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Abstract. In the paper the problem of optimal recovery of the
solution of the heat equation on the hall space at the instant of
time from inaccurate observations of the solution at some other in-
stants of time is considered. Explicit forms for an optimal recovery
method and its error are given. The solution of a similar problem
with a priory information about temperature distributions at some
instants of time is also given. In all cases an optimal method uses
information about at most two observations.

Introduction

The initial stimulus for this paper was the following question: if
we have a possibility to observe the temperature of some body at the
instants of time t1, . . . , tn with known errors, then what is the best way
to use this information to recover its temperature at some other instant
of time?

We answer this question for the problem of temperature distribution
in the space Rd. More precisely, we state the problem of optimal re-
covery of the solution of the heat equation on Rd at some instant of
time from inaccurate observations of this solution at other instants of
time and give explicit forms of optimal recovery method and its error.

Usually in practice besides observations there is an a priory informa-
tion about temperature distribution which is in the fact that at some
instants of time there are known the bounds such that the temperature
could not be out of them. In this paper the explicit solutions of this
problem is also given.

The structure of the paper is the following. The first three sections
are devoted to the solution of the optimal recovery problem of the heat
equation from inaccurate observations. In the fourth section the similar
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problem is solving when an a priory information is giving. Historical
and bibliographical comments are in the fifth section.

1. Statement of the problem

It is well known that the temperature distribution in Rd is described
by the equation

(1)
∂u

∂t
= ∆u

(where ∆ is the Laplace operator in Rd and u(·, ·) is a function on
[0,∞)× Rd) with the given initial temperature distribution

(2) u(0, ·) = u0(·).
We assume that u0(·) ∈ L2(Rd). The unique solution of problem

(1)–(2) for t > 0 is the Poisson integral

(3) u(t, x) = u(t, x; u0(·)) =
1

2
√

πt

∫

Rd

e−
|x−ξ|2

4t u0(ξ) dξ,

where x = (x1, . . . , xd), ξ = (ξ1, . . . , ξd), |x− ξ|2 =
∑d

i=1(xi − ξi)
2, and

moreover, u(t, ·) → u0(·) as t → 0 in the L2(Rd)-metric.
We state the following problem. Let there be temperature distribu-

tions u(t1, ·), . . . , u(tn, ·) at the instants of time 0 ≤ t1 < . . . < tn given
approximately. More precisely, we know functions yi(·) ∈ L2(Rd) such
that

‖u(ti, ·)− yi(·)‖L2(Rd) ≤ δi, i = 1, . . . , n,

where δi > 0, i = 1, . . . , n. For every set of such functions we want to
find a function L2(Rd) which approximate a real temperature distribu-
tion in Rd at a fixed instant of time τ in a best way in some sense.

We mean by this the following. Any map m from (L2(Rd))n =
L2(Rd) × . . . × L2(Rd) to L2(Rd) we call a method of recovery (of the
temperature in Rd at the instant of time τ from the given information).
The error of this method is the value

e(τ, δ, m) = sup
u0(·), y(·)∈(L2(Rd))n

‖u(ti,·)−yi(·)‖L2(Rd)
≤δi, i=1,...,n

‖u(τ, ·)−m(y(·))(·)‖L2(Rd),

where y(·) = (y1(·), . . . , yn(·)) and δ = (δ1, . . . , δn).
We are interested in the value

E(τ, δ) = inf
m : (L2(Rd))n→L2(Rd)

e(τ, δ, m),
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which we call the error of optimal recovery and in a method m̂, for
which the lower bound is delivering, that is,

E(τ, δ) = e(τ, δ, m̂),

which is called an optimal recovery method (of the temperature in Rd

at the instant of time τ from the given information).

2. The statement of theorem

Before the statement of the theorem we make some constructions.
On the two-dimensional plane (t, x) we construct a set

M = co{ (tj, ln(1/δj)), 1 ≤ j ≤ n }+ { (t, 0) | t ≥ 0 },

where co A is the convex hall of A.
Define the function θ(·) on [0,∞) by the equality θ(t) = max{ x |

(t, x) ∈ M }, where θ(t) = −∞, if (t, x) /∈ M for all x. It is clear
that the function θ(·) is a concave polygonal line on [t1,∞). Denote by
ts1 < . . . < tsk

its points of break (we consider the point t1 as a point of
break too, that is ts1 = t1), which are evidently the subset of the points
{t1, . . . , tn} (see the figure where represented points have coordinates
(ti, ln(1/δi)) and the bold curve is the plot of θ(·)).
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For every t > 0 formula (3) defines a continuous linear operator
in L2(Rd),1 which we denote by Pt, and if P0 denotes the identical
operator, then u(t, ·; u0(·)) = Ptu0(·) for all t ≥ 0.

Theorem 1. For all τ ≥ 0 the equlity

E(τ, δ) = e−θ(τ)

holds.

(1) If t1 > 0 and 0 ≤ τ < t1, then any method is optimal;
(2) if τ = tsj

, 1 ≤ j ≤ k, then the method m̂ defined by the equality
m̂(y(·))(·) = ysj

(·) is optimal;
(3) if k ≥ 2 and τ ∈ (tsj

, tsj+1
), 1 ≤ j ≤ k − 1, then the method m̂

defined by the equality

m̂(y(·))(·) = (Ksj
∗ ysj

)(·) + (Ksj+1
∗ ysj+1

)(·),
where Ksj

(·) Ksj+1
(·) are functions from L2(Rd) with the

Fourier transforms

FKsj
(ξ) =

(tsj+1
− τ)δ2

sj+1
e−|ξ|

2(τ−tsj )

(tsj+1
− τ)δ2

sj+1
+ (τ − tsj

)δ2
sj

e−2|ξ|2(tsj+1−tsj )
,

FKsj+1
(ξ) =

(τ − tsj
)δ2

sj
e−|ξ|

2(τ+tsj+1−2tsj )

(tsj+1
− τ)δ2

sj+1
+ (τ − tsj

)δ2
sj

e−2|ξ|2(tsj+1−tsj )
,

is optimal;
(4) if τ > tsk

, then the method m̂ defined by the equality

m̂(y(·))(·) = Pτ−tsk
ysk

(·)
is optimal.

We give some remarks apropos to the formulated theorem.
1. If t1 > 0 and 0 ≤ τ < t1, then θ(τ) = −∞ so that E(τ, δ) = +∞,

that is, the past could not be recovered from inaccurate present. In
this case any method may be considered as optimal.

2. Note that the optimal method is linear, it “smooths” observations
(the convolution is an infinite differentiable function) and uses the in-
formation about at most two observations before and after the instant
of time τ or only before τ (if τ > tsk

).
3. If τ = ti and ti is not a point of break of θ(·), then the optimal

recovery method makes possible to correct this observation.
4. The case τ > tsk

means that the most precise observation of the
temperature was before the instant of time τ . In this situation the

1It follows, for example, from Young’s inequality since the Poisson integral is the
convolution of bounded function with function from L2(Rd).
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optimal recovery method is the solution of the heat equation at the
instant of time τ − tsk

with the initial temperature distribution ysk
(·).

3. Proof of Theorem 1

The proof consists of two parts: the lower bound of the optimal
recovery error E(τ, δ) and the upper bound of this value with presen-
tation of optimal method.

1. The lower bound of E(τ, δ). Recall that Pt is a continuous linear
operator in L2(Rd) which is defined by (3) for t > 0 and P0 is the
identical operator.

Let τ ≥ 0. Consider the problem

(4) ‖Pτu0(·)‖L2(Rd) → max, ‖Ptju0(·)‖L2(Rd) ≤ δj, j = 1, . . . , n,

u0(·) ∈ L2(Rd).

Denote its value (that is, the upper bound of ‖Pτu0(·)‖L2(Rd) with the

given constraints) by S and show that E(τ, δ) ≥ S.
Indeed, let u0(·) be an admissible function in (4) (that is, u0(·) sat-

isfies all constraints of the problem). Then −u0(·) is also admissible in
(4) and for any m : (L2(Rd))n → L2(Rd) we have

2‖Pτu0(·)‖L2(Rd) = ‖Pτu0(·)−m(0)(·)+m(0)(·)−Pτ (−u0(·))‖L2(Rd) ≤
2 sup

u0(·)∈L2(Rd)
‖Ptj u0(·)‖

L2(Rd)
≤δj , j=1,...,n,

‖Pτu0(·)−m(0)(·)‖L2(Rd) ≤

≤ 2 sup
u0(·)∈L2(Rd), y(·)∈(L2(Rd))n

‖Ptj u0(·)−yj(·)‖L2(Rd)
≤δj , j=1,...,n

‖Pτu0(·)−m(y(·))(·)‖L2(Rd).

Passing to the lower bound over all methods m in the right hand side
and to the upper bound over all admissible functions in (4) in the left
hand side, we obtain that E(τ, δ) ≥ S.

The next step is the proof of the fact that S = e−θ(τ). Let
F : L2(Rd) → L2(Rd) be the Fourier transform. It is well known (see,
for example, [1]) that for all t ≥ 0 the equality

F (Ptu0(·))(ξ) = e−|ξ|
2tFu0(ξ), ξ ∈ Rd,
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holds, and therefore by Plancherel’s theorem the squared value of prob-
lem (4) equals the value of the following problem

(5)
1

(2π)d

∫

Rd

e−2|ξ|2τ |Fu0(ξ)|2 dξ → max,

1

(2π)d

∫

Rd

e−2|ξ|2tj |Fu0(ξ)|2 dξ ≤ δ2
j , j = 1, . . . , n, u0(·) ∈ L2(Rd).

It can be shown that there is no existence in this problem, therefore
we consider its “extension”, namely we consider the following problem
(formally replacing (2π)−d|Fu0(ξ)|2 dξ on a positive measure):

(6)

∫

Rd

e−2|ξ|2τ dµ(ξ) → max,

∫

Rd

e−2|ξ|2tj dµ(ξ) ≤ δ2
j , j = 1, . . . , n, dµ(·) ≥ 0.

It is a convex problem. Its Lagrange function has the form

L(dµ(·), λ) = λ0

∫

Rd

e−2|ξ|2τ dµ(ξ) +
n∑

j=1

λj

(∫

Rd

e−2|ξ|2tj dµ(ξ)− δ2
j

)
,

where λ = (λ0, λ1 . . . , λn) is a set of Lagrange multipliers.
If we find an admissible measure dµ̂(·) in (6) and Lagrange multipliers

λ̂0 < 0, λ̂j ≥ 0, 1 ≤ j ≤ n, such that

(7) min
dµ(·)≥0

L(dµ(·), λ̂) = L(dµ̂(·), λ̂),

where λ̂ = (λ̂0, λ̂1, . . . , λ̂n) and

(8) λ̂j

(∫

Rd

e−2|ξ|2tj dµ̂(ξ)− δ2
j

)
= 0, j = 1, . . . , n,

then dµ̂(·) will be a solution of problem (6). Indeed, let dµ(·) be an ad-
missible measure in (6). Then using this fact (and taking into account

that λ̂j ≥ 0, 1 ≤ j ≤ n), and then (7) with (8), we have

λ̂0

∫

Rd

e−2|ξ|2τ dµ(ξ) ≥ λ̂0

∫

Rd

e−2|ξ|2τ dµ(ξ)+

+
n∑

j=1

λ̂j

(∫

Rd

e−2|ξ|2tj dµ(ξ)− δ2
j

)
≥ λ̂0

∫

Rd

e−2|ξ|2τ dµ̂(ξ)+

+
n∑

j=1

λ̂j

(∫

Rd

e−2|ξ|2tj dµ̂(ξ)− δ2
j

)
= λ̂0

∫

Rd

e−2|ξ|2τ dµ̂(ξ).
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Dividing on λ̂0 < 0 we obtain the required assertion.
From conditions (7) and (8) one can see what should be a measure

dµ̂(·) and Lagrange multipliers. Indeed, write the Lagrange function
in the form

(9) L(dµ(·), λ) =

∫

Rd

e−2|ξ|2τf(|ξ|2) dµ(ξ)−
n∑

j=1

λjδ
2
j ,

where

f(v) = λ0 +
n∑

j=1

λje
−2v(tj−τ).

Hence we see that if f(|ξ|2) ≥ 0 for all ξ ∈ Rd and the support of
measure dµ̂(·) is at zeros of this function, then for all dµ(·) ≥ 0 we
have L(dµ(·), λ) ≥ −∑n

j=1 λjδ
2
j = L(dµ̂(·), λ), that is, condition (7)

holds. But for all non-negative λ1, . . . , λn the function f(·) is convex
on R and therefore if a point v0 ∈ R such that f(v0) = f ′(v0) = 0, then
f(v) ≥ 0 for all v ∈ R. We will be guided by this observation.

Consider separately three cases: (a) τ ≥ t1 and there is a break point
of θ(·) right of τ , (b) τ ≥ t1 and there are not break points of θ(·) right
of τ , (c) τ < t1.

(a) Let τ ∈ [tsj
, tsj+1

). Put dµ̂(ξ) = Aδ(ξ− ξ0), where δ(·− ξ0) is the
delta-function at the point ξ0, and choose A with ξ0 from the conditions

(10)

∫

Rd

e−2|ξ|2tk dµ̂(ξ) = Ae−2|ξ0|2tk = δ2
k, k = sj, sj+1.

Hence it is easy to deduce that

A = δ

2tsj+1

tsj+1−tsj
sj δ

− 2tsj
tsj+1−tsj

sj+1

and

|ξ0|2 =
ln(δsj

/δsj+1
)

tsj+1
− tsj

=
ln 1/δsj+1

− ln 1/δsj

tsj+1
− tsj

.

Such point ξ0 ∈ Rd exists since it follows from the construction of the
polygonal line θ(·) that the slope of the line which pass threw the points
(tsj

, ln 1/δsj
) and (tsj+1

, ln 1/δsj+1
) is positive.

Put λ̂0 = −1, λ̂k = 0, k 6= sj, sj+1, and choose λ̂sj
and λ̂sj+1

such
that f(|ξ0|2) = f ′(|ξ0|2) = 0, that is, as the solution of the linear system

λsj
e−2|ξ0|2(tsj−τ) + λsj+1

e−2|ξ0|2(tsj+1−τ) = 1,

λsj
(tsj

− τ)e−2|ξ0|2(tsj−τ) + λsj+1
(tsj+1

− τ)e−2|ξ0|2(tsj+1−τ) = 0.
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Hence

λ̂sj
=

tsj+1
− τ

tsj+1
− tsj

(
δsj+1

δsj

) 2(τ−tsj )

tsj+1−tsj

,

λ̂sj+1
=

τ − tsj

tsj+1
− tsj

(
δsj

δsj+1

) 2(tsj+1−τ)

tsj+1−tsj

.

Thus, f(|ξ|2) ≥ 0 for all ξ ∈ Rd and the positive measure dµ̂(·) is sup-
ported at the point ξ0 where f(|ξ0|2) = 0. Consequently, the condition
(7) is fulfilled.

If τ ∈ (tsj
, tsj+1

), then evidently λ̂sj
> 0 and λ̂sj+1

> 0, and if τ = tsj
,

then λ̂sj
= 1 and λ̂sj+1

= 0, so that in view of (10) the condition (8)
is also fulfilled. It remains to check the admissibility of the measure
dµ̂(·) in problem (6).

It follows from the construction of the polygonal line θ(·) that all
points (ti, ln 1/δi), i = 1, . . . , n, are not higher that its plot, and since
this polygonal line is concave its plot is not higher than the line

p(t) =
ln 1/δsj+1

− ln 1/δsj

tsj+1
− tsj

(t− tsj
) + ln

1

δsj

= ln δ
− tsj+1−t

tsj+1−tsj
sj δ

− t−tsj
tsj+1−tsj

sj+1 ,

connecting the points (tsj
, ln 1/δsj

) and (tsj+1
, ln 1/δsj+1

). Then (taking
into account the expressions for A and |ξ0|2) we have

∫

Rd

e−2|ξ|2ti dµ̂(ξ) = Ae−2|ξ0|2ti = δ
2

tsj+1−ti

tsj+1−tsj
sj δ

2
ti−tsj

tsj+1−tsj
sj+1 =

= e−2p(ti) ≤ e
−2 ln 1

δi = δ2
i , i = 1, . . . , n.

that is, µ̂(·) is an admissible measure in problem (6) and, moreover, is
a solution of it.

Substituting µ̂(·) in the functional that should be maximize, we ob-
tain the value of problem (6)

∫

Rd

e−2|ξ|2τ dµ̂(ξ)=Ae−2|ξ0|2τ = δ
2

tsj+1−τ

tsj+1−tsj
sj δ

2
τ−tsj

tsj+1−tsj
sj+1 = e−2p(τ) = e−2θ(τ).

Approximating the delta-function by a sequence of delta-shaped
functions in a standard way, we obtain that the value of problem
(5) is the same. But then e−θ(τ) is the value of problem (4), that
is, S = e−θ(τ).

(b) Let τ ≥ tsk
(in particular, tsk

= t1, if θ(·) is a line). Put λ̂0 = −1,

λ̂sk
= 1, λ̂sj

= 0, j 6= k, and dµ̂(·) = δ2
sk

δ(·) (δ(·) is the delta-function
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at the zero). Then evidently (8) is fulfilled. Since for all ξ ∈ Rd the
inequality

f(|ξ|2) = −1 + e−2|ξ|2(tsk
−τ) ≥ 0

holds and f(0) = 0, (7) is fulfilled. The function θ(·) identically equals
ln(1/δsk

) in the interval [tsk
,∞) and it is clear that ln(1/δi) ≤ ln(1/δsk

),
1 ≤ i ≤ n. Consequently,

∫

Rd

e−2|ξ|2ti dµ̂(ξ) = δ2
sk

= e
−2 ln 1

δsk ≤ e
−2 ln 1

δi = δ2
i , i = 1, . . . , n,

that is, the measure dµ̂(ξ) is admissible in problem (6) and therefore
is a solution of it.

Te value of problem (6) is
∫

Rd

e−2|ξ|2τ dµ̂(ξ) = δ2
sk

= e
−2 ln 1

δsk = e−2θ(τ)

and hence by the same arguments as in the previous case the value of
problem (4) equals e−θ(τ).

(c) Let τ < t1. We show that in this case the value of problem (6)
equals +∞. Let x0 > 0. Evidently there exists a line x = at+ b, a > 0,
which separate the point (τ,−x0) and the set M , in particular,

−aτ − x0 ≥ b ≥ −ati + ln
1

δi

, 1 ≤ i ≤ n.

Denoting A = e−2b and choosing ξ0 ∈ Rd such that |ξ0|2 = a, from
these inequalities we obtain that A exp(−2|ξ0|2ti) ≤ δ2

i , 1 ≤ i ≤ n,
that is, the measure dµ(·) = δ(· − ξ0) is admissible in problem (6) and
A exp(−2|ξ0|2τ) ≥ exp(2x0). In view of arbitrariness of x0 the value of
problem (6) equals +∞. Hence as in the previous cases the value of
problem (4) equals +∞.

Thus it is proved that for all τ ≥ 0 the error of optimal recovery
E(τ, δ) ≥ e−θ(τ).

2. The upper bound of E(τ, δ) and optimal method. Let τ ≥ t1
and λ̂j, 1 ≤ j ≤ n, be the Lagrange multipliers which were found for

problem (6) for a given τ . The upper bound of E(τ, δ) and finding of
optimal method will be based on the following statement.

Lemma 1. Let the function y(·) = (y1(·), . . . , yn(·)) ∈ (L2(Rd))n be
such that there exists a solution û0(·) = û0(·, y(·)) of the problem

(11)
n∑

j=1

λ̂j‖Ptju0(·)− yj(·)‖2
L2(Rd) → min, u0(·) ∈ L2(Rd).
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Then for all γj > 0, 1 ≤ j ≤ n, the value of the problem

(12)
‖Pτu0(·)− Pτ û0(·)‖L2(Rd) → max, ‖Ptju0(·)− yj(·)‖L2(Rd) ≤ γj,

1 ≤ j ≤ n, u0(·) ∈ L2(Rd)

is not greater than the value of the problem

(13) ‖Pτu0(·)‖L2(Rd) → max,

n∑
j=1

λ̂j‖Ptju0(·)‖2
L2(Rd) ≤

n∑
j=1

λ̂jγ
2
j ,

u0(·) ∈ L2(Rd).

Proof. The minimizing functional in (11) is a smooth convex functional
on L2(Rd) and, consequently, vanishing of the derivative of this func-
tional at the point û0(·) is the necessary and sufficient condition for
the function û0(·) to be its minimum, that is, for all u0(·) ∈ L2(Rd) the
equality

(14) Re
n∑

j=1

λ̂j

∫

L2(Rd)

(Ptj û0(x)− yj(x))Ptju0(x) dx = 0

should be fulfilled.
Taking into account this fact it is easy to check that for all u0(·) ∈

L2(Rd) the equality

n∑
j=1

λ̂j‖Ptju0(·)− yj(·)‖2
L2(Rd) =

n∑
j=1

λ̂j‖Ptju0(·)− Ptj û0(·)‖2
L2(Rd)+

+
n∑

j=1

λ̂j‖Ptj û0(·)− yj(·)‖2
L2(Rd)

holds.
Let u0(·) be an admissible function in (12). Then it follows from the

last formula that

n∑
j=1

λ̂j‖Ptj(u0(·)− û0(·))‖2
L2(Rd) ≤

≤
n∑

j=1

λ̂j‖Ptju0(·)− yj(·)‖2
L2(Rd) ≤

n∑
j=1

λ̂jγ
2
j

and thus u0(·)− û0(·) is an admissible function in (13). Moreover, the
values of maximizing functionals in (12) and (13) coincide at elements
u0(·) and u0(·)− û0(·). This yields the required result. ¤
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The scheme of using this lemma is the following. First, we prove that
for γj = δj, 1 ≤ j ≤ n, the values of problems (4) and (13) coincide
(that is, the value of problem (13) equals e−θ(τ)). If we assume that
for all y(·) ∈ (L2(Rd))n there exists a solution of problem (11), then
the statement of Lemma means that the error e(τ, δ, m̂) of the method
m̂ : y(·) 7→ Pτ û0(·, y(·)) does not exceed e−θ(τ) and, moreover, E(τ, δ) ≤
e−θ(τ). Together with the proved lower bound hence e(τ, δ, m̂) = E(τ, δ)
and so that m̂ is an optimal method.

However the solution of (11) exists not for all y(·) ∈ (L2(Rd))n and
this fact will require some correction of the given arguments.

Thus we will prove the coincidences of the values of problems (4)
and (13) for γj = δj, 1 ≤ j ≤ n. In just the same way as we passed
from problem (4) to problem (6) (using Plancherel’s theorem and then
replacing (2π)−d|Fu0(ξ)|2 dξ by a positive measure), we pass from (13)
to the problem

(15)

∫

Rd

e−2|ξ|2τ dµ(ξ) → max,

n∑
j=1

λ̂j

∫

Rd

e−2|ξ|2tj dµ(ξ) ≤
n∑

j=1

λ̂jδ
2
j , dµ(·) ≥ 0.

This is a convex problem. Its Lagrange function has the form

L1(dµ(·), ν) = ν0

∫

Rd

e−2|ξ|2τ dµ(ξ)+

+ ν1

(
n∑

j=1

λ̂j

∫

Rd

e−2|ξ|2tj dµ(ξ)−
n∑

j=1

λ̂jδ
2
j

)
,

where ν = (ν0, ν1) are the set of Lagrange multipliers.
We show that the solution dµ̂(·) of problem (6) is also the solution of

this problem. For this reason (similarly to what was done for problem
(6)) it is sufficient to check that the measure dµ̂(·) is admissible in (15)
and that for some ν̂0 < 0 and ν̂1 ≥ 0 analogs of conditions (7) and (8)
for this problem are fulfilled, namely,

min
dµ(·)≥0

L1(dµ(·), ν̂) = L1(dµ̂(·), ν̂),

where ν̂ = (ν̂0, ν̂1) and

ν̂1

(
n∑

j=1

λ̂j

∫

Rd

e−2|ξ|2tj dµ̂(ξ)−
n∑

j=1

λ̂jδ
2
j

)
= 0.
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It follows immediately from the admissibility of the measure dµ̂(·)
in problem (6) its admissibility in problem (15). Put ν̂0 = −1 and

ν̂1 = 1. Then L1(dµ(·), ν̂) = L(dµ(·), λ̂) and, consequently, the first
of the written relations is equivalent to (7) and therefore is fulfilled.
The second relation immediately follows from (8). Thus, dµ̂(·) is the
solution of problem (15) and it means that its value coincides with the
value of problem (6).

Further, as above, approximating the delta-function by delta-shaped
functions we obtain that the squared of the value of problem (13) equals
the value of (15) and it means that the values of problems (4) and (13)
coincide.

Now we use the lemma. For this reason at first we find the value of
problem (11) for the function y(·) = (y1(·), . . . , yn(·)) ∈ (L2(Rd))n, for
which functions Fyi(·), 1 ≤ i ≤ n, are compactly supported.

Let τ ∈ [tsj
, tsj+1

). In this case, as it was proved, only Lagrange

multipliers λ̂sj
and λ̂sj+1

may not be zeros (and simultaneously are not
zeros) and therefore problem (11) has the form

λ̂sj
‖Ptsj

u0(·)−ysj
(·)‖2

L2(Rd)+λ̂sj+1
‖Ptsj+1

u0(·)−ysj+1
(·)‖2

L2(Rd) → min,

u0(·) ∈ L2(Rd).

If û0(·) = û0(·, y(·)) is the solution of this problem, then condi-
tion (14) is fulfilled, which according to Plancherel’s theorem after the
Fourie transform will be written in the form

Re

j+1∑

k=j

λ̂sk

∫

L2(Rd)

(e−|ξ|
2tsk Fû0(ξ)− Fysk

(ξ))e−|ξ|
2tsk Fu0(ξ) dξ = 0.

It is easy to verify that this relation will be fulfilled for all u0(·) ∈
L2(Rd), if the function û0(·) ∈ L2(Rd) such that its Fourier transform
has the form

(16) Fû0(ξ) =
λ̂sj

e−|ξ|
2tsj Fysj

(ξ) + λ̂sj+1
e−|ξ|

2tsj+1Fysj+1
(ξ)

λ̂sj
e−2|ξ|2tsj + λ̂sj+1

e−2|ξ|2tsj+1

.

But the expression in the right-hand side belongs L2(Rd) since the
functions Fysj

(·) and Fysj+1
(·) are compactly supported and therefore

û0(·) = û0(·, y(·)) ∈ L2(Rd). In view of sufficiency of condition (14) the
function û0(·) defined by formula (16) is the solution of problem (11).

Note that if τ = tsj
, then λ̂sj

= 1, λ̂sj+1
= 0, and the solution of

equation (11) in this case is evident (and of course it follows from (16))
and has the form

(17) Fû0(ξ) = e|ξ|
2tsj Fysj

(ξ).
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It is well known that compactly supported functions are dense in
L2(Rd). Then by Plancherel’s theorem it follows that functions which
have compactly supported Fourier transforms are also dense in L2(Rd).

Now let ũ0(·) ∈ L2(Rd) and y(·) = (y1(·), . . . , yn(·)) ∈ (L2(Rd))n

be such that ‖Ptj ũ0(·) − yj(·)‖L2(Rd) ≤ δj, 1 ≤ j ≤ n. Further, let

yk(·) = (y1k(·), . . . , ynk(·)) ∈ (L2(Rd))n, k ∈ N, be a sequence with the
property that functions Fyjk(·) are compactly supported and ‖yj(·)−
yjk(·)‖L2(Rd) ≤ 1/k, 1 ≤ j ≤ n, k ∈ N.

Fix k ∈ N. As it was proved, for yk(·) there exists the solution
û0(·, yk(·)) of problem (11). Since ‖Ptj ũ0(·)−yjk(·)‖L2(Rd) ≤ ‖Ptj ũ0(·)−
yj(·)‖L2(Rd) + ‖yj(·)− yjk(·)‖L2(Rd) ≤ δj + 1/k, 1 ≤ j ≤ n, the function
ũ0(·) is admissible in problem (12) with γj = γj(k) = δj + 1/k, 1 ≤
j ≤ n. Due to the statement of lemma the value of this problem does
not exceed the value of problem (13), which after replacing u0(·) =

a(k)v0(·), where a(k) =
√∑n

j=1 λ̂jγ2
j (k)/

∑n
j=1 λ̂jδ2

j , takes the form

a(k)‖Pτv0(·)‖L2(Rd) → max,

n∑
j=1

λ̂j‖Ptjv0(·)‖2
L2(Rd) ≤

n∑
j=1

λ̂jδ
2
j ,

v0(·) ∈ L2(Rd).

The value of this problem as it has proved coincides with the value
of problem (4) multiplied by a(k), that is, it equals a(k)e−θ(τ). In
particular (in view of admissibility of ũ0(·) in (12)), we obtain that

(18) ‖Pτ ũ0(·)− Pτ û0(·, yk(·))‖L2(Rd) ≤ a(k)e−θ(τ).

Let τ ∈ (tsj
, tsj+1

). The Fourier transform of functions Ksj
(·) and

Ksj+1
(·) from the statement of the theorem belong to the space of

rapidly decreasing infinitely differentiable functions on Rd. In this
space the Fourier transform is an isomorphism and therefore the func-
tions Ksj

(·) and Ksj+1
(·) belong to this space. In particular, they are

bound and then according to Young’s inequality the method m̂ from
the statement of theorem is continuous linear operator from (L2(Rd))n

to L2(Rd).
It follows from the form of method m̂, expressions of functions

FKsj
(·) and FKsj+1

(·), and formula (16) that

Fm̂(yk(·))(ξ) = FKsj
(ξ)Fysjk(ξ) + FKsj+1

(ξ)Fysj+1k(ξ) =

= e−|ξ|
2τFû0(·, yk(·))(ξ),

that is,

(19) m̂(yk(·))(·) = Pτ û0(·, yk(·)).
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If τ = tsj
, then it follows from the form of method m̂ that

Fm̂(yk(·))(ξ) = Fysjk(ξ) = e−|ξ|
2τFû0(·, yk(·))(ξ),

that is, again formula (19) holds.
Returning to ũ0(·) ∈ L2(Rd) and y(·) = (y1(·), . . . , yn(·)) ∈ (L2(Rd))n

such that ‖Ptj ũ0(·) − yj(·)‖L2(Rd) ≤ δj, 1 ≤ j ≤ n, according to (19)
and (18), we have

‖Pτ ũ0(·)− m̂(y(·))(·)‖L2(Rd) ≤ ‖Pτ ũ0(·)− Pτ û0(·, yk(·))‖L2(Rd)+

+ ‖m̂(yk(·))(·)− m̂(y(·))(·)‖L2(Rd) ≤
≤ a(k)e−θ(τ) + ‖m̂(yk(·)− y(·))(·)‖L2(Rd).

This is true for any k ∈ N. Passing to the limit as k → ∞ (taking
into account that a(k) → 1 and that the method m̂ is continuous), we
obtain the inequality

‖Pτ ũ0(·)− m̂(y(·))(·)‖L2(Rd) ≤ e−θ(τ).

Passing here to the upper bound over all ũ0(·) ∈ L2(Rd) and y(·) =
(y1(·), . . . , yn(·)) ∈ (L2(Rd))n such that ‖Ptj ũ0(·) − yj(·)‖L2(Rd) ≤ δj,

1 ≤ j ≤ n, we obtain that e(τ, δ, m̂) ≤ e−θ(τ). This and the proved
lower bound yield that

e−θ(τ) ≤ E(τ, δ) ≤ e(τ, δ, m̂) ≤ e−θ(τ),

that is, E(τ, δ) = e−θ(τ) and m̂ is an optimal method.
Thus for the case when τ ∈ [tsj

, tsj+1
) the theorem is proved.

Let τ ≥ tsk
. If τ = tsk

, then just the same arguments as for the case
when τ = tsj

give the required estimate and optimal method.
Let τ > tsk

. Here arguments are also similar to the previous ones
but rather more simply, therefore we will be short. In the given case

λ̂sk
= 1 and all the rest Lagrange multipliers are vanishing therefore

problem (11) takes the form

‖Ptsk
u0(·)− ysk

(·)‖2
L2(Rd) → min, u0(·) ∈ L2(Rd).

If y(·) = (y1(·), . . . , yn(·)) such that functions Fyj(·), 1 ≤ j ≤ n, are
compactly supported, then the solution û0(·) = û0(·, y(·)) of the given

problem exists and Fû0(ξ) = e|ξ|
2tsk Fysk

(ξ).
Further, repeating word for word the previous arguments we arrive

at the inequality (18).
The method m̂ from the statement of the theorem by definition

is a continuous linear operator from (L2(Rd))n to L2(Rd). If y(·) =

yk(·), then it is clear that Fm̂(yk(·))(ξ) = e−|ξ|
2(τ−tsk

)Fysk
(ξ) =
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e−|ξ|
2τFû0(·, yk(·))(ξ), . . m̂(yk(·))(·) = Pτ û0(·, yk(·))(·). Further ar-

guments are the same as in the previous case. The theorem is proved.

4. Optimal recovery with a priory information

We again consider problem (1)–(2) and instants of time 0 ≤ t1 <
. . . < tn. Let A and B be subsets of { 1, . . . , n } (one of which may be
empty) such that A ∩ B = ∅ and A ∪ B = { 1, . . . , n }. We state the
following problem. We know the following a priory information: the
temperature could not fall outside some limits at instants of time ti,
i ∈ A, that is, we know that ‖u(ti, ·)‖L2(Rd) ≤ δi, where δi > 0, i ∈ A.

Let B 6= ∅ and assume we know approximately temperature distri-
butions u(ti, ·) at instants of time ti, i ∈ B, that is, we know functions
yi(·) ∈ L2(Rd) such that ‖u(ti, ·) − yi(·)‖L2(Rd) ≤ δi, where δi > 0. As
above, with any set of such functions we want to associate a function
from L2(Rd) which approximate the real temperature distribution in
Rd at a fixed instant of time τ in some sense in a best way.

If B 6= ∅ and card B = l, then again any map m from (L2(Rd))l to
L2(Rd) is considered as a method of recovery. The quantity

e(τ, A,B, δ,m) = sup
u0(·), yB(·)∈(L2(Rd))l

‖u(ti,·)‖L2(Rd)
≤δi, i∈A

‖u(ti,·)−yi(·)‖L2(Rd)
≤δi, i∈B

‖u(τ, ·)−m(yB(·))(·)‖L2(Rd),

where yB(·) = {yi(·)}i∈B and δ = (δ1, . . . , δn), is called the error of this
method.

We are interested in the quantity

E(τ, A, B, δ) = inf
m : (L2(Rd))l→L2(Rd)

e(τ, δ,m),

which also called the error of optimal recovery and in the method m̂
delivering the lower bound, that is, for which

E(τ, A, B, δ) = e(τ, A, B, δ, m̂),

which is called an optimal recovery method (of the temperature in Rd

at the insant of time τ from the giving information).
Note that if A = ∅, then we arrive at the previous setting. If

B = ∅, then there are no observations and thus there are no sense
to speak about any recovery method. But we can speak about esti-
mate of temperature at the instant of time τ , that is, about finding
of bounds which temperature certainly could not exceed for a given a
priory information. It is natural to take the Chebyshev radius of the
set {u(τ, ·)(·) ∈ L2(Rd) | ‖u(ti, ·)‖L2(Rd) ≤ δi, 1 ≤ i ≤ n } as such
estimate, that is, the minimal radius of balls containing the given set.
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Since the set is centrally symmetric it is easy to verify that this quantity
is

E(τ, A, ∅, δ) = sup
u0(·)∈L2(Rd)

‖u(ti,·)‖L2(Rd)
≤δi, i=1,...,n

‖u(τ, ·)(·)‖L2(Rd).

The mentioned setting, as it was noted, generalized the initial setting
and we could consider precisely the problem with a priory information
at the very beginning. But we wanted to remain the simplicity of the
initial setting the more so the proof of the generalized result actually
the same and we only show those changes which one should do in the
previous arguments.

Theorem 2. For all A and B and any τ ≥ 0 the equality

E(τ, A,B, δ) = e−θ(τ)

holds. Let B 6= ∅. Then

(1) if t1 > 0, 0 ≤ τ < t1, then any method is optimal;
(2) if τ = tsj

, 1 ≤ j ≤ k, and sj ∈ B, then the method m̂, defined
be equality m̂(y(·))(·) = ysj

(·) is optimal, and if sj /∈ B, then
the zero mapping is optimal method;

(3) if k ≥ 2, τ ∈ (tsj
, tsj+1

), 1 ≤ j ≤ k − 1, and sj, sj+1 ∈ B,
then the method m̂, defined in (3) in Theorem 1 is optimal; if
sj ∈ B, and sj+1 /∈ B, then m̂(y(·))(·) = (Ksj

∗ysj
)(·) is optimal

method (Ksj
(·) from Theorem 1); if sj /∈ B, and sj+1 ∈ B, then

the method m̂(y(·))(·) = (Ksj+1
∗ ysj+1

)(·) is optimal (Ksj+1
(·)

from Thorem 1); finally, if sj, sj+1 /∈ B, then the zero mapping
is optimal method;

(4) if τ > tsk
and sk ∈ B, then the method m̂, defined in (4) in

Thorem 1, is optimal, if sk /∈ B, then the zero mapping is
optimal method.

Proof. Let B = ∅. Then E(τ, A, ∅, δ) coincides with the value of prob-
lem (4) (which, as it was proved, equals e−θ(τ) for all τ ≥ 0) so that
E(τ, A, ∅, δ) = e−θ(τ).

Let B 6= ∅. Then repeating word for word the arguments from the
beginning of the proof of Theorem 1, we obtain that E(τ, A, B, δ) no
less than the value of problem (4) and thus for any sets A and B and
for all τ ≥ 0 the lower bound E(τ, A, B, δ) ≥ e−θ(τ) holds.

We proceed to the proof of the upper bound and to presentation of
appropriate optimal methods. Here we will be based on the following
statement which formally generalize Lemma 1 but is proved in just the
same way.
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Lemma 2. Let the function yB(·) = {yj(·)}j∈B be such that there exists
a solution û0(·) = û0(·, yB(·)) of the problem

∑
j∈A

λ̂j‖Ptju0(·)‖2
L2(Rd) +

∑
j∈B

λ̂j‖Ptju0(·)− yj(·)‖2
L2(Rd) → min,

u0(·) ∈ L2(Rd).

Then for any γj > 0, 1 ≤ j ≤ n, the value of the problem

‖Pτu0(·)− Pτ û0(·)‖L2(Rd) → max, ‖Ptju0(·)‖L2(Rd) ≤ γj, j ∈ A,

‖Ptju0(·)− yj(·)‖L2(Rd) ≤ γj, j ∈ B, u0(·) ∈ L2(Rd),

is not greater than the value of the problem

‖Pτu0(·)‖L2(Rd) → max,

n∑
j=1

λ̂j‖Ptju0(·)‖2
L2(Rd) ≤

n∑
j=1

λ̂jγ
2
j ,

u0(·) ∈ L2(Rd).

Let τ ∈ [tsj
, tsj+1

). If sj, sj+1 ∈ B, then just the same arguments as
in Theorem 1 prove the optimality of appropriate methods.

Let sj ∈ B and sj+1 /∈ B. In this case according to Lemma 2 the
analog of problem (11) has the form

λ̂sj
‖Ptsj

u0(·)− ysj
(·)‖2

L2(Rd) + λ̂sj+1
‖Ptsj+1

u0(·)‖2
L2(Rd) → min,

u0(·) ∈ L2(Rd).

Again the same arguments as in Theorem 1 (with ysj+1
(·) = 0) lead to

the proof of the optimality of appropriate methods.
If sj /∈ B and sj+1 /∈ B, then the analog of problem (11) has the

form

λ̂sj
‖Ptsj

u0(·)‖2
L2(Rd) + λ̂sj+1

‖Ptsj+1
u0(·)‖2

L2(Rd) → min,

u0(·) ∈ L2(Rd),

and here the zero function evidently is a solution. The optimality of
the zero method immediately follows from Lemma 2.

The rest cases are considered similarly. ¤

5. Comments

Optimal recovery problems solved in this paper are included in the
following general scheme. Let X be a linear space, W a subset (class)
in X, Y1, . . . , Yr, and Z normed spaces, Ii : X → Yi, 1 ≤ i ≤ r, linear
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operators. We state the problem of optimal recovery of a linear oper-
ator Λ: X → Z on the class W from the following information about
elements from this class: for every element x ∈ W we know a vector
y = (y1, . . . , yr) ∈ Y1 × . . . × Yr such that ‖Iix − yi‖Yi

≤ δi, δi ≥ 0,
1 ≤ i ≤ r.

By optimal recovery of Λ on W from the given information we mean
the following. Any map m from Y1 × . . . × Yr to Z is admitted as a
recovery method (of Λ on W from the given information). The quantity

e(Λ,W, I, δ, m) = sup
x∈W, y∈Y1×...×Yr

‖Iix−yi‖Yi
≤δi, i=1,...,r

‖Λx−m(y)‖Z ,

where I = (I1, . . . , Ir) and δ = (δ1, . . . , δr), is called the error of this
method.

The quantity

E(Λ,W, I, δ) = inf
m : Y1×...×Yr→Z

e(Λ,W, I, δ, m),

is called the error of optimal recovery, and a method m̂ delivering the
lower bound, that is, for which

E(Λ, W, I, δ) = e(Λ,W, I, δ, m̂),

is called an optimal method of recovery (of Λ on W from the given
information).

For example, in according with these notation in the problem with
a priory information and when B 6= ∅ (card B = l) we have: r = l,
X = Y1 = . . . = Yl = Z = L2(Rd),

W = {u0(·) ∈ L2(Rd) | ‖Ptiu0(·)‖L2(Rd) ≤ δi, i ∈ A }
(if A = ∅, the we put W = X = L2(Rd)), Ii = Pti , i ∈ B, Λ = Pτ .

The stated approach to definition of optimal method (in an abstract
problem) ideologically goes back to the papers of A. N. Kolmogorov
of the 1930’s devoted to finding of the best approximation tool for all
functions from the given class at once. The setting mentioned here for
the case when r = 1, X and Y are finite-dimensional spaces, Z = R
(the problem about the recovery of a linear functional) and δ1 = 0
(the information is given precisely) was considered for the first time by
S. A. Smolyak [2]. He proved that if W is a convex centrally symmetric
set, then among optimal methods there exists a linear one. Quite many
papers (see [3]–[7]) were devoted to the extension of this fact to more
general situations but in some sense the final result in this field, namely
necessary and sufficient conditions of existing of linear optimal method,
was obtained by authors [8]. Quite extensive literature is devoted to
optimal recovery of linear functionals. The general approach to the
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solution of similar problems based on standard methods of extremum
theory is explained in [9]. Many concrete results and further references
may be found in the books [10]–[14].

The general result concerning the existence of linear method for op-
erators (Z is a Hilbert space) was proved in [15] and there were also
obtained concrete results about optimal recovery of linear operators.
Further development of these subjects was given by authors [16]–[18]
where other approaches were used based on general principles of ex-
tremum theory.

An application of optimal recovery of linear operators to problems
of mathematical physics may be found in [19]–[23].
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