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THE BEST APPROXIMATION OF A SET
WHOSE ELEMENTS ARE KNOWN APPROXIMATELY

G. G. Magaril-Il’yaev, K. Yu. Osipenko, and E. O. Sivkova UDC 517.518.8

Abstract. This paper is concerned with the problem of the best (in a precisely defined sense) approxi-
mation with given accuracy of periodic functions and functions on the real line from, respectively, a finite
tuple of noisy Fourier coefficients or noisy Fourier transform on an arbitrary set of finite measure.

Introduction

We start with the general formulation of the best approximation problem with fixed accuracy to
elements of a given class, provided that these elements are known approximately. Let X be a vector
space, and W be a nonempty subset (class) of elements of X. Next, let Y be a normed linear space,
I : X → Y be a linear operator, and δ ≥ 0. The elements from W are known approximately, i.e.,
regarding each element x ∈ W one knows (“observes”) an element y ∈ Y such that ‖Ix − y‖Y ≤ δ (if
δ = 0, then one knows Ix). So, the information about elements from W is contained in the triple (Y, I, δ).

To recover from a given information the values of some linear operator T : X → Z on a class W with
given accuracy is to put forward a recovery method ϕ : Y → Z with the required approximation accuracy
(error); the latter is defined as follows:

e(δ, ϕ) = e(T, W, Y, I, δ, ϕ) = sup
x∈W, y∈Y
‖Ix−y‖Y ≤δ

‖Tx − ϕ(y)‖Z .

Assume that pairs (Y, I) are taken from the set I, and moreover, corresponding to each (Y, I) there is
some nonnegative number v(Y, I), referred to as the amount of information used. The question is: Which
minimal amount of information is required to recover the values of a given operator T on the class W
with error not exceeding a given number ε? More precisely, if Φ(Y ) is the set of all mappings from Y
to Z, then it is required, for given ε > 0 and δ ≥ 0, to find, first, the quantity

V (ε, δ) = inf
{
v(Y, I) | ∃ (

ϕ, (Y, I)
) ∈ Φ(Y ) × I : e(δ, ϕ) ≤ ε

}
,

and second, the tuples
(
ϕ̂, (Ŷ , Î)

)
on which the infimum is attained. Such tuples will be called optimal.

If the set of those
(
ϕ, (Y, I)

) ∈ Φ(Y ) × I for which e(δ, ϕ) ≤ ε is empty, then we put V (ε, δ) = +∞.
This means that from the given information one is unable to recover the elements from W with given
accuracy.

This statement of the problem has its source in the definition of the ε-entropy of a set—this is the
quantity characterizing the nearly best ε-approximation of a set by a finite set of elements (see, e.g., [1]).
Moreover, this statement is, in a certain sense, converse to the problem of optimal recovery of functions
from a given class from their noisy spectrum. Similar problems have been studied by a number of authors.
We note the works [2–7].
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1. Periodic Case

Given a natural number n, let Wn
2 (T) be the Sobolev class of 2π-periodic functions x(·) for which the

(n − 1)th derivative is absolutely continuous and ‖x(n)(·)‖L2(T) ≤ 1, where

‖x(·)‖L2(T) =
(

1
2π

∫

T

|x(t)|2 dt

)1/2

.

The Fourier coefficients of x(·) ∈ Wn
2 (T) are given by

cj = cj

(
x(·)) =

1
2π

∫

T

x(t)e−ijt dt, j ∈ Z.

We pose the following problem. Assume that, for any finite tuple of integers, one is able to measure
(exactly or approximately) the Fourier coefficients of each function x(·) ∈ Wn

2 (T) with subscripts from
a given tuple. Our aim is to use this information to recover in the metric of L2(T), with fixed accuracy,
the original elements x(·) and their kth derivatives (1 ≤ k ≤ n − 1), choosing from the set of tuples the
one having the least number of elements.

We refine the statement of the problem to be in line with the general scheme outlined above. Let
X be the space of 2π-periodic functions for which the (n − 1)th derivative is absolutely continuous and
the nth derivative belongs to the space L2(T), W = Wn

2 (T), and Z = L2(T). To each finite tuple α of
integers we assign the pair

(
l
N(α)
∞ , Iα

)
, where N(α) is the number of elements in a tuple, l

N(α)
∞ is the space

C
N(α) of vectors y =

(
y1, . . . , yN(α)

)
with norm ‖y‖

l
N(α)
∞

= max
1≤i≤N(α)

|yi|, and Iα : X → l
N(α)
∞ is the linear

operator assigning to a function x(·) its Fourier coefficients with numbers from the tuple α. So, in our
setting, I is the set of pairs

(
l
N(α)
∞ , Iα

)
labeled by finite subsets of the set of integers, and for δ = 0 the

available information
(
l
N(α)
∞ , Iα, δ

)
about a function x(·) ∈ Wn

2 (T) is contained in the Fourier coefficients
of x(·) with numbers from α, while for δ > 0, we have at our disposal N(α) numbers, each of which differs
in absolute value from the corresponding Fourier coefficient at most by δ. We set v

(
l
N(α)
∞ , Iα

)
= N(α).

Given 0 ≤ k ≤ n − 1, let Dk be the kth order differential operator (D0 is the identity operator) and
let ϕ : l

N(α)
∞ → L2(T) be a recovery method. In accordance with the general scheme, its error is as follow:

e(δ, ϕ) = e
(
Dk, Wn

2 (T), lN(α)
∞ , Iα, δ, ϕ

)
= sup

x(·)∈W n
2 (T), y∈l

N(α)
∞

‖Iαx(·)−y‖
l
N(α)
∞

≤δ

‖Dkx(·) − ϕ(y)(·)‖L2(T).

In this setting, the quantity we are interested in is

V (ε, δ) = inf
{

N(α)
∣
∣
∣ ∃

(
ϕ,

(
lN(α)
∞ , Iα

)) ∈ Φ
(
lN(α)
∞

)× I : e(δ, ϕ) ≤ ε
}

.

Moreover, we are interested in α̂ and ϕ̂ for which the infimum is attained on tuples
(
ϕ̂,

(
l
N(α̂)
∞ , Iα̂

))
. In

this case, we say that α̂ is an optimal tuple and ϕ̂ is an optimal method.
Given δ > 0, we set

Nδ = max
{

N ∈ Z+

∣
∣
∣ 2δ2

N∑

j=0

j2n < 1
}

and N0 = +∞. Next, for each m ∈ Z+, we define

εm =

⎛

⎝ 1
(m + 1)2(n−k)

+ 2δ2
m∑

j=0

j2k

(

1 −
(

j

m + 1

)2(n−k)
)⎞

⎠

1/2

.

It is readily checked that 1 = ε0 > ε1 > · · · > εNδ
for δ > 0.
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Theorem. Let n be a natural number, k be an integer number, 0 ≤ k ≤ n − 1, and let ε > 0. If ε ≥ 1
and k ≥ 1, then V (ε, δ) = 0. If ε ≥ 1 and k = 0, then V (ε, δ) = 1 and α = {0} is an optimal set. Next,
if εm ≤ ε < εm−1, m = 1, 2, . . . , Nδ, then

V (ε, δ) =

{
2m + 1, k = 0,

2m, k ≥ 1.

The set

α =

{
{0,±1, . . . ,±m}, k = 0,

{±1, . . . ,±m}, k ≥ 1,

is optimal, and the method

ϕ̃(y)(t) =
∑

|j|≤m

(ij)k

(

1 −
(

j

m + 1

)2(n−k)
)

yje
ijt

is optimal. If δ > 0 and ε < εNδ
, then V (ε, δ) = +∞ is optimal.

Proof. Let α be a tuple of integers, δ ≥ 0, and ϕ : l
N(α)
∞ → L2(T).

(1) We estimate e
(
Dk, Wn

2 (T), lN(α)
∞ , Iα, δ, ϕ

)
from below. First, we claim that this quantity is not

smaller than the value of the problem

‖x(k)(·)‖L2(T) → max, ‖Iαx(·)‖
l
N(α)
∞

≤ δ, ‖x(n)(·)‖L2(T) ≤ 1, (1)

i.e., it is not smaller than the supremum of the functional to be maximized under these constraints.
Indeed, let x(·) be an admissible function for problem (1) (i.e., x(·) satisfies the constraints of the

problem). Then, clearly, the function −x(·) is also admissible, and so

2‖x(k)(·)‖L2(T) ≤ ‖x(k)(·) − ϕ(0)(·)‖L2(T) + ‖ − x(k)(·) − ϕ(0)(·)‖L2(T)

≤ 2 sup
‖Iαx(·)‖

l
N(α)
∞

≤δ,

‖x(n)(·)‖L2(T)
≤1

‖x(k)(·) − ϕ(0)(·)‖L2(T) ≤ 2 sup
‖Iαx(·)−y‖

l
N(α)
∞

≤δ,

y∈l
N(α)
∞ , ‖x(n)(·)‖L2(T)

≤1

∥
∥x(k)(·) − ϕ

(
y(·))(·)∥∥

L2(T)
.

The required result follows if we take the supremum on the left over all admissible functions for problem (1).
(2) Now let us estimate from below the value of problem (1). By Parseval’s identity, the squared

value of this problem equals the value of the problem
∑

j∈Z
j2k|cj |2 → max, |cj | ≤ δ, j ∈ α,

∑

j∈Z
j2n|cj |2 ≤ 1. (2)

Further, we assume that k ≥ 1 (the case k = 0 is simple and is dealt with similarly). For each s ∈ N

we denote Δs = {±1, . . . ,±s} and set

ŝ = max{s ∈ N | card(α ∩ Δs) = 2s},
assuming that ŝ = 0 if the set in curly bracketed is empty. Next, let

p0 = max
{

p
∣
∣
∣ 2δ2

p∑

j=0

j2n < 1, 0 ≤ p ≤ ŝ

}
.

Consider the sequence cj , j ∈ Z, defined as follows: if p0 < ŝ, then cj = δ for |j| ≤ p0,

cp0+1 = c−(p0+1) =
1√
2
(p0 + 1)−n

√√
√
√1 − 2δ2

p0∑

j=0

j2n,
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and cj = 0 for the remaining j. If p0 = ŝ, then it is clear that either p0 + 1 or −(p0 + 1) does not lie in α.
Let m be the number (of these two) that does not lie in α. We set

cm = (p0 + 1)−n

√√
√
√1 − 2δ2

p0∑

j=0

j2n,

cj = δ for |j| ≤ p0, and cj = 0 for the remaining j. The so-defined sequence is admissible for problem (2).
Indeed, if p0 < ŝ, then |cj | ≤ δ for |j| = p0 + 1, for otherwise

1√
2
(p0 + 1)−n

√√
√
√1 − 2δ2

p0∑

j=0

j2n > δ ⇐⇒ 2δ2
p0+1∑

j=0

j2n < 1,

contradicting the definition of p0. Moreover,
∑

j∈Z
j2n|cj |2 = 1, which is clear. This equality holds if and

only if p0 = ŝ.
Hence, the value of problem (2) is not smaller than the value that the maximized functional takes on

this sequence; i.e., it is not smaller than

2δ2
p0∑

j=0

j2k + (p0 + 1)−2(n−k)

(
1 − 2δ2

p0∑

j=0

j2n

)
= ε2

p0 .

Therefore, it follows from (1) that

e(δ, ϕ) = e
(
Dk, Wn

2 (T), lN(α)
∞ , Iα, δ, ϕ

) ≥ εp0 . (3)

(3) We claim that this estimate is attained for the method

ϕ̃(y)(t) =
∑

|j|≤p0

(ij)kωjyje
ijt,

where

ωj = 1 −
(

j

p0 + 1

)2(n−k)

, |j| ≤ p0.

By definition, the squared error of this method is equal to the value of the extremal problem
∑

|j|≤p0

j2k|cj − ωjyj |2 +
∑

|j|>p0

j2k|cj |2 → max, |cj − yj | ≤ δj , j ∈ α,
∑

j∈Z
j2n|cj |2 ≤ 1. (4)

Let us estimate its value from above. We set

λ = (p0 + 1)−2(n−k), λj = j2kωj , |j| ≤ p0.

If 0 < |j| ≤ p0, then, using the straightforward equality

j2k

(
ω2

j

λj
+

(1 − ωj)2

j2nλ

)

and applying the Cauchy–Schwarz inequality, we see that

j2k|cj − ωjyj |2 = j2k|ωj(cj − yj) + cj(1 − ωj)|2

≤ j2k

(
ω2

j

λj
+

(1 − ωj)2

j2nλ

)
(|cj − yj |2λj + |cj |2λj2n

)
= |cj − yj |2λj + |cj |2λj2n.

If |j| > p0, then clearly j2k ≤ λj2n. From these relations it follows that the maximized functional in (4)
is estimated from above by the quantity

∑

|j|≤p0

|cj − yj |2λj + λ
∑

|j|>p0

j2n|cj |2 ≤ δ2
∑

|j|≤p0

λj + λ = ε2
p0 .
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Hence by (3) it follows that
e(δ, ϕ̃) = εp0 . (5)

(4) Let εm ≤ ε < εm−1 for some m ≥ 1. Then, for the tuple α = {±1, . . . ,±m}, it follows from (5)
that

e(0, ϕ̃) = εm ≤ ε.

Assume that there exists an α and a method ϕ such that N(α) < 2m and e(0, ϕ) ≤ ε. Then ŝ ≤ m and
p0 ≤ m − 1. Hence, in view of (3),

ε < εm−1 ≤ εp0 ≤ e(0, ϕ) ≤ ε.

This contradiction shows that V (ε, 0) = 2m. The case ε ≥ 1 is dealt with similarly.
Let δ > 0 and ε < εNδ

. Since p0 ≤ Nδ for all α, we have

e(δ, ϕ) ≥ εp0 ≥ εNδ
> ε

for any method. This means that in our setting V (ε, δ) = +∞.

2. Aperiodic Case

We shall be concerned with functions on the real line. Let Wn
2 (R) be the Sobolev class of functions

x(·) for which the (n − 1)th derivative is locally absolutely continuous and ‖x(n)(·)‖L2(R) ≤ 1.
Consider the following problem. Assume that, for any measurable subset of R of finite Lebesgue

measure, one may find (exactly or approximately) the Fourier transform of each function x(·) ∈ Wn
2 (T)

on this set. Our aim is to use this information to recover in the metric of L2(R), with fixed accuracy, the
original elements x(·) and their kth derivative (1 ≤ k ≤ n − 1) by choosing from these subsets the one
that has the smallest measure.

We refine the statement of the problem to be in line with the general scheme. Let X be the space of
functions on R for which the (n − 1)th derivative is locally absolutely continuous and the nth derivative
belongs to the space L2(R). Also let W = Wn

2 (R), Z = L2(R), and let F : L2(R) → L2(R) be the
Fourier transform. To each set A ⊂ R of finite Lebesgue measure corresponds the pair (L2(A), IA), where
IA : X → L2(A) is the linear operator assigning to a function x(·) the restriction Fx(·)|A of Fx(·) to A.
So, in this setting I is the set of pairs (L2(A), IA) labeled by subsets A of finite measure, and for δ = 0 the
available information (L2(A), IA, δ) about a function x(·) ∈ Wn

2 (R) is that we know the Fourier transform
of x(·) on A, while for δ > 0 we know only a function y(·) ∈ L2(A) such that ‖Fx(·)− y(·)‖L2(A) ≤ δ. We
set v(L2(A), IA) = mes A.

Let, as before, Dk be the kth order differential operator (D0 be the identity operator), A be a set of
finite measure, and ϕ : L2(A) → L2(R) be a recovery method. In accordance with the general scheme, its
error is

e(δ, ϕ) = e(Dk, Wn
2 (R), L2(A), IA, δ, ϕ) = sup

x(·)∈W n
2 (R), y(·)∈L2(A)

‖Fx(·)−y(·)‖L2(A)≤δ

‖Dkx(·) − ϕ(y)(·)‖L2(R)

and
V (ε, δ) = inf

{
mes A | ∃ (

ϕ, (L2(A), IA)
) ∈ Φ

(
L2(A)

)× I : e(δ, ϕ) ≤ ε
}
.

If for Â and ϕ̂ the minimum is attained at the tuple
(
ϕ̂, (L2(Â), IÂ)

)
, then we say that Â is an optimal

set and ϕ̂ is an optimal method.

Theorem. Let n be a natural number, k be an integer number, 0 ≤ k ≤ n − 1, and let ε > 0. Then

V (ε, 0) = ε−1/(n−k).

The optimal set is the interval Â = [−σε, σε], where 2σε = V (ε, 0), and the optimal method is

ϕ̂(Fx(·)|Â)(t) =
1
2π

∫

Â

(iξ)kFx(ξ)eiξt dξ.
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Let δ > 0. If

ε <

(
δ2

2π

)(n−k)/(2n)

,

then V (ε, δ) = +∞, and if

ε ≥
(

δ2

2π

)(n−k)/(2n)

,

then V (ε, δ) = 2σε, where σε is the unique root of the equation

n − k

n

(
k

n

)k/(n−k) δ2

2π
σ2k +

1
σ2(n−k)

= ε2

(to include the case k = 0, we assume here that 00 = 1 and that ∞0 = 1 in the optimal method considered
below). The optimal set is the interval Â = [−σε, σε] and the optimal method is

ϕ̂
(
y(·))(t) =

1
2π

∫

Â

(iξ)k

(

1 +
n

n − k

(n

k

)k/(n−k)
(

ξ

σε

)2n
)−1

y(ξ)eiξt dξ.

We note that from the noise-free information (δ = 0) about the Fourier transform one may recover
elements from the class Wn

2 (R) with any accuracy and that the best recovery method of the kth derivative
(0 ≤ k ≤ n−1) is “natural”: one needs to take the kth derivative (if k ≥ 1) of the inverse Fourier transform
on the interval [−σε, σε].

If δ > 0, then not for all ε can one recover functions and their kth derivatives with given accuracy.
Moreover, for ε for which it is possible, an optimal method utilizes information only from the interval
[−σε, σε], but first it “smooths” this information.

Proof. Let A be a subset of finite measure of R, δ ≥ 0, and ϕ : L2(A) → L2(R).
(1) First, we show that the quantity e(Dk, Wn

2 (R), L2(A), IA, δ, ϕ) is not smaller than the value of the
problem

∥
∥x(k)(·)∥∥

L2(R)
→ max, ‖Fx(·)‖L2(A) ≤ δ,

∥
∥x(n)(·)∥∥

L2(R)
≤ 1 (6)

(where ‖Fx(·)‖L2(A) ≤ δ with δ = 0 means that Fx(·)|A = 0). Indeed, let x(·) be an admissible func-
tion in (6) (i.e., x(·) satisfies the constraints of the problem). Then, clearly, the function −x(·) is also
admissible, and so

2
∥
∥x(k)(·)∥∥

L2(R)
≤ ∥

∥x(k)(·) − ϕ(0)(·)∥∥
L2(R)

+
∥
∥−x(k)(·) − ϕ(0)(·)∥∥

L2(R)

≤ 2 sup
‖Fx(·)‖L2(A)≤δ, ‖x(n)(·)‖L2(R)

≤1

∥
∥x(k)(·) − ϕ(0)(·)∥∥

L2(R)

≤ 2 sup
‖Fx(·)−y(·)‖L2(A)≤δ,

y(·)∈L2(A), ‖x(n)(·)‖L2(R)
≤1

∥
∥x(k)(·) − ϕ

(
y(·))(·)∥∥

L2(R)
.

The required result follows if we take the supremum on the left over all admissible functions for problem (6).
(2) Setting

â = sup{a ≥ 0 | mes{A ∩ [−a, a]} = 2a},
we claim that if â = 0, then the value of problem (6) is infinite. Indeed, it follows from Plancherel’s
theorem that in the Fourier images the squared value of this problem agrees with the value of the problem

1
2π

∫

R

ξ2k|Fx(ξ)|2 dξ → max,

∫

A

|Fx(ξ)|2(ξ) dξ ≤ δ2,
1
2π

∫

R

ξ2n|Fx(ξ)|2 dξ ≤ 1. (7)
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We have â = 0, and hence mes{Mσ ∩ [−ε, ε]} < 2ε for any ε > 0. Consequently, the measure of the set
Ωε = {(R \ Mσ) ∩ [−ε, ε]} is positive. Let a function xε(·) be such that

Fxε(ξ) =

⎧
⎨

⎩

√
2π

( ∫

Ωε

τ2n dτ
)−1/2

, ξ ∈ Ωε,

0, ξ /∈ Ωε.

This function is admissible for problem (7), and so

1
2π

∫

R

ξ2k|Fxε(ξ)|2 dξ =

∫

Ωε

ξ2k dξ

∫

Ωε

τ2n dτ
=

∫

Ωε

ξ2nξ−2(n−k) dξ

∫

Ωε

τ2n dτ
≥ ε−2(n−k).

Hence, since ε is arbitrary, the value of the functional to be maximized in (7) may be made arbitrarily
large.

(3) Let δ = 0. We claim that

e(0, ϕ) = e(Dk, Wn
2 (R), L2(A), IA, 0, ϕ) ≥ σ−(n−k), (8)

where 2σ = mes A.
Since δ = 0, the first constraint in problem (7) means that Fx(ξ) = 0 for a.a. ξ ∈ A, and now

problem (7) itself can be rewritten as

1
2π

∫

R\A
ξ2k|Fx(ξ)|2 dξ → max,

1
2π

∫

R\A
ξ2n|Fx(ξ)|2 dξ ≤ 1. (9)

Let us estimate its value from below. If â = 0, then by (2) this value is +∞. Hence, it follows from (1) that
e(0, ϕ) = +∞ and (8) is clearly satisfied. Let â > 0. For any natural m, the set [−â−1/m, â+1/m]\[−â, â]
contains a subset Em of positive measure not lying in A (for otherwise this would contradict the definition
of â). Consider the sequence of functions xm(·) ∈ L2(R) with Fourier transforms

Fxm(ξ) =

⎧
⎨

⎩

√
2π

mes Em

(
â + 1

m

)−n
, ξ ∈ Em,

0, ξ /∈ Em.

That these functions are admissible for problem (9) is clear. Next,

1
2π

∫

R\A
ξ2k|Fxm(ξ)|2 dξ ≥ 1

mes Em

(
â +

1
m

)−2n

â2k mes Em → â−2(n−k) ≥ σ−2(n−k),

since clearly â ≤ σ, and hence the value of problem (9) is not smaller than σ−2(n−k). Hence, by (1) and
since the value of problem (9) is the squared value of problem (6), it follows that e(0, ϕ) ≥ σ−(n−k), which
is (8).

(4) We claim that inequality (8) becomes an equality with A = [−σ, σ] and with the method from
the statement of the theorem, but with σ taken for σε. We denote this method by ϕ̃. Indeed, for any
x(·) ∈ Wn

2 (R), it follows from Plancherel’s theorem that

∥
∥x(k)(·) − ϕ̃

(
Fx(·)|[−σ,σ]

)
(·)∥∥2

L2(R)
=

1
2π

∫

R\[−σ,σ]

ξ2k|Fx(ξ)|2 dξ

=
1
2π

∫

R\[−σ,σ]

ξ−2(n−k)ξ2n|Fx(ξ)|2 dξ ≤ σ−2(n−k) 1
2π

∫

R

ξ2n|Fx(ξ)|2 dξ ≤ σ−2(n−k).

This means that e
(
Dk, Wn

2 (R), L2([−σ, σ]), I[−σ,σ], 0, ϕ̃
) ≤ σ−(n−k), and so inequality (8) is sharp.
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(5) Now we are able to show that V (ε, 0) = ε−1/(n−k) for any ε > 0. Indeed, for a given ε > 0, we set
σε = ε−1/(n−k). By (4) the estimate

e(Dk, Wn
2 (R), L2(Aε), IAε , 0, ϕ̃) ≤ ε

holds for the set Aε = [−σε/2, σε/2] and the corresponding method ϕ̃. Hence, V (ε, 0) ≤ ε−1/(n−k).
Assume that this inequality is sharp; i.e., there exist a set A, mes A = 2σ, and a method ϕ such that
σ < σε and

e(Dk, Wn
2 (R), L2(A), IA, 0, ϕ) ≤ ε.

Hence, by (8)

ε = σ−(n−k)
ε < σ−(n−k) ≤ e(Dk, Wn

2 (R), L2(A), IA, 0, ϕ) ≤ ε.

This contradiction shows that V (ε, 0) = ε−1/(n−k).
That the set and the method from the theorem are optimal follows from the above analysis.
(6) Let δ > 0. Henceforth we assume that k ≥ 1 (the case k = 0 is dealt with similarly, but is

technically simpler). Setting

σ̂ =
(n

k

)1/(2(n−k))
(

δ2

2π

)−1/(2n)

,

we claim that the estimate

e(Dk, Wn
2 (R), L2(A), IA, δ, ϕ) ≥

⎧
⎪⎨

⎪⎩

√
n−k

n

(
k
n

)k/(n−k) δ2

2πσ2k + 1
σ2(n−k) , σ ≤ σ̂,

(
δ2

2π

)(n−k)/(2n)
, σ ≥ σ̂,

(10)

holds for any method ϕ and set A, mes A = 2σ.
Note that the function (of σ) on the right is defined on the half-open interval (0, σ̂] and is monotonically

decreasing on it. Moreover, at σ̂ its minimal value is (δ2/2π)(n−k)/(2n). For any A and ϕ, the error may
not be smaller than this quantity.

Let us estimate from below the value of problem (7). If â = 0, then by (2) this value is +∞, and now
it follows from (1) that

e(Dk, Wn
2 (R), L2(A), IA, δ, ϕ) = +∞

and (10) is trivially satisfied.
Let â > 0. Assume that σ < σ̂. Given a natural number m, we set

Cm = 1 − 1
2π

((
k

n

)1/(2(n−k))

â +
1

2m

)2n

.

We have â ≤ σ < σ̂, and hence Cm > 0 for sufficiently large m. Next, γ = (k/n)1/(2(n−k)) < 1, and so the
interval Δm = [γâ − 1/2m, γâ + 1/2m] lies in the interval [−â, â] for sufficiently large m. Finally, let Em

be the set defined in (3). For this m, we consider the family of functions xm(·), whose Fourier transform
is as follows:

Fxm(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2π

mes Em

(
â + 1

m

)−n √
Cm, ξ ∈ Em,

√
m δ, ξ ∈ Δm,

0 ξ /∈ Em ∪ Δm.
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It is easily checked that xm(·) are admissible functions for problem (7). Next,

1
2π

∫

R

ξ2k|Fxm(ξ)|2 dξ =
1
2π

∫

Em

ξ2k|Fxm(ξ)|2 dξ +
1
2π

∫

Δm

ξ2k|Fxm(ξ)|2 dξ

≥
(

â +
1
m

)−2n

Cm â2k +
δ2

2π

(
k

n

)k/(n−k)

â2k → n − k

n

(
k

n

)k/(n−k) δ2

2π
â2k +

1
â2(n−k)

. (11)

The expression on the right is monotonically decreasing (qua a function of â) on the half-open interval
(0, σ̂], and since â ≤ σ < σ̂, the value of problem (7) is not smaller than the expression under the root
sign on the right of (10). By (1) this proves estimate (10) for σ < σ̂.

Let σ ≥ σ̂. If â < σ̂, then we arrive at formula (11) by the same argument as above. The minimal
value of the expression on the right of (11) is

(
δ2/(2π)

)(n−k)/n. This proves (10) in the case in question.

Let â ≥ σ̂. Since γ1 =
(
δ2/(2π)

)−1/(2n)
< σ̂, it follows that for sufficiently large m the interval

Δm = [γ1−1/m, γ1] lies in the half-open interval (0, σ̂]. For such m, we consider the sequence of functions
xm(·) with Fourier transforms

Fxm(ξ) =

{√
m δ, ξ ∈ Δm,

0, ξ /∈ Δm.

As before, it is easily checked that these are admissible functions for problem (7), and moreover,

1
2π

∫

R

ξ2k|Fxm(ξ)|2 dξ ≥ δ2

2π

((
δ2

2π

)−1/(2n)

− 1
m

)2k

→
(

δ2

2π

)(n−k)/n

,

proving estimate (10).
Now we claim that this estimate is attained on the set A = [−σ, σ] and on the method from the

statement of the theorem in which σ is taken for σε. We denote this method by ϕ̃. Indeed, let x(·) ∈
Wn

2 (R), y(·) ∈ L2([−σ, σ]), and ‖Fx(·) − y(·)‖L2([−σ,σ]) ≤ δ. Taking σ0 = min(σ, σ̂), we set

λ1 =
n − k

n

(
k

n

)k/(n−k)

σ2k
0 , λ2 = σ

−2(n−k)
0 .

Next, it is easily seen that

λ1

λ1 + λ2ξ2n
=

(

1 +
n

n − k

(n

k

)k/(n−k)
(

ξ

σ0

)2n
)−1

(12)

and −ξ2k + λ1 + λ2ξ
2n ≥ 0 for any ξ ∈ R.

By Plancherel’s theorem it follows by (12) that

∥
∥x(k)(·) − ϕ̃

(
y(·))(·)∥∥2

L2(R)
=

1
2π

∫

R

∣
∣
∣
∣(iξ)

kFx(ξ) − (iξ)k λ1

λ1 + λ2ξ2n
χσ0(ξ)y(ξ)

∣
∣
∣
∣

2

dξ, (13)

where χσ0(·) is the characteristic function of the interval [−σ0, σ0].
Let ξ ∈ [−σ0, σ0]. Then, for such ξ, using simple transformations, applying the Cauchy–Schwarz

inequality, and taking into account that the polynomial ξ �→ −ξ2k + λ1 + λ2ξ
2n is nonnegative on R, we
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have, for the integrand on the right of (13),
∣
∣
∣
∣(iξ)

kFx(ξ) − (iξ)k λ1

λ1 + λ2ξ2n
y(ξ)

∣
∣
∣
∣

2

= ξ2k

∣
∣
∣
∣

√
λ1

λ1 + λ2ξ2n

√
λ1

(
Fx(ξ) − y(ξ)

)
+

√
λ2ξ

n

λ1 + λ2ξ2n

√
λ2ξ

nFx(ξ)
∣
∣
∣
∣

2

≤ ξ2k

(
λ1

(λ1 + λ2ξ2n)2
+

λ2ξ
2n

(λ1 + λ2ξ2n)2

)
(λ1|Fx(ξ) − y(ξ)|2 + λ2ξ

2n|Fx(ξ)|2)

=
ξ2k

λ1 + λ2ξ2n
(λ1|Fx(ξ) − y(ξ)|2 + λ2ξ

2n|Fx(ξ)|2) ≤ λ1|Fx(ξ) − y(ξ)|2 + λ2ξ
2n|Fx(ξ)|2.

Integrating this inequality over the interval [−σ0, σ0], we see that the integral on the right of (13) is
estimated on this interval by the quantity

λ1
1
2π

∫

|ξ|≤σ0

|Fx(ξ) − y(ξ)|2 dξ + λ2
1
2π

∫

|ξ|≤σ0

ξ2n|Fx(ξ)|2 dξ.

If |ξ| > σ0, then for such ξ the estimate for the expression on the right of (13) is given by

1
2π

∫

|ξ|>σ0

ξ2k|Fx(ξ)|2 dξ =
1
2π

∫

|ξ|>σ0

ξ2nξ−2(n−k)|Fx(ξ)|2 dξ

≤ σ
−2(n−k)
0

1
2π

∫

|ξ|>σ0

ξ2n|Fx(ξ)|2 dξ = λ2
1
2π

∫

|ξ|>σ0

ξ2n|Fx(ξ)|2 dξ.

Adding these inequalities, we have

∥
∥x(k)(·) − ϕ̃

(
y(·))(·)∥∥2

L2(R)
≤ λ1δ

2

2π
+ λ2 =

n − k

n

(
k

n

)k/(n−k) δ2

2π
σ2k

0 +
1

σ
2(n−k)
0

in view of the choice of x(·) and y(·) and the expression for λ1 and λ2.
If σ0 = σ̂, then the expression on the right assumes the required value. This proves that inequality (10)

is sharp.
(7) Now we prove the second part of the theorem (with δ >0). Let ε<

(
δ2/(2π)

)(n−k)/2n. We claim
that there do not exist a set A of finite measure and a method ϕ such that e(Dk, Wn

2 (R), L2(A), IA, δ, ϕ)≤ε.
Indeed, if such A and ϕ exist, then by (10) we would get

ε <

(
δ2

2π

)(n−k)/2n

≤ e(Dk, Wn
2 (R), L2(A), IA, δ, ϕ) ≤ ε.

This contradiction proves that V (ε, δ) = +∞.
Let ε ≥ (

δ2/(2π)
)(n−k)/2n and let σε be from the statement of the theorem. By (6), the estimate

e(Dk, Wn
2 (R), L2(Aε), IAε , δ, ϕ̂) ≤ ε is satisfied for the set Aε = [−σε, σε] and the method ϕ̂, and hence

V (ε, δ) ≤ 2σε. Assume that the inequality is sharp; i.e., there exist a set A, mes A = 2σ, and ϕ such that
σ < σε and e(Dk, Wn

2 (R), L2(A), IA, δ, ϕ) ≤ ε. Now, if we denote by f(·) the function of σ on the right
of (10) (f(·) is strictly monotone decreasing on (0, σ̂]), then by the definition of σε and estimate (10),

ε = f(σε) < f(σ) ≤ e(Dk, Wn
2 (R), L2(A), IA, δ, ϕ) ≤ ε.

This contradiction proves the required assertion.
The optimality of the set and the method from the statement of the theorem follow from the above

arguments.
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