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We prove a theorem on the optimal recovery of powers of a normal operator. To illustrate

the result, we prove assertion concerning the optimal recovery of the temperature of a

body in the difference model of the heat equation and the optimal recovery of a solution

in the difference model of a system of ordinary differential equations. Bibliography: 6

titles.

1 The Main Result

Let T : Cd → C
d be a linear operator. We assume that x ∈ C

d and Tnx (where Tn denotes the

nth power of an operator T ) are known approximately, i.e., we know vectors y0, yn ∈ C
d such

that ‖x−y0‖ � δ0 and ‖Tnx−yn‖ � δn, where ‖ ·‖ is the Euclidean norm and δ0, δn > 0. Based

on this information, we wish to recover (in the best way if possible) the values T kx, 0 < k < n.

By a recover method we mean any mapping ϕ : Cd × C
d → C

d. The error of a method ϕ is

defined by the formula

e(T k, Tn, δ0, δn, ϕ) = sup ‖T kx− ϕ(y0, yn)‖,

where the supremum is taken over all x, y0, yn ∈ C
d such that ‖x−y0‖ � δ0 and ‖Tnx−yn‖ � δn.

We are interested in the optimal recovery error defined by

∗ To whom the correspondence should be addressed.

Translated from Problemy Matematicheskogo Analiza 69, March 2013, pp. 47–54.

1072-3374/13/1894-0596 c© 2013 Springer Science+Business Media New York

596



E(T k, Tn, δ0, δn) = inf
ϕ : Cd×Cd→Cd

e(T k, Tn, δ0, δn, ϕ). (1)

A method on which the infimum is attained is called an optimal recovery method.

Let T : Cd → C
d be a nonzero normal operator, i.e., TT ∗ = T ∗T . Then there exists an

orthonormal basis of eigenvectors of the operator T . Let λ1, . . . , λd be the corresponding eigen-

values. Suppose that their moduli are arranged in ascending order:

|λ1| = . . . = |λs1 | < . . . < |λsr−1+1| = . . . = |λsr |.
The common value of the moduli of eigenvalues in the jth group is denoted by μj , 1 � j � r.

We divide the half-line (0,∞) into intervals

Δ0 = (0, μn
1 ], Δ1 = (μn

1 , μ
n
2 ], . . . , Δr−1 = (μn

r−1, μ
n
r ], Δr = (μn

r ,∞),

where the half-interval Δ0 is absent if μ1 = 0. With each Δj we associate a pair of numbers uj ,

vj , 0 � j � r (1 � j � r if μ1 = 0) by the rule

u0 = 0, uj =
μ2k
j μ2n

j+1 − μ2n
j μ2k

j+1

μ2n
j+1 − μ2n

j

, 1 � j � r − 1, ur = μ2k
r

and

v0 = μ
−2(n−k)
1 , vj =

μ2k
j+1 − μ2k

j

μ2n
j+1 − μ2n

j

, 1 � j � r − 1, vr = 0.

Theorem 1. Let T : Cd → C
d be a nonzero normal operator, and let λ1, . . . , λd be eigenvalues

of T in the orthonormal basis of the eigenvectors of T . If δn/δ0 ∈ Δj, 0 � j � r, then

E(T k, Tn, δ0, δn) =
√

δ20uj + δ2nvj ,

and for any θ ∈ C such that |θ| � 1 and any linear operator B : Cd → C
d with the same basis of

its eigenvectors corresponding to the eigenvalues

βi =
vjλ

n
i λ

k
i

uj + |λi|2nvj + θ

√
ujvj

uj + |λi|2nvj
√

−|λi|2k + uj + |λi|2nvj , 1 � i � d,

the linear operator ϕ̂ : Cd × C
d → C

d acting by the rule

ϕ̂(ξ, η) = (T k −BTn)ξ +Bη

is an optimal recovery method.

We begin with particular cases of this theorem.

Suppose that μ1 > 0 and δn/δ0 ∈ Δ0. Then u0 = 0 and thereby βi = λ
−(n−k)
i , 1 � i � d,

i.e., B = T−(n−k). Consequently, the action of the optimal method ϕ̂ is as follows:

ϕ̂(ξ, η) = T k(T−nη).

The method uses only the measurement of η, namely, x is found from the equality Tnx = η and

then the kth power of T is taken.

Let δn/δ0 ∈ Δr. Then v0 = 0 and, consequently, βi = 0, 1 � i � d, i.e., B is the zero

operator. In this case, the method uses only the measurement of ξ:

ϕ̂(ξ, η) = T kξ.

597



Proof of Theorem 1. We estimate from below the optimal recovery error E(T k, Tn, δ0, δn).

We show that it is not less than the value of the following problem (i.e., the upper bound of the

maximized functional)

‖T kx‖ → max, ‖x‖ � δ0, ‖Tnx‖ � δn, x ∈ C
d. (2)

Indeed, let x0 be an admissible vector in (2). Then it is obvious that the vector −x0 is also

admissible and for any ϕ : Cd × C
d → C

d

2‖T kx0‖ = ‖T kx0 − ϕ(0, 0)− (T k(−x0)− ϕ(0, 0))‖ � ‖T kx0 − ϕ(0, 0)‖+ ‖T k(−x0)− ϕ(0, 0)‖
� 2 sup

x∈Cd

‖x‖�δ0, ‖Tnx‖�δn

‖T kx− ϕ(0, 0)‖ � 2 sup
x,y0,yn∈Cd

‖x−y0‖�δ0, ‖Tnx−yn‖�δn

‖T kx− ϕ(y0, yn)‖.

Passing in (2) to the upper bound over all admissible functions on the left-hand side and to the

lower bound over all methods ϕ on the right-hand side, we obtain the required assertion.

Let e1, . . . , ed be the orthonormal basis for Cd consisting of eignevectors of the operator T ,

and let x = x1e1+ . . .+xded. Then the squared value of (2) is equal to the value of the following

problem:
d∑

j=1

|λj |2k|xj |2 → max,
d∑

j=1

|xj |2 � δ20 ,
d∑

j=1

|λj |2n|xj |2 � δ2n. (3)

Let us estimate from below its value. We consider several cases separately.

Case 1: μ1 > 0 and δn/δ0 ∈ Δ0. We define x̂ = (x̂1, . . . , x̂d) by the rule x̂1 = δn/μ
n
1 and

x̂j = 0, 2 � j � d. Since δn/δ0 � μn
1 , we have x̂21 � δ20 and, consequently, x̂ is admissible in (3).

Hence the value of the problem (3) is not less than

d∑
j=1

|λj |2k|x̂j |2 = μ2k
1

δ2n
μ2n
1

= δ2nμ
−(n−k)
1 = δ20u0 + δ2nv0.

Case 2: μ1 > 0 and δn/δ0 ∈ Δj , 1 � j � r − 1. Let k1 and k2 be such that |λk1 | = μj , and

let |λk2 | = μj+1. We choose x̂k1 and x̂k2 from the equalities

x̂2k1 + x̂2k2 = δ20 , μ2n
j x̂2k1 + μ2n

j+1x̂
2
k2 = δ2n,

i.e.,

x̂k1 =

√
δ20μ

2n
j+1 − δ2n

μ2n
j+1 − μ2n

j

, x̂k2 =

√
δ2n − δ20μ

2n
j

μ2n
j+1 − μ2n

j

.

We set x̂ = (x̂1, . . . , x̂d), where x̂k1 and x̂k2 are as above, whereas the remaining components

vanish. Then it is easy to see that x̂ is admissible in (3) and, consequently, the value of the

problem (3) is not less than

d∑
j=1

|λj |2k|x̂j |2 = μ2k
j x̂2k1 + μ2k

j+1x̂
2
k2 = μ2k

j

δ20μ
2n
j+1 − δ2n

μ2n
j+1 − μ2n

j

+ μ2k
j+1

δ2n − δ20μ
2n
j

μ2n
j+1 − μ2n

j

= δ20uj + δ2nvj .
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Case 3: μ1 > 0 and δn/δ0 ∈ Δr. We set x̂ = (x̂1, . . . , x̂d), where x̂d = δ0 and x̂j = 0,

1 � j � d − 1. Since μ2n
r |x̂d|2 = μ2n

r δ20 < δ2n, the vector x̂ is admissible in the problem (3) and,

consequently, the value of the problem (3) is not less than

d∑
j=1

|λj |2k|x̂j |2 = μ2k
r δ20 = δ20ur + δ2nvr.

Case 4. If μ1 = 0, then, repeating the above reasoning, we conclude that for δn/δ0 ∈ Δj ,

1 � j � r, the value of the problem (3) is not less than δ20uj + δ2nvj .

Therefore, the optimal recovery error is not less than the value of the problem (2). Hence

for δn/δ0 ∈ Δj , j = 0, 1, . . . , r, it is proved that

E(T k, Tn, δ0, δn) �
√

δ20uj + δ2nvj . (4)

We proceed by obtaining an upper estimate for E(T k, Tn, δ0, δn) and constructing optimal

recovery methods. We look for an optimal method among linear operators acting from C
d ×C

d

to C
d, i.e., operators acting by the rule: (ξ, η) �→ Aξ +Bη, where A and B are linear operators

from C
d to C

d. The optimality of such a method means that the error of this method, i.e., the

value of the problem

‖T kx−Ay0 −Byn‖ → max, ‖x− y0‖ � δ0, ‖Tnx− yn‖ � δn, x, y0, yn ∈ C
d (5)

is equal to E(T k, Tn, δ0, δn).

Denote ξ = x− y0 and η = Tnx− yn. Then this problem can be written in the form

‖T kx−Ax−BTnx+Aξ +Bη‖ → max, ‖ξ‖ � δ0, ‖η‖ � δn, x, ξ, η ∈ C
d.

We note that if T k −A−BTn is a nonzero operator, then the value of this problem is infinite.

Indeed, if there exists x0 ∈ C
d such that T kx0 − Ax0 − BTnx0 �= 0, then we can make the

maximized functional as large as desired by the choice of a constant C > 0 on admissible

elements Cx0, ξ = 0, and η = 0.

Further, we assume that A = T k − BTn and the eigenvectors e1, . . . , ed of the operator T

are simultaneously eigenvectors of the operator B. But, in this case, they are also eigenvectors

of the operator A. If αi and βi, 1 � i � d, are the corresponding eigenvalues of the operators A

and B, then

αi = λk
i − βiλ

n
i , 1 � i � d. (6)

Taking into account the above assumptions and the decompositions ξ = ξ1e1 + . . . + ξded
and η = η1e1 + . . .+ ηded, we conclude that the squared value of the problem (5) is equal to the

value of the problem

d∑
i=1

|ξiαi + ηiβi|2 → max,

d∑
i=1

|ξi|2 � δ20 ,

d∑
i=1

|ηi|2 � δ2n. (7)

Suppose that δn/δ0 ∈ Δj ; moreover, μ1 > 0 and 1 � j � r − 1 or μ1 = 0 and 2 � j � r − 1.

Then uj and vj are positive. Let us estimate the terms under the sign of sum in the maximized

functional (7) by the Cauchy–Bunyakovksy inequality

|ξiαi + ηiβi|2 �
( |αi|2

uj
+

|βi|2
vj

)
(|ξi|2uj + |ηi|2vj), 1 � i � d. (8)
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If (cf. (6))
|αi|2
uj

+
|βi|2
vj

=
|λk

i − βiλ
n
i |2

uj
+

|βi|2
vj

� 1, 1 � i � d, (9)

then, adding the inequalities (8), we see that the value of the problem (7) does not exceed

δ20uj + δ2nvj ; moreover it is equal to this expression in view of (4), and the method indicated in

the theorem with the operator B, given by the data βi, i = 1, . . . , d, is optimal.

We write the left-hand sides of the inequalities (9) the form

|λk
i − βiλ

n
i |2

uj
+

|βi|2
vj

=
uj + |λi|2nvj

ujvj

∣∣∣∣βi −
vjλ

n
i λ

k
i

uj + |λi|2nvj

∣∣∣∣
2

+
|λi|2k

uj + |λi|2nvj .

The condition that these expressions do not exceed 1 is equivalent to the inequalities

∣∣∣∣∣βi −
vjλ

n
i λ

k
i

uj + |λi|2nvj

∣∣∣∣∣ �
√
ujvj

uj + |λi|2nvj
√

−|λi|2k + uj + |λi|2nvj , (10)

1 � i � d, which, in turn, are equivalent to the expressions for βi, i = 1, . . . , d, in the theorem (in

the cases under consideration, where δn/δ0 ∈ Δj and j is such that uj and vj are simultaneously

different from zero). Moreover, the expressions under the root sign in (10) are nonnegative.

Indeed, the points (μ2n
j , μ2k

j ) and (μ2n
j+1, μ

2k
j+1) lie on the concave curve y = xk/n, and the line

y = uj + vjx passes through these points. Hence for all μi we have μ2k
i � uj + vjμ

2n
i and,

consequently, −|λi|2k + uj + |λi|2nvj � 0. In particular, from (10) it follows that there exist

numbers βi, i = 1, . . . , d, satisfying (9).

Thus, if δn/δ0 ∈ Δj and j are such that uj and vj are simultaneously different from zero,

then the numbers βi, i = 1, . . . , d satisfying the assumptions of the theorem yield the required

expression for the optimal recovery error and provide the optimality of the method indicated in

the theorem.

We prove that, in the remaining cases, the expressions for βi, i = 1, . . . , d, found from (10)

possess the same property. Indeed, suppose that μ1 > 0 and δn/δ0 ∈ Δ0. Then u0 = 0 and

v0 = μ
−2(n−k)
1 by definition. From (10) it follows that βi = λ

−(n−k)
i and, by (6), αi = 0,

i = 1, . . . , d, and we find (taking into account that μ1 � |λi|, i = 1, . . . , d) the upper estimate

for the value of the problem (7):

d∑
i=1

|ξiαi + ηiβi|2 =
d∑

i=1

|λi|−2(n−k)|ηi|2 � μ
−2(n−k)
1

d∑
i=1

|ηi|2 � δ2nv0 = δ20u0 + δ2nv0.

Hence the theorem holds if μ1 > 0 and δn/δ0 ∈ Δ0.

Let δn/δ0 ∈ Δr. By definition, ur = μ2k
r and vr = 0. From (10) we find that βi = 0

and because of (6) αi = λk
i , i = 1, . . . , d. Consequently (taking into account that |λi| � μr,

i = 1, . . . , d),

d∑
i=1

|ξiαi + ηiβi|2 =
d∑

i=1

|λi|2k|ξi|2 � μ2k
r

d∑
i=1

|ξi|2 � δ20ur = δ20ur + δ2nvr,

i.e., in this case, the assertions of the theorem are true.
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2 Optimal Recovery of Temperature from Inaccurate Data

We consider the heat equation on a circle given by the implicit difference scheme

us+1,j − usj
τ

=
us+1,j+1 − 2us+1,j + us+1,j−1

h2
. (11)

Here, τ and h are positive numbers, (s, j) ∈ Z+ × Zm, where Zm is the group of residuals

modulo m � 1 which will be realized as a collection of numbers {0, 1, . . . ,m − 1} with the

addition modulo m, us,j is the temperature of a body at time sτ at the point jh.

We denote by lm2 the space of functions (vectors) x = (x0, x1, . . . , xm−1) on Zm equipped

with the norm

‖x‖lm2 =

⎛
⎝

m−1∑
j=0

|xj |2
⎞
⎠

1/2

.

We assume that the temperature of the body was approximately measured at times 0 and nτ ,

i.e., we are know approximately the vectors u0 = (u0,0, . . . , u0,m−1) and un = (un,0, . . . , un,m−1)

or, more exactly, y0 = (y0,0, . . . , y0,m−1) and yn = (yn,0, . . . , yn,m−1) such that

‖uq − yq‖lm2 � δq, q = 0, n,

where δq > 0, q = 0, n. It is required to recover uk = (uk,0, . . . , uk,m−1), 0 < k < n, on the

basis of this information, i.e., to find the value of the temperature of the body at time kτ . By

a recovery method we mean any possible mapping ϕ : lm2 × lm2 → lm2 . The error of a method ϕ

is defined by the formula

ekn(δ0, δn, ϕ) = sup ‖uk − ϕ(y0, yn)‖lm2 ,

where the supremum is taken over u0, y0, yn ∈ lm2 such that ‖uq − yq‖lm2 � δq, q = 0, n. The

optimal recovery error is defined by

Ekn(δ0, δn) = inf
ϕ : lm2 ×lm2 →lm2

ekn(δ0, δn, ϕ).

A method at which the infimum is attained is said to be optimal.

On Zm, we can introduce the Fourier transform, i.e., the linear mapping sending Zm to itself

and, given by the matrix

F =
1√
m

(
e−

2πip
m

j
)m−1

p,j=0
.

It is easy to see that this matrix is unitary.

We apply the Fourier transform with respect to j to both sides of Equation (11), taking

into account that it sends the translation by ±1 to the multiplication by exp(±2πip/m). After

simple transformations, we find that Fus+1 = ΛFus for all s ∈ Z+, where Λ is a diagonal matrix

with diagonal entries

λp =

(
1 +

4τ

h2
sin2

πp

m

)−1

, p = 0, 1, . . . ,m− 1. (12)

From the relations Fus+1 = ΛFus it follows that

us+1 = Tus, s ∈ Z+,

601



where T = F−1ΛF .

Thus, we obtain the above problem, and it is clear that

Ekn(δ0, δn) = E(T k, Tn, δ0, δn).

We formulate the corresponding result which follows from Theorem 1. We set

μj =

(
1 +

4τ

h2
sin2

π

m
(r − j)

)−1

, j = 1, . . . r,

where r = [m/2] + 1, and define Δj , vj , uj , j = 1, . . . , r by the same formulas as in Theorem 1.

Then Theorem 1 implies the following assertion.

Theorem 2. If δn/δ0 ∈ Δj, 0 � j � r, then

Ekn(δ0, δn) =
√

δ20uj + δ2nvj ,

and for any θ ∈ C such that |θ| � 1 and any diagonal matrix B with diagonal entries

βp =
vjλ

n+k
p

uj + λ2n
p vj

+ θ

√
ujvj

uj + λ2n
p vj

√
−λ2k

p + uj + λ2n
p vj , p = 0, 1 . . .m− 1,

the method

ϕ̂(y0, yn) = (T k − TnB̃)y0 + B̃yn,

where B̃ = F−1BF , is optimal.

Similar problems for continuous models were considered in [1]–[5]. A discrete model in the

nonperiodic case was studied in [4].

3 Discrete Analog of a System of Linear Differential Equations

We consider the discrete model of displacements of a d-dimensional vector

xs+1 − xs
τ

= Axs, s = 0, 1, . . . ,

where xs ∈ C
d, τ > 0, and A is a square matrix of order d with constant entries.

We assume that we know vectors y0, yn ∈ C
d such that ‖x0 − y0‖ � δ0 and ‖xn − yn‖ � δn,

where ‖ · ‖ is the Euclidean norm and δ0, δn > 0. Possessing on this information, we wish to

recover the values xk, 0 < k < n. By a recover method we mean any mapping ϕ : Cd×C
d → C

d,

and the error of a method ϕ is defined by the formula

e(k, n, δ0, δn, ϕ) = sup ‖xk − ϕ(y0, yn)‖,

where the supremum is taken over x0, y0, yn ∈ C
d such that ‖x0 − y0‖ � δ0, ‖xn − yn‖ � δn. We

are interested in the quantity

E(k, n, δ0, δn) = inf
ϕ : Cd×Cd→Cd

e(k, n, δ0, δn, ϕ).
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By the equalities xs = T sx0 and T = E + τA, the problem is reduced to the problem (1). We

assume that A is a normal matrix with eigenvalues μ1, . . . , μd. Then T is also a normal matrix

with eigenvalues λj = 1 + τμj , j = 1, . . . , d. Applying Theorem 1, we obtain a solution to the

problem under consideration in this case.

An analog of this problem for a continuous model was considered in [6].
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