∗, x(·)⟩ = βk+1
N

∫
R+

x(t )̂x(βN t) dt

where

βN =

(
2n

2n − 2k − 1

) 1
2k+1

(
N
Ân,k

) 2
2k+1

is extremal.
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Proof. As was proved in the optimal recovery problem among all optimal methods there exists a
method defined by a linear continuous functional, therefore

Ek(W n
2 (R+), δ) = inf

N>0
inf

∥y∗∥L2(R+)≤N
sup

x(·)∈Wn
2 (R+), y(·)∈L2(R+)

∥x(·)−y(·)∥L2(R+)≤δ

|x(k)(0) − ⟨y∗, y(·)⟩|

≤ inf
∥y∗∥L2(R+)≤N

sup
x(·)∈Wn

2 (R+)
|x(k)(0) − ⟨y∗, x(·)⟩| + δN = Sk(W n

2 (R+),N) + δN.

Consequently, for all N > 0

Sk(W n
2 (R+),N) ≥ Ek(W n

2 (R+), δ) − δN. (12)

We define the linear functional ŷ∗ as follows

⟨̂y∗, x(·)⟩ = λ1

∫
R+

x(t )̂x1(t) dt.

Then ∥̂y∗
∥L2(R+) = λ1δ. If we choose δ such that N = λ1δ, then it follows from (12) that

Sk(W n
2 (R+),N) ≥ λ2.

On the other hand, in view of (8) we have

Sk(W n
2 (R+),N) ≤ sup

x(·)∈Wn
2 (R+)

|x(k)(0) − ⟨̂y∗, x(·)⟩| = λ2.

Consequently, Sk(W n
2 (R+),N) = λ2. If N = λ1δ, then

δ = δN =

√
2n − 2k − 1

2k + 1

(
2n − 2k − 1

2n

) n
2k+1

(
Ân,k

N

) 2n
2k+1

.

For δ = δN we have

λ2 = Â
2n

2k+1
n,k

√
2k + 1

2n − 2k − 1

(
2n − 2k − 1

2n

) n
2k+1

N−
2n−2k−1

2k+1 .

The functional ŷ∗ may be written in the following way

⟨̂y∗, x(·)⟩ = βk+1
∫
R+

x(t )̂x(βt) dt

where β is defined in Theorem 1. For δ = δN

β = βN =

(
2n

2n − 2k − 1

) 1
2k+1

(
N
Ân,k

) 2
2k+1

. □
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