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On the best methods for recovering derivatives
in Sobolev classes

G. G. Magaril-Il’yaev and K. Yu. Osipenko

Abstract. We construct the best (optimal) methods for recovering deriva-
tives of functions in generalized Sobolev classes of functions on Rd provided
that for every such function we know (exactly or approximately) its Fourier
transform on an arbitrary measurable set A ⊂ Rd. In both cases we con-
struct families of optimal methods. These methods use only part of the
information about the Fourier transform, and this part is subject to some
filtration. We consider the problem of finding the best set for the recovery
of a given derivative among all sets of a fixed measure.

Keywords: optimal recovery, Sobolev class, extremal problem, Fourier
transform.

§ 1. Statement of the problems and results

Let d be a positive integer and F the Fourier transform in L2(Rd). When x( · ) ∈
L2(Rd), it is convenient to regard Fx( · ) as a function on Rd with the Lebesgue
measure divided by (2π)d. The norm of a function y( · ) in the space of square-
integrable functions on Rd with such a measure is denoted by ‖y( · )‖bL2(Rd), that is,

‖y( · )‖bL2(Rd) =
(

1
(2π)d

∫
Rd

|y(ξ)|2 dξ

)1/2

.

For every r > 0, the generalized Sobolev space (or the space of Bessel potentials)
Hr

2(Rd) is defined as the set of functions x( · ) ∈ L2(Rd) such that

‖x( · )‖Hr
2(Rd) =

(
1

(2π)d

∫
Rd

(1 + ‖ξ‖2)r |(Fx)(ξ)|2 dξ

)1/2

< ∞,

where ‖ξ‖2 = ξ2
1 + · · ·+ ξ2

d. The corresponding generalized Sobolev class is the set

Hr
2 (Rd) =

{
x( · ) ∈ Hr

2(Rd)
∣∣ ‖x( · )‖Hr

2(Rd) 6 1
}
.

For a positive integer r, a function x( · ) (of the variables t1, . . . , td) belongs
to Hr

2(Rd) if and only if all its generalized derivatives ∂α1+···+αdx/∂tα1
1 · · · ∂tαd

d
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with (α1, . . . , αd) ∈ Zd
+ and α1 + · · · + αd 6 r belong to L2(Rd). In this case, the

norm ∑
α1+···+αd6r

∥∥∥∥∂α1+···+αdx( · )
∂tα1

1 · · · ∂tαd

d

∥∥∥∥
L2(Rd)

is equivalent to the norm in Hr
2(Rd). Thus, for positive integers r, Hr

2(Rd) is the
classical Sobolev space of functions on Rd.

We now define fractional derivatives. For α = (α1, . . . , αd) ∈ Rd
+ and ξ =

(ξ1, . . . , ξd) ∈ Rd we put (iξ)α = (iξ1)α1 · · · (iξd)αd , where (iξj)αj = |ξj |αj ×
exp

{
1
2πi sign ξj

}
, j = 1, . . . , d (sign 0 = 0, 00 = 1), and let Eα be the operator

of multiplication by the function ξ 7→ (iξ)α in L̂2(Rd). If a function x( · ) ∈ L2(Rd)
is such that (Eα ◦ F )x( · ) ∈ L̂2(Rd), then the following function is well defined:

Dαx( · ) = (F−1 ◦ Eα ◦ F )x( · ) ∈ L2(Rd),

where F−1 is the inverse Fourier transform. This function is called the α th deriva-
tive (in the sense of Weyl) of x( · ). Clearly, if x( · ) is sufficiently smooth and rapidly
decreasing on Rd and α = (α1, . . . , αd) ∈ Zd

+, then

Dαx(t) =
∂xα1+···+αd(t)
∂tα1

1 · · · ∂tαd

d

.

We are interested in questions which may informally be stated as follows.
1. Suppose that for every function x( · ) ∈ Hr

2 (Rd) we know (exactly or approxi-
mately) its Fourier transform on some subset of Rd. Then what is the best way to
recover Dαx( · ) from this information?

2. Suppose that we can measure (exactly or approximately) the Fourier trans-
forms of the functions x( · ) ∈ Hr

2 (Rd) on any set of measure not exceeding some
number σ > 0. In other words, we can measure a fixed ‘number of harmonics’.
Which harmonics should be taken for the best recovery of Dαx( · )?

We now state the problems 1, 2 exactly. Suppose that A is an arbitrary mea-
surable subset of Rd and, for every function x( · ) ∈ Hr

2 (Rd), we know its Fourier
transform on A either exactly or within accuracy δ > 0 in the metric of L̂2(A),
that is, we know a function y( · ) ∈ L̂2(A) such that ‖(Fx)( · ) − y( · )‖bL2(A) 6 δ.
From this information we want to recover Dαx( · ), α ∈ Rd

+, in the metric of L2(Rd).
This is understood in the following sense.

Let Iδ(A) : Hr
2 (Rd) → L̂2(A) be the map assigning to each function x( · ) ∈

Hr
2 (Rd) the set Iδ(A)x( · ) = { y( · ) ∈ L̂2(A) | ‖Fx( · )− y( · )‖bL2(A) 6 δ} (I0(A) is

the familiar map sending each function x( · ) to the restriction Fx( · )|A of the func-
tion Fx( · ) to A). We denote the image of this map by Im Iδ(A).

A method of recovery must associate with every function (observation) y( · ) ∈
Im Iδ(A) a function in L2(Rd) which is approximately equal to the αth derivative
of the function in Hr

2 (Rd). Thus every method is a map ϕ : Im Iδ(A) → L2(Rd).
The error of a method is defined as

e
(
Dα,Hr

2 (Rd), A, δ, ϕ
)

= sup
x( · )∈Hr

2 (Rd)

y( · )∈Iδ(A)

∥∥Dαx( · )− ϕ(y( · ))( · )
∥∥

L2(Rd)
.
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When δ = 0 this can be written in a shorter form:

e
(
Dα,Hr

2 (Rd), A, 0, ϕ
)

= sup
x( · )∈Hr

2 (Rd)

∥∥Dαx( · )− ϕ(Fx( · )|A)( · )
∥∥

L2(Rd)
.

We are interested in the quantity

E
(
Dα,Hr

2 (Rd), A, δ
)

= inf
ϕ

e
(
Dα,Hr

2 (Rd), A, δ, ϕ
)
,

where the infimum is taken over all methods ϕ : Im Iδ(A) → L2(Rd). This quantity
is called the optimal recovery error. We are also interested in the methods ϕ̂ at
which the infimum is attained, that is,

E
(
Dα,Hr

2 (Rd), A, δ
)

= e
(
Dα,Hr

2 (Rd), A, δ, ϕ̂
)
.

Such methods ϕ̂ are called optimal recovery methods.
An exact statement of problem 1 is to find the optimal recovery error and optimal

recovery methods.
For every σ > 0 let Aσ be the family of all measurable subsets of Rd whose

Lebesgue measure does not exceed σ. We are interested in the quantity

Eσ

(
Dα,Hr

2 (Rd), δ
)

= inf
Aσ∈Aσ

E
(
Dα,Hr

2 (Rd), Aσ, δ
)

(1)

and in the sets at which the infimum is attained. Such sets are called optimal sets.
An exact statement of problem 2 is to find the quantity (1) and the optimal sets.
The original ideas underlying these problems date back to Kolmogorov, who

introduced in [1] the notion of width, the quantity characterizing the best approx-
imation of a class of functions by subspaces of a fixed dimension. The study of
best quadratures on classes of functions began in the 1950s (the first investigations
were those of Sard [2] and Nikol’skii [3]). In 1965 Smolyak [4] posed the general
problem of the optimal recovery of a linear function on a class of elements from
imprecise information about these elements. He proved that if this class is a convex
centrally symmetric set, then there is a linear optimal method. Subsequently, the
more general problem of the recovery of linear operators was posed, and the theory
of optimal recovery underwent rapid development. One can get an impression of
this from the surveys and monographs [5]–[11]. The optimal recovery problems
studied in [12]–[17] are close to those considered in the present paper. We mention
separately our paper [18], whose subject is the same problem as here but with A
being the whole space Rd.

Before stating our main results we introduce some definitions and notation.
Given any α = (α1, . . . , αd) ∈ Zd

+ and ξ = (ξ1, . . . , ξd) ∈ Rd, we put

α =
d∑

j=1

αj , αα =
d∏

j=1

α
αj

j , |ξ|α =
d∏

j=1

|ξj |αj .

Suppose that 0 < α < r. We define a function f( · ) on Rd by the formula

f(ξ) =
|ξ|2α

(1 + ‖ξ‖2)r
, ξ ∈ Rd.
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Clearly, f is bounded and tends to zero as ‖ξ‖ → ∞. A simple calculation shows
that its maximal value

λ̂ =
αα(r − α)r−α

rr

is attained only at the points(
±

√
α1

r − α
, . . . ,±

√
αd

r − α

)
.

We put

δ̂ =
(

r − α

r

)r/2

and define a function h on the half-line [0,∞] by the formula

h(t) =


αα

r αα−1
(1− t2/r)α−1t2(1−α/r), 0 6 t 6 δ̂,

λ̂, t > δ̂.

It is easy to see that h(t) is strictly increasing on the closed interval [0, δ̂], h(0) = 0
and h(δ̂) = λ̂.

For every λ > 0 we define a set

Ωλ =
{
ξ ∈ Rd | f(ξ) > λ

}
and associate with every measurable subset A of Rd a number

λ(A) = inf
{
λ > 0 | mes(A ∩ Ωλ) = mes Ωλ

}
.

Clearly, mes(A∩Ωbλ) = mes Ωbλ since mes Ωbλ = 0. On the other hand, if A coincides
a. e. with Rd, then λ(A) = 0. Thus, 0 6 λ(A) 6 λ̂.

If δ = 0 and λ(A) = 0, then we have complete information about the desired
function, and the recovery problem becomes obvious. Therefore we do not consider
the case δ + λ(A) = 0 in what follows.

For every δ > 0 and each measurable subset A of Rd with δ + λ(A) 6= 0, we put

∆ = ∆(δ,A) =


δ, 0 < δ < δ̂, λ(A) 6 h(δ),

h−1(λ(A)), 0 6 δ < δ̂, λ(A) > h(δ),

δ̂, δ > δ̂,

and define the numbers

λ1 = λ1(δ,A) =
r

α∆2
(δ̂ 2/r −∆2/r)h(∆), λ2 = λ2(δ,A) = h(∆).

Note that h(∆) = max{λ(A), h(δ)}.
Finally, we write 〈·, ·〉 for the scalar product in Rd.
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Theorem 1. Suppose that α ∈ Rd
+, 0 < α < r, δ > 0, A is a measurable

subset of Rd and δ + λ(A) 6= 0. Then Dαx( · ) ∈ L2(Rd) for every function
x( · ) ∈ Hr

2(Rd) and we have

E(Dα,Hr
2 (Rd), A, δ) =

√(
rδ2

α∆2
(δ̂2/r −∆2/r) + 1

)
h(∆). (2)

If δ = 0, if a( · ) is any measurable function on A satisfying

|a(ξ)− 1| 6
√

λ(A)
(1 + ‖ξ‖2)r/2

|ξ|α
(3)

for a. e. ξ ∈ A, and if we define a method ϕ̂a by the following rule for a. e. t ∈ Rd:

ϕ̂a(Fx( · )|A)(t) =
1

(2π)d

∫
A

(iξ)αa(ξ)Fx(ξ)e〈ξ,t〉 dξ,

then the method ϕ̂a is optimal.
If δ > 0, if a( · ) is any measurable function on A satisfying∣∣∣∣a(ξ)− λ1

λ1 + λ2(1 + ‖ξ‖2)r

∣∣∣∣
6

√
λ1λ2(1 + ‖ξ‖2)r/2

|ξ|α(λ1 + λ2(1 + ‖ξ‖2)r)

√
−|ξ|2α + λ1 + λ2(1 + ‖ξ‖2)r (4)

for a. e. ξ ∈ A, and if we define a method ϕ̂a by the following rule for a. e. t ∈ Rd:

ϕ̂a(y( · ))(t) =
1

(2π)d

∫
A

(iξ)αa(ξ)y(ξ)e〈ξ,t〉 dξ,

then the method ϕ̂a is optimal.

We now comment on Theorem 1.
1. If δ = 0, then the expression (2) for the optimal recovery error implies that

E
(
Dα,Hr

2 (Rd), A, 0
)

=
√

λ(A).

Hence it suffices to know the Fourier transforms of functions in Hr
2 (Rd) only on a set

A′ ⊂ A (the inclusion is understood up to a set of measure zero) with λ(A′) = λ(A).
The set Ωλ(A) is minimal among such sets.

The optimal method is the αth derivative of the function whose Fourier transform
vanishes outside A and is equal on A to the ‘smoothing’ of Fx( · ) by means of a( · ).
The function ξ 7→ (iξ)αa(ξ)Fx(ξ) belongs to L̂2(A) by (3). If it also belongs
to L1(A) (for example, when the measure of A is finite), then the expression for
the optimal method is the Fourier inversion formula. Otherwise the integral in the
expression for the optimal method should be understood as the principal value
for every t ∈ Rd.

The function f( · ) does not exceed λ(A) on the set A \ Ωλ(A). By (3), one can
put a( · ) = 0 on this set and, therefore, it suffices to integrate only over Ωλ(A).
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If we put a( · ) = 1 on A, then (3) holds trivially. Hence one need not smooth
the observed Fourier transform.

Finally, if λ(A) = λ̂, then f(ξ) 6 λ̂ for all ξ ∈ Rd. The inequality (3) holds when
a( · ) = 0 on A and, therefore, the zero method is optimal in this case.

To summarize, we see that the optimal method

ϕ̂(Fx( · )|A)(t) =
1

(2π)d

∫
Ωλ(A)

(iξ)αFx(ξ)e〈ξ,t〉 dξ

is the most ‘reasonable’ because it uses a minimal amount of information about
the Fourier transform and requires no processing of this information. (Moreover,
in the case when λ(A) = λ̂, the integral is taken over a set of measure zero and,
therefore, ϕ̂ = 0.)

2. If δ > 0, then a straightforward (but quite routine) calculation shows that
the optimal recovery error is a decreasing function of λ(A) provided that λ(A)
decreases from λ̂ to h(δ). It follows easily from the definition of ∆ that this error
then stabilizes at the level √(

r

α
(δ̂2/r − δ2/r) + 1

)
h(δ).

Thus the information on the Fourier transform outside a set with λ(A) 6 h(δ) turns
out to be redundant. The set Ωh(δ) is minimal among such sets.

In Theorem 1 we represent a family of optimal methods, each of which is the αth
derivative of a function whose Fourier transform vanishes outside A and coincides
on A with the ‘smoothing’ of y( · ) by means of a( · ).

One can put a( · ) = 0 on A \ Ωh(∆) (we recall that h(∆) = max{λ(A), h(δ)}).
Indeed, in this case the inequality (23) in § 2, which is equivalent to (4), implies that
we must have f(ξ) 6 λ2 on A \ Ωh(∆). This inequality does indeed hold because
λ2 = h(∆). Thus, for every a( · ) satisfying (4), the most economical optimal
method is given by

ϕ̂a(y( · ))(t) =
1

(2π)d

∫
Ωh(∆)

(iξ)αa(ξ)y(ξ)e〈ξ,t〉 dξ.

We also present explicitly the optimal method corresponding to a function a( · )
for which the left-hand side of (4) is equal to zero:

ϕ̂(y( · ))(t)

=
1

(2π)d

∫
Ωh(∆)

(iξ)α

(
1 +

α∆2

r

1

δ̂2/r −∆2/r
(1 + ‖ξ‖2)r

)−1

y(ξ)e〈ξ,t〉dξ.

Before stating our next theorem, we give some definitions. Clearly, the function
m : λ 7→ mes Ωλ is monotone decreasing on (0, λ̂], m(λ) → ∞ as λ → 0 and
m(λ̂) = 0. For every σ > 0 let λ(σ) be the unique solution of the equation m(λ) = σ.

Theorem 2. Suppose that α ∈ Rd
+, 0 < α < r, δ > 0, σ > 0 and λ(σ, δ) =

max(λ(σ), h(δ)). Then every set that coincides with Ωλ(σ,δ) up to a set of measure
zero is optimal.
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We note that if δ = 0, then λ(σ, δ) = λ(σ) because h(0) = 0. Therefore Ωλ(σ)

is an optimal set, and the optimal recovery error
√

λ(σ) becomes smaller as σ
increases.

If δ > 0 and σ > 0 are such that λ(σ) 6 h(δ), then the information on the Fourier
transform outside Ωh(δ) turns out to be redundant since the optimal recovery error
does not decrease.

§ 2. Proofs

Proof of Theorem 1. We first claim that if x( · ) ∈ Hr
2(Rd), then Dαx( · ) ∈ L2(Rd).

Indeed, by the definitions of λ̂ and Hr
2(Rd) we have

1
(2π)d

∫
Rd

|ξ|2α |Fx(ξ)|2 dξ =
1

(2π)d

∫
Rd

|ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ

6 λ̂
1

(2π)d

∫
Rd

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ < ∞.

Using the definition of the αth derivative and Plancherel’s theorem, we get

1
(2π)d

∫
Rd

|ξ|2α |Fx(ξ)|2 dξ =
∫

Rd

|Dαx(t)|2 dt,

that is, Dαx( · ) ∈ L2(Rd).
We now obtain a lower bound for the optimal recovery error E(Dα,Hr

2 (Rd), A, δ).
We claim that this error is not less than the value of the extremal problem

‖Dαx( · )‖L2(Rd) → max, ‖Fx( · )‖bL2(A) 6 δ, ‖x( · )‖Hr
2(Rd) 6 1, (5)

that is, the supremum of the functional maximized under these constraints. (If
δ = 0, then the first constraint takes the form Fx( · ) = 0 for a. e. ξ ∈ A.)

Indeed, let x0( · ) be an admissible function for (5) (that is, x0( · ) satisfies the
constraints). Then, clearly, the function −x0( · ) is also admissible and, for every
ϕ : L̂2(A) → L2(Rd) (where ϕ(0)( · ) is the value of ϕ on the zero function) we have

2‖Dαx0( · )‖L2(Rd) 6
∥∥Dαx0( · )−ϕ(0)( · )

∥∥
L2(Rd)

+
∥∥Dα(−x0)( · )−ϕ(0)( · )

∥∥
L2(Rd)

6 2 sup
x( · )∈Hr

2 (Rd)
‖Fx( · )‖bL2(A)6δ

∥∥Dαx( · )−ϕ(0)( · )
∥∥

L2(Rd)

6 2 sup
x( · )∈Hr

2 (Rd),y( · )∈bL2(A)
‖Fx( · )−y( · )‖bL2(A)6δ

∥∥Dαx( · )−ϕ(y( · ))( · )
∥∥

L2(Rd)
.

Taking the supremum of the left-hand side over all admissible functions for (5) and
the infimum of the right-hand side over all methods ϕ, we get the desired result.

We now bound the value of the problem (5) from below. To do this, it is conve-
nient to rewrite the problem in terms of Fourier images. By Plancherel’s theorem,
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the squared value of (5) is equal to the value of the problem

1
(2π)d

∫
Rd

|ξ|2α |Fx(ξ)|2 dξ → max,
1

(2π)d

∫
A

|Fx(ξ)|2 dξ 6 δ2,

1
(2π)d

∫
Rd

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ 6 1.

(6)

When δ =0, the first constraint in this problem is given by Fx( · ) = 0 for a. e. ξ ∈A.
We consider some cases separately.

Case 1: δ > δ̂. We put

ξ̂ =
(√

α1

r − α
, . . . ,

√
αd

r − α

)
,

where α = (α1, . . . , αd). For every ε > 0 we introduce the notation

ξ̂ε =
(

1 +
ε

‖ξ̂‖

)
ξ̂,

consider the ball Bε = {ξ ∈ Rd | ‖ξ − ξ̂ε‖ 6 ε} and define the following functions
on Rd:

zε(ξ) =

(2π)d/2

(∫
Bε

(1 + ‖η‖2)r dη

)−1/2

, ξ ∈ Bε,

0, ξ /∈ Bε.

Clearly, zε( · ) ∈ L̂2(Rd). We claim that the functions xε( · ) = F−1zε( · ) are admis-
sible in the problem (6).

Indeed, the second requirement in (6) obviously holds. If A ∩Bε = ∅, then the
first requirement holds for trivial reasons.

Suppose that A∩Bε 6= ∅. We easily verify that (1 + ‖ξ̂‖2)−r = δ̂ 2 and ‖ξ‖> ‖ξ̂‖
for all ξ ∈ Bε. Therefore we have

1
(2π)d

∫
A

|Fxε(ξ)|2 dξ =
1

(2π)d

∫
A∩Bε

|Fxε(ξ)|2 dξ 6

(∫
Bε

(1 + ‖η‖2)r dη

)−1

mes Bε

6

(∫
Bε

(1 + ‖ξ̂‖2)r dη

)−1

mes Bε = (1 + ‖ξ̂ ‖2)−r = δ̂ 2 6 δ2.

Thus, for every ε > 0 the function xε( · ) is admissible in the problem (5) and,
therefore, the value of this problem is not less than

1
(2π)d

∫
Rd

|ξ|2α |Fxε(ξ)|2 dξ =
(∫

Bε

(1 + ‖η‖2)r dη

)−1 ∫
Bε

|ξ|2α dξ.

As ε → 0, this quantity tends (by the mean value theorem) to the quantity

f(ξ̂ ) =
|ξ̂ |2α

(1 + ‖ξ̂‖2)r
,

which is equal to λ̂ since the maximum of f is attained at the point ξ̂ (this was
mentioned before statement of the theorem).
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Since the squared optimal recovery error is not less than the value of (5), we
obtain the following estimate for δ > δ̂:

E
(
Dα,Hr

2 (Rd), A, δ
)

>
√

λ̂. (7)

The right-hand side of (7) coincides with the optimal recovery error indicated in
the theorem because in the case considered we have ∆ = δ̂ and h(δ̂) = λ̂.

Case 2: 0 < δ < δ̂, λ(A) 6 h(δ). Put

ξ̃ =
(√

α1(1− δ2/r)
αδ2/r

, . . . ,

√
αd(1− δ2/r)

αδ2/r

)
.

For every ε > 0 we introduce the notation

ξ̃ε =
(

1− ε

‖ξ̃‖

)
ξ̃

and consider the ball B̃ε = {ξ ∈ Rd | ‖ξ − ξ̃ε‖ 6 ε}.
Since δ < δ̂ and, therefore, r(1− δ2/r)/α > 1, we have

f(ξ̃) =
|ξ̃|2α

(1 + ‖ξ̃‖2)r
=

αα

rαα−1
(1− δ2/r)α−1δ2(1−α/r)

=
r

α
(1− δ2/r)h(δ) > h(δ) > λ(A).

It follows that ξ̃ ∈ intΩλ(A), whence Bε ⊂ int Ωλ(A) for sufficiently small ε and,
therefore, mes(A ∩ B̃ε) = mes B̃ε for such ε. We define the following functions
on Rd:

zε(ξ) =


(2π)d/2 δ√

mes B̃ε

, ξ ∈ B̃ε,

0, ξ /∈ B̃ε.

Clearly, zε( · ) ∈ L̂2(Rd). We claim that the functions xε( · ) = F−1zε( · ) are admis-
sible in the problem (6). The first requirement obviously holds. We easily verify
that ‖ξ‖ 6 ‖ξ̃‖ if ξ ∈ B̃ε and δ2(1 + ‖ξ̃‖2)r = 1. Hence

1
(2π)d

∫
Rd

(1 + ‖ξ‖2)r |Fxε(ξ)|2 dξ =
δ2

mes B̃ε

∫
eBε

(1 + ‖ξ‖2)r dξ

6
δ2

mes B̃ε

(1 + ‖ξ̃ ‖2)r mes B̃ε = δ2(1 + ‖ξ̃ ‖2)r = 1.

Thus the functions xε( · ) are admissible in the problem (5) and, therefore, the
value of this problem is not less than

1
(2π)d

∫
Rd

|ξ|2α |Fxε(ξ)|2 dξ =
δ2

mes B̃ε

∫
eBε

|ξ|2α dξ

=
1

(1 + ‖ξ̃‖2)r mes B̃ε

∫
eBε

|ξ|2α dξ
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for all sufficiently small ε > 0. As ε → 0, this quantity tends (by the mean value
theorem) to the number

|ξ̃|2α

(1 + ‖ξ̃‖2)r
=

αα

αα

(1− δ2/r)α

δ2α/r
δ2 =

(
r

α
(δ̂ 2/r − δ2/r) + 1

)
h(δ).

Arguing as above, we get the following estimate in the case considered:

E
(
Dα,Hr

2 (Rd), A, δ
)

>

√(
r

α
(δ̂2/r − δ2/r) + 1

)
h(δ). (8)

The right-hand side coincides with the optimal recovery error indicated in the
theorem because ∆ = δ in this case.
Case 3: 0 6 δ < δ̂, λ(A) > h(δ). We first assume that λ(A) = λ̂. Then
mes(A ∩ Ωλ) < mes Ωλ for all λ, 0 < λ < λ̂. Hence, for such λ, we have

mes(Ωλ ∩ (Rd \A)) = mes(Ωλ \A) = mes Ωλ −mes(A ∩ Ωλ) > 0.

We put Gλ = Ωλ ∩ (Rd \A) and define the following functions on Rd:

zλ(ξ) =

(2π)d/2

(∫
Gλ

(1 + ‖η‖2)r dη

)−1/2

, ξ ∈ Gλ,

0, ξ /∈ Gλ.

Clearly, zλ( · ) ∈ L̂2(Rd). We put xλ( · ) = F−1zλ( · ). It is easily verified that the
functions xλ( · ) are admissible in the problem (6). For all indicated values of λ
(taking into account that f(ξ) > λ when ξ ∈ Ωλ), we have

1
(2π)d

∫
Rd

|ξ|2α |Fxλ(ξ)|2 dξ =
(∫

Gλ

(1 + ‖η‖2)r dη

)−1 ∫
Gλ

|ξ|2α dξ

=
(∫

Gλ

(1 + ‖η‖2)r dη

)−1 ∫
Gλ

|ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r dξ

>

(∫
Gλ

(1 + ‖η‖2)r dη

)−1

λ

∫
Gλ

(1 + ‖ξ‖2)r dξ = λ,

whence the value of (6) is not less than λ. Letting λ → λ̂, we see that the value of
this problem is not less than λ̂.

Again, since the squared optimal recovery error is not less than the value of (6),
we get the following estimate when λ(A) = λ̂:

E
(
Dα,Hr

2 (Rd), A, δ
)

>
√

λ̂, (9)

where the quantity on the right again coincides with the optimal recovery error
indicated in the theorem because ∆ = δ̂ in this case.

We now assume that λ(A) < λ̂. First, we claim that the measure of the set

Fε = (Rd \A) ∩ (Ωλ(A)−ε \ Ωλ(A))
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is positive for all ε, 0 < ε < λ(A). Indeed, suppose that mes Fε = 0 for some ε.
Since Ωλ(A) ⊂ Ωλ(A)−ε, we get

mes
(
A ∩ (Ωλ(A)−ε \ Ωλ(A))

)
= mes(Ωλ(A)−ε \ Ωλ)

= mes Ωλ(A)−ε −mes(Ωλ(A) ∩ Ωλ(A)−ε) = mes Ωλ(A)−ε −mes Ωλ(A).

On the other hand,

mes
(
A ∩ (Ωλ(A)−ε \ Ωλ(A))

)
= mes

(
(A ∩ Ωλ(A)−ε) \ Ωλ(A)

)
= mes(A ∩ Ωλ(A)−ε)−mes(A ∩ Ωλ(A)).

We easily see from the definition of λ(A) that mes(A ∩ Ωλ(A)) = mes Ωλ(A). Then
the expressions above yield that mes(A ∩ Ωλ(A)−ε) = mes Ωλ(A)−ε contrary to the
definition of λ(A). Thus mes Fε 6= 0 for 0 < ε < λ(A).

Assume first that δ = 0. For ε as above we define the following functions on Rd:

zε(ξ) =

(2π)d/2

(∫
Fε

(1 + ‖η‖2)r dη

)−1/2

, ξ ∈ Fε,

0, ξ /∈ Fε.

Clearly, zε( · ) ∈ L̂2(Rd). We put xε( · ) = F−1zε( · ) and verify in an elementary
manner that the functions xε( · ) are admissible in the problem (6). The same
argument as above shows that

1
(2π)d

∫
Rd

|ξ|2α |Fxε(ξ)|2 dξ > λ(A)− ε,

whence it follows (as above) that

E
(
Dα,Hr

2 (Rd), A, 0
)

>
√

λ(A). (10)

The right-hand side of (10) coincides with the optimal recovery error in the state-
ment of the theorem because δ = 0 and h(∆) = λ(A) in the case considered.

We now assume that δ > 0. Put

ξ′ =
(√

α1(1−∆2/r)
α∆2/r

, . . . ,

√
αd(1−∆2/r)

α ∆2/r

)
.

For every ε > 0 we introduce the notation

ξ′ε =
(

1− ε

‖ξ′‖

)
ξ′

and consider the ball B′
ε = {ξ ∈ Rd | ‖ξ − ξ′ε‖ 6 ε}.

Since λ(A) < λ̂, we have ∆ = h−1(λ(A)) < h−1(λ̂) = δ̂. As in Case 2, it follows
that

f(ξ′) =
|ξ′|2α

(1 + ‖ξ′‖2)r
=

αα

rαα−1
(1−∆2/r)α−1∆2(1−α/r)

=
r

α
(1−∆2/r)h(∆) > h(∆) = λ(A).
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This means that ξ′ ∈ intΩλ(A). Hence, for sufficiently small ε > 0, the ball B′
ε lies

in Ωλ(A) and, therefore, B′
ε ∩ Fε = ∅.

We easily verify that ‖ξ‖ 6 ‖ξ′‖ when ξ ∈ B′
ε and (1 + ‖ξ′‖2)r = 1/∆2. Since

λ(A) > h(δ), we further have ∆ = h−1(λ(A)) > δ and, therefore,

δ2

mes B′
ε

∫
B′

ε

(1 + ‖ξ‖2)r dξ 6
δ2

mes B′
ε

∫
B′

ε

(1 + ‖ξ′‖2)r dξ = δ2(1 + ‖ξ′‖2)r =
δ2

∆2
< 1.

We denote the leftmost expression by Cε and, with ε as above, define the follow-
ing functions on Rd:

zε(ξ) =


(2π)d/2 δ√

mes B′
ε

, ξ ∈ B′
ε,

(2π)d/2
√

1− Cε

(∫
Fε

(1 + ‖η‖2)r dη

)−1/2

, ξ ∈ Fε,

0, ξ /∈ B′
ε ∪ Fε.

Clearly, zε( · ) ∈ L̂2(Rd). We claim that the functions xε( · ) = F−1zε( · ) are admis-
sible in the problem (6).

Indeed, since B′
ε ⊂ Ωλ(A), we have mes B′

ε = mes(A ∩B′
ε) and, therefore,

1
(2π)d

∫
A

|Fxε(ξ)|2 dξ =
δ2

mes B′
ε

∫
A∩B′

ε

dξ =
δ2

mes B′
ε

mes(A ∩B′
ε) = δ2.

We further have

1
(2π)d

∫
Rd

(1 + ‖ξ‖2)r |Fxε(ξ)|2 dξ =
δ2

mes B′
ε

∫
B′

ε

(1 + ‖ξ‖2)r dξ

+ (1− Cε)
(∫

Fε

(1 + ‖η‖2)r dη

)−1 ∫
Fε

(1 + ‖ξ‖2)r dξ = Cε + 1− Cε = 1,

whence the functions xε( · ) with sufficiently small ε are admissible in the prob-
lem (6). Then, for every such ε, the value of this problem is not less than

1
(2π)d

∫
Rd

|ξ|2α |Fxε(ξ)|2 dξ =
δ2

mes B′
ε

∫
B′

ε

|ξ|2α dξ

+ (1− Cε)
(∫

Fε

(1 + ‖η‖2)r dη

)−1 ∫
Fε

|ξ|2α dξ. (11)

Proceeding as above, we see that the product of the last two factors in the second
term of (11) is not less than λ(A) − ε. Estimating the first term and Cε by the
mean value theorem, we see that, as ε → 0, the right-hand side of (11) tends to

δ2|ξ′|2α +
(
1− δ2(1 + ‖ξ′‖2)r

)
λ(A) =

αα

αα

(1−∆2/r)α

∆2α/r
δ2

+
(

1− δ2

∆2

)
λ(A) =

(
rδ2

α∆2
(δ̂ 2/r −∆2/r) + 1

)
λ(A).
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Hence, when 0 6 δ < δ̂ and λ(A) > h(δ), we get the estimate

E
(
Dα,Hr

2 (Rd), A, δ
)

>

√(
rδ2

α∆2
(δ̂2/r −∆2/r) + 1

)
λ(A), (12)

whose right-hand side coincides with the optimal recovery error in the statement
of the theorem because h(∆) = λ(A) in this case.

Thus, for all δ > 0 and all measurable sets A ⊂ Rd with δ + λ(A) 6= 0, we
have obtained a lower bound for the optimal recovery error (see (7)–(10) and (12)),
which coincides with the value of the optimal recovery error given in the statement
of the theorem. We now obtain an upper bound for this quantity and construct the
optimal methods.

We fix δ > 0 and A ⊂ Rd with δ + λ(A) 6= 0. The optimality of a method
ϕ : Im Iα(A) → L2(Rd) means that its error, that is, the value of the problem∥∥Dαx( · )− ϕ(y( · ))( · )

∥∥
L2(Rd)

→ max, x( · ) ∈ Hr
2 (Rd),∥∥Fx( · )− y( · )

∥∥bL2(A)
6 δ, y( · ) ∈ L̂2(A),

(13)

coincides with E(Dα,Hr
2 (Rd), A, δ).

When δ = 0, problem (13) can be rewritten as∥∥Dαx( · )− ϕ(Fx( · )|A)( · )
∥∥

L2(Rd)
→ max, x( · ) ∈ Hr

2 (Rd). (14)

We consider some cases separately.
Case (a): δ = 0. Since the map x( · ) 7→ Dαx( · ) in the Fourier images is the
multiplication of the function ξ 7→ (iξ)α by Fx( · ), it is natural to search for
optimal methods among such maps. For every measurable function a( · ) on A with
a( · )

√
f( · ) ∈ L∞(A) we consider the map ϕa : Im I0(A) → L2(Rd), which acts on

Fourier images by the rule Fϕa(y( · ))(ξ) = (iξ)αã(ξ)ỹ(ξ) for a. e. ξ ∈ Rd, where
ã( · ) = a( · ), ỹ( · ) = y( · ) on A and ã( · ) = 0, ỹ( · ) = 0 outside A. This map is well
defined because if y( · ) ∈ Im I0(A), then y( · ) = Fx( · )|A for some x( · ) ∈ Hr

2(Rd),
and then

1
(2π)d

∫
A

∣∣Fϕa(y( · ))(ξ)
∣∣2 dξ =

1
(2π)d

∫
A

|ξ|2α |a(ξ)|2 |Fx(ξ)|2 dξ

=
1

(2π)d

∫
A

|a(ξ)|2 |ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ

6
∥∥ |a( · )|2f( · )

∥∥
L∞(A)

1
(2π)d

∫
A

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ < ∞.

Thus ϕa(y( · ))( · ) ∈ L2(Rd) by Plancherel’s theorem.
Let ϕa be such a map. We estimate the square of the functional in (14) to be

maximized with ϕ = ϕa. To do this, we pass to Fourier images by Plancherel’s
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theorem (f(ξ) 6 λ(A) when ξ ∈ Rd \A):

1
(2π)d

∫
Rd

∣∣(iξ)αFx(ξ)− ϕa(Fx( · )|A)(ξ)
∣∣2 dξ

=
1

(2π)d

∫
A

∣∣(iξ)αFx(ξ)− (iξ)αa(ξ)Fx(ξ)
∣∣2 dξ +

1
(2π)d

∫
Rd\A

|ξ|2α |Fx(ξ)|2 dξ

=
1

(2π)d

∫
A

|1− a(ξ)|2 |ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ

+
1

(2π)d

∫
Rd\A

|ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ

6 vrai sup
ξ∈A

|1− a(ξ)|2f(ξ)
1

(2π)d

∫
A

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ

+ λ(A)
1

(2π)d

∫
Rd\A

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ. (15)

It follows that if
|1− a(ξ)|2f(ξ) 6 λ(A) (16)

for a. e. ξ ∈ Rd, then the right-hand side of (15) does not exceed λ(A) and, therefore,
the error in the method ϕa does not exceed

√
λ(A). Using (10), we then have√

λ(A) 6 E
(
Dα,Hr

2 (Rd), A, 0
)

6 e
(
Dα,Hr

2 (Rd), A, 0, ϕa

)
6

√
λ(A),

that is, E(Dα,Hr
2 (Rd), A, 0) =

√
λ(A), and ϕa is an optimal method.

The existence of such functions a( · ) is obvious. For example, one can take the
function which is identically equal to unity.

If λ(A) = λ̂, then f(ξ) 6 λ̂ for all ξ ∈ Rd and (16) holds with a( · ) = 0. Hence
the zero method is optimal in this case.

When the function ξ 7→ (iξ)αa(ξ)Fx(ξ) belongs to L1(A) (for example, when
the measure of A is finite), the expression for the optimal method in the theorem
is just the Fourier inversion formula. Otherwise the integral should be understood
as the principal value for every t ∈ Rd.
Case (b): δ > 0, λ(A) = λ̂. We claim that the zero method is optimal in this
situation.

Indeed,

E
(
Dα,Hr

2 (Rd), A, δ
)

6 e
(
Dα,Hr

2 (Rd), A, δ, 0
)

= sup
x( · )∈Hr

2 (Rd),y( · )∈bL2(A)
‖Fx( · )−y( · )‖bL2(A)6δ

‖Dαx( · )‖L2(Rd) 6 sup
x( · )∈Hr

2 (Rd)

‖Dαx( · )‖L2(Rd). (17)

By Plancherel’s theorem, the squared right-hand side of (17) is equal to the value
of the problem

1
(2π)d

∫
Rd

|ξ|2α |Fx(ξ)|2 dξ → max,
1

(2π)d

∫
Rd

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ 6 1. (18)
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Hence, by the definition of λ̂, we have

1
(2π)d

∫
Rd

|ξ|2α |Fx(ξ)|2 dξ =
1

(2π)d

∫
Rd

|ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ 6 λ̂,

that is, the value of the problem (18) does not exceed λ̂. Therefore, in the cases
δ > δ̂ and 0 6 δ < δ̂, λ(A) = λ̂ (see (7) and (9)) we have√

λ̂ 6 E
(
Dα,Hr

2 (Rd), A, δ
)

6 e
(
Dα,Hr

2 (Rd), A, δ, 0
)

6
√

λ̂,

that is, E(Dα,Hr
2 (Rd), A, δ) =

√
λ̂ and ϕ̂ = 0 is an optimal method.

Case (c): 0 < δ < δ̂, 0 6 λ(A) < λ̂. In this situation, our lower bounds for the
optimal recovery error (see (8) and (12)) can be combined into one formula:

E
(
Dα,Hr

2 (Rd), A, δ
)

>
√

λ1δ2 + λ2, (19)

where λi > 0, i = 1, 2.
Let a( · ) be a measurable function on A such that the function ξ 7→ (iξ)αa(ξ)

belongs to L∞(A). As above, we search for optimal methods among those maps
ϕa : Im Iδ(A) → L2(Rd) which act on the Fourier images by the rule Fϕa(y( · ))(ξ) =
(iξ)αã(ξ)ỹ(ξ) for a. e. ξ ∈ Rd, where ã( · ) = a( · ), ỹ( · ) = y( · ) on A and ã( · ) = 0,
ỹ( · ) = 0 outside A. Clearly, ϕa( · ) ∈ L2(Rd).

Let ϕa be such a method. We estimate the value of the problem (13) in this
situation. Passing by Plancherel’s theorem to Fourier images, we see that the square
of this value is equal to the value of the following problem:

1
(2π)d

∫
A

∣∣(iξ)αFx(ξ)− (iξ)αa(ξ)y(ξ)
∣∣2 dξ +

1
(2π)d

∫
Rd\A

|ξ|2α |Fx(ξ)|2 dξ → max,

1
(2π)d

∫
A

|Fx(ξ)− y(ξ)|2 dξ 6 δ2, (20)

1
(2π)d

∫
Rd

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ 6 1, x( · ) ∈ Hr
2(Rd), y( · ) ∈ L̂2(A).

We now estimate the first integrand in this functional by the Cauchy–Bunyakovskii
inequality for every ξ ∈ A:∣∣(iξ)αFx(ξ)− (iξ)αa(ξ)y(ξ)

∣∣2 = |ξ|2α
∣∣(1− a(ξ))Fx(ξ) + a(ξ)(Fx(ξ)− y(ξ))

∣∣2
6 |ξ|2α

(
|1− a(ξ)|2

λ2(1 + ‖ξ‖2)r
+
|a(ξ)|2

λ1

)(
λ2(1 + ‖ξ‖2)r |Fx(ξ)|2

+ λ1|Fx(ξ)− y(ξ)|2
)
. (21)

We put

Sa = vrai sup
ξ∈A

|ξ|2α

(
|1− a(ξ)|2

λ2(1 + ‖ξ‖2)r
+
|α(ξ)|2

λ1

)
.
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Assuming that Sa 6 1, we can integrate the inequality (21) over A and take into
account that f(ξ) 6 λ(A) outside A in order to obtain the following estimate for
the functional in (20):

λ2
1

(2π)d

∫
A

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ + λ1
1

(2π)d

∫
A

|Fx(ξ)− y(ξ)|2 dξ

+
1

(2π)d

∫
Rd\A

|ξ|2α

(1 + ‖ξ‖2)r
(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ

6 λ2
1

(2π)d

∫
A

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ + λ1
1

(2π)d

∫
A

|Fx(ξ)− y(ξ)|2 dξ

+ λ(A)
1

(2π)d

∫
Rd\A

(1 + ‖ξ‖2)r |Fx(ξ)|2 dξ. (22)

If λ(A) 6 h(δ), then ∆ = δ and, therefore, λ(A) 6 h(∆) = λ2. But if λ(A) > h(δ),
then λ2 = h(∆) = λ(A). Thus we always have λ(A) 6 λ2. Therefore, using the
constraints in the problem (20), we obtain from (22) that the functional to be
maximized in (20) does not exceed λ2 + λ1δ

2. Hence the error in the method ϕa

does not exceed
√

λ2 + λ1δ2. Together with (19), this means that the method ϕa is
optimal.

We now prove the existence of functions a( · ) such that Sa 6 1.
If the inequality

|ξ|2α

(
|1− a(ξ)|2

λ2(1 + ‖ξ‖2)r
+
|α(ξ)|2

λ1

)
6 1 (23)

holds for a. e. ξ ∈ Rd, then Sa 6 1. Furthermore, if

− |ξ|2α + λ1 + λ2(1 + ‖ξ‖2)r > 0 ∀ ξ ∈ Rd, (24)

then we easily see (by completing the square) that (23) is equivalent to the corre-
sponding hypothesis of the theorem. It follows that for every measurable function
a( · ) satisfying the hypotheses of the theorem, the function ξ 7→ (iξ)αa(ξ) belongs
to L∞(A), and hence there are ‘sufficiently many’ optimal methods.

It remains to prove (24). To do this, we define a function g( · ) on the half-line
[0,∞) by the formula

g(x) =
αα

α α
(x1/r − 1)α.

We easily see that this function is concave on [x0,∞), where x0 = (r/(r − α))r.
In our case, ∆ < δ̂ or, equivalently, ∆−2 > x0. A direct calculation shows that

the line x 7→ λ1 + λ2x is tangent to the graph of g( · ) at the point ∆−2. Since g( · )
is concave, it follows that

g(x) 6 λ1 + λ2x ∀x > x0.

Suppose that ξ ∈ Rd and put xξ = (1 + ‖ξ‖2)r. Then

g(xξ) =
αα

α α
‖ξ‖2α.
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It follows from the inequality between the arithmetic and geometric means (see [19],
Russian p. 29) that

|ξ|2α 6
αα

α α
‖ξ‖2α.

Combining the last two formulae and taking into account that xε > x0, we obtain

|ξ|2α 6
αα

α α
‖ξ‖2α = g(xξ) 6 λ1 + λ2xξ = λ1 + λ2(1 + ‖ξ‖2)r.

This proves (24) and hence establishes the expression for the functions a( · ) in the
statement of the theorem.

As in the case δ = 0, when the function ξ 7→ (iξ)αa(ξ)Fx(ξ) belongs to L1(A) (for
example, when the measure of A is finite), the expression for the optimal method
in the theorem is the Fourier inversion formula. Otherwise the integral should be
understood as the principal value for every t ∈ Rd. �

Proof of Theorem 2. Suppose that Aσ ∈ Aσ. We claim that λ(Aσ) > λ(σ). Indeed,
if λ(Aσ) < λ(σ), then there is a λ < λ(σ) such that mes(Aσ ∩Ωλ) = mes Ωλ. Since
mes Ωλ > mes Ωλ(σ) = σ, we have mes Aσ > σ. This is impossible.

Suppose that δ = 0. Then it follows from Theorem 1 that

E
(
Dα,Hr

2 (Rd), Aσ, 0
)

=
√

λ(Aσ) >
√

λ(σ).

But since mes Ωλ(σ) = σ and λ(Ωλ(σ)) = λ(σ), the set Ωλ(σ) is optimal and, clearly,
every set which differs from Ωλ(σ) only by a set of measure zero is also optimal.

If δ > δ̂, then for every set (and, in particular, for every Aσ) we have

E
(
Dα,Hr

2 (Rd), Aσ, 0
)

=
√

λ̂.

Hence every set is optimal in this case.
We now suppose that 0<δ < δ̂ and Aσ ∈Aσ. If λ(σ) >h(δ), then λ(σ, δ) =λ(σ).

It was proved above that λ(Aσ) > λ(σ) and, therefore, λ(Aσ) > h(δ). In this case,
as noted in comment 2 on Theorem 1, the optimal recovery error decreases as λ(A)
decreases. Since λ(Aσ) > λ(σ) = λ(Ωλ(σ)), we have

E
(
Dα,Hr

2 (Rd), Aσ, δ
)

> E
(
Dα,Hr

2 (Rd),Ωλ(σ), δ
)
.

Therefore Ωλ(σ) is an optimal set.
Suppose that λ(σ) 6 h(δ). Then λ(σ, δ) = h(δ). If λ(Aσ) > h(δ), then the

argument used in the previous case shows that

E
(
Dα,Hr

2 (Rd), Aσ, δ
)

> E
(
Dα,Hr

2 (Rd),Ωh(δ), δ
)
.

But if λ(Aσ) 6 h(δ), then, by Theorem 1,

E
(
Dα,Hr

2 (Rd), Aσ, δ
)

=

√(
r

α
(δ̂2/r − δ2/r) + 1

)
h(δ) = E

(
Dα,Hr

2 (Rd),Ωh(δ), δ
)
,

whence Ωh(δ) is an optimal set.
Thus, for δ > 0, the set Ωλ(σ,δ) is optimal, and so is every set which differs from

Ωλ(σ,δ) by a set of measure zero. �
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We now consider an example. Take α = (1, 0, . . . , 0) and r = 2. In other words,
consider the problem of recovering the partial derivative xt1( · ) on the class H2

2 (Rd).
In this case,

λ̂ =
1
4
, δ̂ =

1
2
,

Ωλ =
{

(ξ1, . . . , ξd) ∈ Rd
∣∣∣ ξ2

1

(1 + ξ2
1 + · · ·+ ξ2

d)2
> λ

}
.

We easily see that the set Ωλ with λ < 1/4 consists of two balls:

Ωλ =
{

(ξ1, . . . , ξd) ∈ Rd
∣∣∣ (

|ξ1| −
1

2
√

λ

)2

+ ξ2
2 + · · ·+ ξ2

d 6
1
4λ

− 1
}

.

By Theorem 1, E(Dα,H2
2 (Rd), A, δ) = 1/2 when δ > 1/2. If δ < 1/2, then

E
(
Dα,H2

2 (Rd), A, δ
)

=


√

(1− δ)δ, λ(A) 6
δ

2
,√(

1− 4λ(A)
4λ(A)

)
δ2 + λ(A), λ(A) >

δ

2
.

A family of optimal methods in this case can easily be obtained from Theorem 1.
In particular, the method

ϕ̂(Fx( · )|A)(t) =
1

(2π)d

∫
A

iξ1

1 + ∆2

1−2∆ (1 + ξ2
1 + · · ·+ ξ2

d)2
Fx(ξ)e〈ξ,t〉 dξ

is optimal for 0 < δ < 1/2, where

∆ =


δ, λ(A) 6

δ

2
,

2λ(A), λ(A) >
δ

2
.

By the well-known formula for the volume of a d-dimensional ball we have

mes Ωλ =
2πd/2

Γ(d/2 + 1)

(
1
4λ

− 1
)d/2

and, therefore,

λ(σ) =
1
4

(
1 +

1
π

(
σ

2
Γ
(

d

2
+ 1

))2/d)−1

.

It was mentioned in the proof of Theorem 2 that all sets are optimal for δ > 1/2.
When δ < 1/2, the same theorem shows that the balls{

(ξ1, . . . , ξd) ∈ Rd
∣∣∣ (
|ξ1| −

√
R2 + 1

)2 + ξ2
2 + · · ·+ ξ2

d 6 R2
}
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are optimal sets, where

R =


1√
π

(
σ

2
Γ
(

d

2
+ 1

))1/d

, σ <
2

πd/2Γ(d/2 + 1)

(
1
2δ

− 1
)d/2

,

√
1
2δ

− 1, σ >
2

πd/2Γ(d/2 + 1)

(
1
2δ

− 1
)d/2

.
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