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Optimal recovery of a solution of a system
of linear differential equations from initial

information given with a random error

I. S. Maksimova and K. Yu. Osipenko

Abstract. The problem of the optimal recovery of a solution of a system
of linear differential equations from initial information containing a random
error is considered. Optimal methods are searched for among all possible
(not necessarily linear) recovery methods. Depending on the given variance
of random errors, the optimal recovery methods constructed in the paper,
which turn out to be linear, use only part of the available information.
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§ 1. Introduction

In the general statement of the recovery problem one must find the values of
a fixed functional or operator acting on some classes of functions from incomplete
information about these values. Classes are usually defined in terms of the smooth-
ness or analyticity properties of functions forming them. Usually, local or individual
information consists of some characteristic of a function which are available to us
(the values of the function at some point, its moments, Fourier or Taylor coeffi-
cients, Fourier transform and so on). This information can be prescribed with an
error, deterministic or random.

To this date, optimal methods have been found for various recovery problems in
a considerable number of papers. Problems with deterministic errors were consid-
ered, for instance, in [1]–[9].

Problems with random errors were investigated in [10]–[16]. In [11] recovery
methods were estimated on the basis of linear functionals, and in [12] an estimate
for a nonlinear recovery method was found in terms of estimates for linear methods.

The problem of estimating the error of a method of recovery from a random
variable with normal distribution was considered in [13], where inequalities for the
minimax nonlinear risk were obtained.

For a solution of a system of linear homogeneous equations the recovery problem
was considered in [17], but there the error in the data was deterministic.
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This paper is concerned with the construction of optimal recovery methods
for a solution of a system of linear homogeneous equations from initial informa-
tion known with a random error. We reproduce the statement of the problem
from [14] and use a number of ideas from there to prove our general result in the
final-dimensional case. We consider various forms of the prescription of information:
the problem is solved under the assumptions that the initial point lies in an ellipsoid
and its coordinates at the initial moment of time are known with a random error.
We must recover the solution at time τ > 0. We also consider the problem when
a solution is known with a random error at some moment of time t = T1, and we
must recover it at another moment of time τ , 0 < τ < T1.

The general result is also applied to the problem of the recovery of the kth
derivative of a trigonometric polynomial from its coefficients, which are known
with a random error.

In these problems we do not limit ourselves to random variables with normal
distribution. We consider arbitrary distributions of a random vector with fixed
expectation and a fixed estimate for variance. As in problems with deterministic
error, here we discover such phenomena as the linearity of the optimal method and
the opportunity to use only part of the information available for measurements.

§ 2. Statement of the optimal recovery problem for
a solution of a system of linear differential equations

Consider the Cauchy problem for a system of linear differential equations
dx

dt
= Ax,

x(0) = x0,
(2.1)

where x(t) ∈ Rn, t ⩾ 0, and

A =

a11 a12 . . . a1n

...
... . . .

...
an1 an2 . . . ann

 , aij ∈ R.

Assume that the matrix A is selfadjoint, and let

µ1, µ2, . . . , µn

be its eigenvalues. Let {ej}n
j=1 denote the orthonormal basis of eigenvectors cor-

responding to the eigenvalues µj , j = 1, . . . , n. Let

x0 =
n∑

j=1

xjej .

Then the solution of (2.1) can be expressed by

x(t) =
n∑

j=1

eµjtxjej .
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Assume that we know the coordinate of the initial point x0 with a random error.
Moreover, we know some ellipsoid containing the point x0. We must recover the
solution at time τ > 0.

We turn to the precise statement of the problem. For x = (x1, . . . , xn) ∈ Rn set

W =
{
x∈Rn :

n∑
j=1

νjx
2
j ⩽ 1

}
, Tx = (eµ1τx1, . . . , e

µnτxn) and Ix = (x1, . . . , xn).

Fix δ > 0, and for each x ∈ W consider the set of random vectors

Yδ(x) =
{
y = (y1, . . . , yn) : E(y) = Ix, D(yj) ⩽ δ2, j = 1, . . . , n

}
.

Let ln2 denote the space of vectors x = (x1, . . . , xn) with the norm

∥x∥ln2
=

( n∑
j=1

|xj |2
)1/2

.

A recovery method assigns to a random vector y ∈ Yδ(x) an element of ln2 , which is
regarded as an approximation of Tx. The error of a recovery method φ : Rn → ln2
is the quantity

e(T, W, I, δ, φ) =
(

sup
x∈W, y∈Yδ(x)

E
(
∥Tx− φ(y)∥2ln2

))1/2

(we consider only measurable maps φ). The problem consists in finding the optimal
recovery error

E(T, W, I, δ) = inf
φ : Rn→ln2

e(T, W, I, δ, φ)

and a method delivering the infimum, which is called an optimal method.
To solve this problem we consider a more general problem, solve it and apply

the result obtained to the original problem.

§ 3. General result

Let X be a linear space, Z be a normed linear space and T : X → Z be a linear
operator. We must recover the values of T on a certain set (class) W ⊂ X from
values of a linear operator I : X → Rn, which are given with a random error.
For each x ∈ W and δ > 0 we consider the set of random vectors

Yδ(x) =
{
y = (y1, . . . , yn) : E(y) = Ix, D(yj) ⩽ δ2, j = 1, . . . , n

}
and, similarly to § 2, define the error of a recovery method φ : Rn → Z by

e(T, W, I, δ, φ) =
(

sup
x∈W, y∈Yδ(x)

E
(
∥Tx− φ(y)∥2Z

))1/2

(only measurable methods φ are considered). The problem consists in finding an
optimal recovery method (if it exists) and the optimal recovery error

E(T, W, I, δ) = inf
φ : Rn→Z

e(T, W, I, δ, φ). (3.1)
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Set

W =
{

x ∈ Rn :
n∑

j=1

νj |xj |2 ⩽ 1
}

,

where νj > 0, j = 1, . . . , n. Consider the linear operators T : Rn → ln2 and
I : Rn → Rn defined by

Tx = (µ1x1, . . . , µnxn) and Ix = (x1, . . . , xn),

|µj | > 0, j = 1, . . . , n.
We introduce the notation

γj =
√

νj

|µj |
, j = 1, . . . , n, and ξj =

( j∑
k=1

νk

(
γj

γk
− 1

))1/2

, j = 1, . . . , n.

Let γ1 ⩽ · · · ⩽ γn. Then it is easy to see that 0 = ξ1 ⩽ · · · ⩽ ξn.

Theorem 1. Let 1/δ ∈ (ξs, ξs+1] for some 1 ⩽ s ⩽ n− 1 or 1/δ ∈ (ξn, +∞) (and
then set s = n). Then

E(T, W, I, δ) = δ

( s∑
k=1

|µk|2
(

1− γk(1− c1)
γ1

))1/2

,

where

c1 = 1−
δ2γ1

∑s
k=1(νk/γk)

1 + δ2
∑s

k=1 νk
, (3.2)

and the method

φ(y) =
s∑

k=1

(
1− γk(1− c1)

γ1

)
µkykek,

where {ek} is the standard basis in ln2 , is optimal.

Proof. 1. A lower bound. Fix some τ = (τ1, . . . , τn) ∈ W such that

τ1 ⩾ · · · ⩾ τn > 0.

Consider the set
B = {x ∈ ln2 : xj = ±τj , j = 1, . . . , n}.

It is obvious that B ⊂ W . Set

pj =
δ2

δ2 + τ2
j

, j = 1, . . . , n.

By the monotonicity condition on the τj we have

0 < p1 ⩽ · · · ⩽ pn < 1.
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An arbitrary x ∈ B is expressed in the form

x =
n∑

j=1

sj(x)τjej ,

where sj(x) ∈ {−1, 1}. We define the distribution η(x) for x ∈ B by

η(x) =



0 with probability p1,
s1(x)τ1

1− p1
e1 with probability p2 − p1,

2∑
j=1

sj(x)τj

1− pj
ej with probability p3 − p2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n−1∑
j=1

sj(x)τj

1− pj
ej with probability pn − pn−1,

n∑
j=1

sj(x)τj

1− pj
ej with probability 1− pn.

Thus, the components of η(x) = (η1(x), . . . , ηn(x)) has the following distributions:

ηj(x) =

0 with probability pj ,
sj(x)τj

1− pj
with probability 1− pj ,

j = 0, 1, . . . , n.

It is easy to see that E(ηj(x)) = xj , j = 1, . . . , n. In addition,

D(ηj(x)) = (1− pj)
τ2
j

(1− pj)2
− τ2

j = δ2, j = 1, . . . , n.

Therefore, η(x) ∈ Yδ(x) for x ∈ B.
Let φ be a recovery method. Since the cardinality of B is 2n, we obtain

e2(T, W, I, δ, φ) ⩾ sup
x∈B

E∥Tx− φ(η(x))∥2ln2

= sup
x∈B

(n+1∑
j=1

(pj − pj−1)
∥∥∥∥Tx− φ

(j−1∑
k=1

sk(x)τk

1− pk
ek

)∥∥∥∥2

ln2

)

⩾
1
2n

∑
x∈B

(n+1∑
j=1

(pj − pj−1)
∥∥∥∥Tx− φ

(j−1∑
k=1

sk(x)τk

1− pk
ek

)∥∥∥∥2

ln2

)

=
1
2n

n+1∑
j=1

(pj − pj−1)
∑
x∈B

∥∥∥∥Tx− φ

(j−1∑
k=1

sk(x)τk

1− pk
ek

)∥∥∥∥2

ln2

; (3.3)

here p0 = 0 and pn+1 = 1. Set

Bs1,...,sj−1 = {x ∈ B : s1(x) = s1, . . . , sj−1(x) = sj−1},
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j = 1, . . . , n + 1 (for j = 1 this set coincides with B). Then

pj − pj−1

2n

∑
x∈B

∥∥∥∥Tx− φ

(j−1∑
k=1

sk(x)τk

1− pk
ek

)∥∥∥∥2

ln2

=
pj − pj−1

2n

∑
s1,...,sj−1

∑
x∈Bs1,...,sj−1

∥∥∥∥Tx− φ

(j−1∑
k=1

skτk

1− pk
ek

)∥∥∥∥2

ln2

.

If x ∈ Bs1,...,sj−1 , then

x =
j−1∑
k=1

skτkek + z(x), where z(x) =
n∑

k=j

sk(x)τkek.

Moreover, together with each element

j−1∑
k=1

skτkek + z(x) ∈ Bs1,...,sj−1

the set Bs1,...,sj−1 contains also the element

j−1∑
k=1

skτkek − z(x).

Thus,

pj − pj−1

2n

∑
s1,...,sj−1

∑
x∈Bs1,...,sj−1

∥∥∥∥Tx− φ

(j−1∑
k=1

skτk

1− pk
ek

)∥∥∥∥2

ln2

=
pj − pj−1

2n

∑
s1,...,sj−1

∑
x∈Bs1,...,sj−1

∥∥∥∥T

(j−1∑
k=1

skτkek + z(x)
)
− φ

(j−1∑
k=1

skτk

1− pk
ek

)∥∥∥∥2

ln2

=
pj − pj−1

2n

∑
s1,...,sj−1

∑
x∈Bs1,...,sj−1

∥∥∥∥T

(j−1∑
k=1

skτkek

)
+ Tz(x)−φ

(j−1∑
k=1

skτk

1− pk
ek

)∥∥∥∥2

ln2

=
pj − pj−1

2n+1

∑
s1,...,sj−1

∑
x∈Bs1,...,sj−1

(∥∥∥∥T

(j−1∑
k=1

skτkek

)
+ Tz(x)

− φ

(j−1∑
k=1

skτk

1− pk
ek

)∥∥∥∥2

ln2

+
∥∥∥∥T

(j−1∑
k=1

skτkek

)
− Tz(x)− φ

(j−1∑
k=1

skτk

1− pk
ek

)∥∥∥∥2

ln2

)
⩾

pj − pj−1

2n

∑
s1,...,sj−1

∑
x∈Bs1,...,sj−1

∥Tz(x)∥2ln2 =
pj − pj−1

2n

∑
x∈B

∥Tz(x)∥2ln2

= (pj − pj−1)
n∑

k=j

|µk|2τ2
k .
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Substituting this into (3.3) we obtain

e2(T, W, I, δ, φ) ⩾
n+1∑
j=1

(pj − pj−1)
n∑

k=j

|µk|2τ2
k

=
n∑

j=1

(
pj

n∑
k=j

|µk|2τ2
k − pj

n∑
k=j+1

|µk|2τ2
k

)
=

n∑
j=1

pj |µj |2τ2
j =

n∑
j=1

δ2

δ2 + τ2
j

|µj |2τ2
j .

Since the method φ can be arbitrary, we have the estimate

E2(T, W, I, δ) ⩾ sup
τ∈W

τ1⩾···⩾τn>0

n∑
j=1

δ2

δ2 + τ2
j

|µj |2τ2
j . (3.4)

Consider a vector τ = (τ1, . . . , τk, 0, . . . , 0) ∈ W such that τ1 ⩾ · · · ⩾ τk > 0,
1 ⩽ k < n. For sufficiently small ε > 0 set τε = (τ1(ε), . . . , τn(ε)), where

τj(ε) =

{√
τ2
j − ε, 1 ⩽ j ⩽ k,

C
√

ε, k + 1 ⩽ j ⩽ n,

C =
( ∑k

j=1 νj∑n
j=k+1 νj

)1/2

.

Then
n∑

j=1

νjτ
2
j (ε) =

k∑
j=1

νjτ
2
j − ε

k∑
j=1

νj + C2ε

n∑
j=k+1

νj =
k∑

j=1

νjτ
2
j ⩽ 1.

Thus, τε ∈ W . For ε < τ2
k/(1 + C2) we have√

τ2
k − ε > C

√
ε.

Hence for such ε
τ1(ε) ⩾ · · · ⩾ τn(ε) > 0.

It follows from (3.4) that

E2(T, W, I, δ) ⩾
n∑

j=1

δ2

δ2 + τ2
j (ε)

|µj |2τ2
j (ε).

Taking the limit as ε → 0 we obtain

E2(T, W, I, δ) ⩾
k∑

j=1

δ2

δ2 + τ2
j

|µj |2τ2
j .

Thus,

E2(T, W, I, δ) ⩾ sup
τ∈W

τ1⩾···⩾τn⩾0

n∑
j=1

δ2

δ2 + τ2
j

|µj |2τ2
j . (3.5)
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2. An upper bound. We find the error of methods of the form

φ(y) =
n∑

j=1

αjyjej .

Set z(x) = y(x)− Ix. Then E(z(x)) = 0 and D(zj(x)) ⩽ δ2, j = 1, . . . , n. We have

e2(T, W, I, δ, φ) = sup
x∈W

y(x)∈Yδ(x)

E
(
∥Tx− φ(y(x))∥2ln2

)
= sup

x∈W
y(x)∈Yδ(x)

E
(
∥Tx− φ(Ix)− φ(z(x))∥2ln2

)
= sup

x∈W
y(x)∈Yδ(x)

(
∥Tx− φ(Ix)∥2ln2 + E(∥φ(z(x))∥2ln2 )− 2E(φ(z(x)), Tx− φ(Ix))

)
;

here ( · , · ) is the inner product in ln2 . It follows from the form of φ that

E(φ(z(x)), Tx− φ(Ix)) = E
( n∑

j=1

αjzj(x)ej , Tx− φ(Ix)
)

=
n∑

j=1

(ej , Tx− φ(Ix))αjE(zj(x)) = 0.

Since

E(∥φ(z(x))∥2ln2 ) = E
( n∑

j=1

|αj |2|zj(x)|2
)

=
n∑

j=1

|αj |2D(zj(x)),

we have

e2(T, W, I, δ, φ) = sup
x∈W

y(x)∈Yδ(x)

(
∥Tx− φ(Ix)∥2ln2 +

n∑
j=1

|αj |2D(zj(x))
)

= sup
x∈W

∥Tx− φ(Ix)∥2ln2 + δ2
n∑

j=1

|αj |2.

Consider the extremal problem

∥Tx− φ(Ix)∥2ln2 → max, x ∈ W.

We can write it as
n∑

j=1

|µj − αj |2|xj |2 → max,

n∑
j=1

νj |xj |2 ⩽ 1.

From the inequality
n∑

j=1

|µj − αj |2|xj |2 =
n∑

j=1

|µj − αj |2

νj
νj |xj |2

⩽ max
{
|µ1 − α1|2

ν1
, . . . ,

|µn − αn|2

νn

} n∑
j=1

νj |xj |2
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we deduce that

sup
x∈W

∥Tx− φ(Ix)∥2ln2 ⩽ max
{
|µ1 − α1|2

ν1
, . . . ,

|µn − αn|2

νn

}
.

Thus,

e2(T, W, I, δ, φ) ⩽ max
{
|µ1 − α1|2

ν1
, . . . ,

|µn − αn|2

νn

}
+ δ2

n∑
j=1

|αj |2.

Set

cj =
αj

µj
, j = 1, . . . , n.

Then the error of the method φ satisfies the inequality

e2(T, W, I, δ, φ) ⩽ max
{
|1− c1|2

γ2
1

, . . . ,
|1− cn|2

γ2
n

}
+ δ2

n∑
j=1

|µj |2|cj |2.

2.1. Let 1/δ ∈ (ξs, ξs+1] for some 1 ⩽ s ⩽ n− 1. Then it is easy to show that

1
γs+1

⩽
δ2

∑s
k=1(νk/γk)

1 + δ2
∑s

k=1 νk
<

1
γs

.

Defining c1 by (3.2) we obtain

1
γs+1

⩽
1− c1

γ1
<

1
γs

.

Let

ck = 1− γk
1− c1

γ1
, k = 2, . . . , s, ck = 0, k = s + 1, . . . , n.

Then we have
(1− ck)2

γ2
k

=
(1− c1)2

γ2
1

, k = 2, . . . , s.

For k ⩾ s + 1

(1− ck)2

γ2
k

=
1
γ2

k

⩽
1

γ2
s+1

⩽
(1− c1)2

γ2
1

.

Therefore,

max
{
|1− c1|2

γ2
1

, . . . ,
|1− cn|2

γ2
n

}
=

(1− c1)2

γ2
1

. (3.6)
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Hence

e2(T, W, I, δ, φ) ⩽
(1− c1)2

γ2
1

+ δ2
s∑

k=1

|µk|2c2
k

=
(1− c1)2

γ2
1

+ δ2
s∑

k=1

|µk|2((1− ck)2 − (1− ck) + ck)

=
(1− c1)2

γ2
1

+ δ2
s∑

k=1

|µk|2
γ2

k

γ2
1

(1− c1)2

− δ2
s∑

k=1

|µk|2
γk

γ1
(1− c1) + δ2

s∑
k=1

|µk|2ck

= δ2
s∑

k=1

|µk|2ck +
1− c1

γ2
1

(
1− c1 + δ2

s∑
k=1

νk(1− c1)− δ2γ1

s∑
k=1

νk

γk

)

= δ2
s∑

k=1

|µk|2ck +
1− c1

γ2
1

(
(1− c1)

(
1 + δ2

s∑
k=1

νk

)
− δ2γ1

s∑
k=1

νk

γk

)

= δ2
s∑

k=1

|µk|2ck. (3.7)

Consider a vector τ̂ ∈ ln2 such that

τ̂2
k = δ2

(
γ1

(1− c1)γk
− 1

)
, k = 1, . . . , s, τ̂k = 0, k = s + 1, . . . , n.

Then we have

n∑
k=1

νk τ̂2
k = δ2

s∑
k=1

νk

(
γ1

(1− c1)γk
− 1

)
=

δ2γ1

1− c1

s∑
k=1

νk

γk
− δ2

s∑
k=1

νk

=
(

1 + δ2
s∑

k=1

νk

)
− δ2

s∑
k=1

νk = 1.

Thus, τ̂ ∈ W . Substituting τ̂ into (3.5) we obtain

E2(T, W, I, δ) ⩾
s∑

k=1

δ2|µk|2τ̂2
k

δ2 + τ̂2
k

=
s∑

k=1

δ4|µk|2(γ1/((1− c1)γk)− 1)
δ2γ1/((1− c1)γk)

= δ2
s∑

k=1

|µk|2
(

1− (1− c1)γk

γ1

)
= δ2

s∑
k=1

|µk|2ck ⩾ e2(T, W, I, δ, φ).

Hence φ is an optimal method.
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2.2. Now let 1/δ > ξn. Then

δ2
∑n

k=1(νk/γk)
1 + δ2

∑n
k=1 νk

<
1
γn

.

Set

c1 = 1− γ1
eδ2

∑n
k=1(νk/γk)

1 + δ2
∑n

k=1 νk
.

Then
1− c1

γ1
<

1
γn

.

Let
ck = 1− γk

1− c1

γ1
, k = 2, . . . , n.

Then we have
(1− ck)2

γ2
k

=
(1− c1)2

γ2
1

, k = 2, . . . , n.

Thus, as in the previous case, we have equality (3.6). Repeating the calculations
in (3.7) for s = n, we obtain

e2(T, W, I, δ, φ) ⩽ δ2
n∑

k=1

|µk|2ck.

Consider the vector τ̂ ∈ ln2 of the form

τ̂2
k = δ2

(
γ1

(1− c1)γk
− 1

)
, k = 1, . . . , n.

Then

n∑
k=1

νk τ̂2
k = δ2

n∑
k=1

νk

(
γ1

(1− c1)γk
− 1

)
=

δ2γ1

1− c1

n∑
k=1

νk

γk
− δ2

n∑
k=1

νk

=
(

1 + δ2
n∑

k=1

νk

)
− δ2

n∑
k=1

νk = 1.

Thus, τ̂ ∈ W . Plugging τ̂ into (3.5) we have

E2(T, W, I, δ) ⩾
n∑

k=1

δ2|µk|2τ̂2
k

δ2 + τ̂2
k

=
n∑

k=1

δ4|µk|2(γ1/((1− c1)γk)− 1)
δ2γ1/((1− c1)γk)

= δ2
n∑

k=1

|µk|2
(

1− (1− c1)γk

γ1

)
= δ2

n∑
k=1

|µk|2ck ⩾ e2(T, W, I, δ, φ).

Hence φ is an optimal method.
Theorem 1 is proved.
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§ 4. Optimal recovery of a solution
of a system of linear differential equations

Here we present the solution of the recovery problem for an initial point in an
ellipsoid and then consider the special case of a ball. After that we consider the
problem of recovery from the coefficients at time T and for the terminal point in
an ellipsoid. Next we discuss the special case of a ball.

4.1. Recovering solutions of a linear differential equations from informa-
tion with a random error for the initial moment of time. Consider the
Cauchy problem for a system of homogeneous linear differential equations

dx

dt
= Ax,

x(0) = x0,
(4.1)

where x(t) ∈ Rn, t ⩾ 0, and A = (aij) ∈ R.
Let A be a selfadjoint matrix and

µ1 > µ2 > · · · > µn

be its eigenvalues. Let {ej}n
j=1 denote the orthonormal basis of eigenvectors cor-

responding to the eigenvalues µj , j = 1, . . . , n.
Let

x0 =
n∑

j=1

xjej .

Then the solution of (4.1) can be expressed in the form

x(t) =
n∑

j=1

eµjtxjej .

Assume that we know the coordinates of the initial point x0 with a random
error. We also know an ellipsoid containing x0. We must recover the solution at
time τ > 0.

For x = (x1, . . . , xn) ∈ Rn set

W =
{
x∈Rn :

n∑
j=1

νjx
2
j ⩽ 1

}
, Tx = (eµ1τx1, . . . , e

µnτxn) and Ix= (x1, . . . , xn).

As in the general statement, a recovery method assigns to a random vector
y ∈ Yδ(x) an element of Rn viewed as an approximation of Tx. Thus, the present
recovery problem reduces to the one considered above. We use Theorem 1.

Set

γj =
√

νj

eµjτ
, j = 1, . . . , n, and ξj =

( j∑
k=1

νk

(
γj

γk
− 1

))1/2

, j = 1, . . . , n.
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Theorem 2. Let 1/δ ∈ (ξs, ξs+1] for some 1 ⩽ s ⩽ n − 1, or let 1/δ ∈ (ξn, +∞)
(and then set s = n). Then

E(T, W, I, δ) = δ

( s∑
k=1

e2µkτ

(
1− γk(1− c1)

γ1

))1/2

,

where

c1 = 1−
δ2γ1

∑s
k=1(νk/γk)

1 + δ2
∑s

k=1 νk
, (4.2)

and the method

φ(y) =
s∑

k=1

(
1− γk(1− c1)

γ1

)
eµkτykek,

is optimal.

Let A be a selfadjoint matrix,

λ1 > λ2 > · · · > λm

be its eigenvalues and rk be the multiplicity of the eigenvalue λk, k = 1, . . . ,m.
Let {ekj}rk

j=1 denote an orthonormal system of vectors corresponding to the eigen-
value λk. Then

e11, . . . , e1r1 , . . . , em1, . . . , emrm

is an orthonormal basis of Rn.
Let

x0 =
m∑

k=1

rk∑
j=1

ckjekj .

Then the solution of (4.1) has the expression

x(t) =
m∑

k=1

eλkt
rk∑

j=1

ckjekj .

Now assume that at the initial moment of time the point x0 lies in a ball of
radius R:

m∑
k=1

rk∑
j=1

x2
kj ⩽ R2.

Then the problem of the recovery of the solution at time τ > 0 reduces to the
previous problem for

W =
{

x ∈ ln2 :
m∑

k=1

rk∑
j=1

R−2x2
kj ⩽ 1

}
,

Tx = (eλ1τx11, . . . , e
λ1τx1r1 , . . . , e

λmτxm1, . . . , e
λmτxmrm)

and
Ix = (x11, . . . , x1r1 , . . . , xm1, . . . , xmrm

).
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Set

ξk = R−1

( k∑
j=1

rj

(
e(λj−λk)τ − 1

))1/2

, k = 1, . . . ,m.

Theorem 3. Let 1/δ ∈ (ξs, ξs+1] for some 1 ⩽ s ⩽ m − 1, or let 1/δ ∈ (ξm, +∞)
(and then set s = m). Then

E(T, W, I, δ) = δ

( s∑
k=1

e2λkτrk

(
1− e(λ1−λk)τ (1− c1)

))1/2

,

where

c1 = 1−
δ2R−2e−λ1τ

∑s
k=1 rkeλkτ

1 + δ2R−2
∑s

k=1 rk
, (4.3)

and the method

φ(y) =
s∑

k=1

(
eλkτ − eλ1τ (1− c1)

) rk∑
j=1

ykjekj ,

is optimal.

4.2. Recovering solutions of linear differential equations from informa-
tion with a random error for time T1. Consider the Cauchy problem for
a system of homogeneous linear differential equations

dx

dt
= Ax,

x(0) = x0,
(4.4)

where x(t) ∈ Rn, t ⩾ 0, and A = (aij), aij ∈ R.
Let A be a selfadjoint matrix and

λ1 > λ2 > · · · > λn

be its eigenvalues. Let {ej}n
j=1 denote the orthonormal basis of eigenvectors cor-

responding to the eigenvalues λj , j = 1, . . . , n.
Let

x0 =
n∑

j=1

xjej .

Then the solution of (4.4) has the expression

x(t) =
n∑

j=1

eλjtxjej .

Moreover, assume that at the initial moment of time x0 lies in an ellipsoid

B =
{

x ∈ Rn :
n∑

j=1

bjx
2
j ⩽ 1

}
.



Recovery of a solution of a system 529

We must recover the values of the solution at time τ , 0 < τ < T1. Let xj denote
the coordinates of the solution at time T1. Then the condition that x0 lies in an
ellipsoid means that

n∑
j=1

bje
−2λjT1x2

j ⩽ 1.

Thus, our recovery problem reduces to the one considered above, for

W =
{

x ∈ ln2 :
n∑

j=1

νjx
2
j ⩽ 1

}
,

where νj = bje
−2λjT1 , j = 1, . . . , n.

For x = (x1, . . . , xn) ∈ Rn set

Tx = (eλ1(T1−τ)x1, . . . , e
λn(T1−τ)xn), Ix = (x1, . . . , xn).

As in the general setting, each recovery method assigns to a random vector
y ∈ Yδ(x) an element of Rn viewed as an approximation of Tx. To solve the
problem stated we use Theorem 1.

Set

γj =
√

νj

e−λj(T1−τ)
and ξj =

( j∑
k=1

νk

(
γj

γk
− 1

))1/2

, j = 1, . . . , n.

Assume that γ1 ⩽ · · · ⩽ γn.

Theorem 4. Let 1/δ ∈ (ξs, ξs+1] for some 1 ⩽ s ⩽ n − 1, or let 1/δ ∈ (ξn, +∞)
(and then set s = n). Then

E(T, W, I, δ) = δ

( s∑
k=1

e−2λk(T1−τ)

(
1− γk

γ1
(1− c1)

))1/2

,

where

c1 = 1−
δ2γ1

∑s
k=1(νk/γk)

1 + δ2
∑s

k=1 νk
, (4.5)

and the method

φ(y) =
s∑

k=1

(
(1− γk

γ1
(1− c1)

)
e−λk(T1−τ)ykek,

is optimal.

Consider the Cauchy problem for the system of linear differential equations
dx

dt
= Ax,

x(0) = x0,
(4.6)

where x(t) ∈ Rn, t ⩾ 0, and A = (aij), aij ∈ R.
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Let the matrix A be selfadjoint,

λ1 > λ2 > · · · > λm

be its eigenvalues, and let rk be the multiplicity of the eigenvalue λk, k = 1, . . . ,m.
Let {ekj}rk

j=1 denote an orthonormal system of vectors corresponding to the eigen-
value λk. Then the vectors

e11, . . . , e1r1 , . . . , em1, . . . , emrm

form an orthonormal basis of Rn.
Let

x0 =
m∑

k=1

rk∑
j=1

ckjekj .

Then the solution (4.6) can be expressed in the form

x(t) =
m∑

k=1

eλkt
rk∑

j=1

ckjekj .

Assume that we know the value, with some random error, of the solution of (4.6)
at time t = T1. As in the general case, a recovery method assigns to a random vector
y ∈ Yδ(x) an element of Rn, set to be an approximation of Tx. Also assume that at
the initial moment of time ∥x0∥ ⩽ R (∥ · ∥ is the Euclidean norm in Rn). We must
recover the value of the solution at time τ , 0 < τ < T1. If xkj denote the coordinates
of the solution at time T , then the condition ∥x0∥ ⩽ R means that

m∑
k=1

e−2λkT1

rk∑
j=1

x2
kj ⩽ R2.

Thus, our recovery problem reduces to the one considered above, for

W =
{

x ∈ ln2 :
m∑

k=1

rk∑
j=1

νkjx
2
kj ⩽ 1

}
,

where νk = νkj = R−2e−2λkT1 , k = 1, . . . ,m,

Tx=(e−λ1(T1−τ)x11, . . . , e
−λ1(T1−τ)x1r1 , . . . , e

−λm(T1−τ)xm1, . . . , e
−λm(T1−τ)xmrm

)

and
Ix = (x11, . . . , x1r1 , . . . , xm1, . . . , xmrm).

Set

ξk = R−1

( k∑
j=1

rje
−2λjT1

(
e(λj−λk)τ − 1

))1/2

, k = 1, . . . ,m.
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Theorem 5. Let 1/δ ∈ (ξs, ξs+1] for some 1 ⩽ s ⩽ m − 1, or let 1/δ ∈ (ξm, +∞)
(and then set s = m). Then

E(T, W, I, δ) = δ

( s∑
k=1

rke−2λk(T1−τ)
(
1− e(λ1−λk)τ (1− c1)

))1/2

,

where

c1 = 1−
δ2R−2e−λ1τ

∑s
k=1 rke(−2T1+τ)λk

1 + δ2R−2
∑s

k=1 rke−2λkT1
, (4.7)

and the method

φ(y) =
s∑

k=1

(
e−λk(T1−τ) − eλ1τ−λkT1(1− c1)

) rk∑
j=1

ykjekj ,

is optimal.

§ 5. Recovering trigonometric polynomials

Let Tn denote the set of trigonometric polynomials

pn(t) =
a0

2
+

n∑
j=1

(aj cos jt + bj sin jt). (5.1)

Set
T r

n = {pn(·) ∈ Tn : ∥p(r)
n (·)∥L2(R) ⩽ 1, r ⩾ 1},

where T = [−π, π] (with distinguished endpoints) and

∥x(·)∥L2(R) =
(

1
π

∫
T
|x(t)|2 dt

)1/2

.

We consider the problem of the recovery of the kth derivative of a polynomial
in T r

n , 0 ⩽ k < r, from the coefficients of this polynomial, which are known with
a random error. We reduce this to the general problem (3.1). The set T r

n is the set
of polynomials (5.1) such that

n∑
j=1

j2r(a2
j + b2

j ) ⩽ 1.

Hence setting

x = (a0, a1, b1, . . . , an, bn), W =
{

x ∈ R2n+1 :
n∑

j=1

j2r(a2
j + b2

j ) ⩽ 1
}

,

Ix = x and Tx =
(

a0√
2

χk, a1, b1, . . . , n
kan, nkbn

)
, χk =

{
1, k = 0,

0, k ⩾ 1,
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we arrive at (3.1). Note that the values of the operator T are coefficients of the
expansion with respect to the orthonormal basis(

a0√
2
, cos

(
t +

πk

2

)
, sin

(
t +

πk

2

)
, . . . , cos

(
nt +

πk

2

)
, sin

(
nt +

πk

2

))
.

We cannot apply Theorem 1 to this problem because here we have ν1 = 0. Thus
we use a modification of this theorem. Consider a set W and an operator T in the
case when ν1 = 0 and µ1 ⩾ 0. We introduce the notation

γj =
√

νj

|µj |
, j = 2, . . . , n, and ξj =

( j∑
k=2

νk

(
γj

γk
− 1

))1/2

, j = 2, . . . , n,

and assume that γ2 ⩽ · · · ⩽ γn.

Theorem 6. Let 1/δ ∈ (ξs, ξs+1] for some 2 ⩽ s ⩽ n − 1, or let 1/δ ∈ (ξn, +∞)
(and then set s = n). Then

E(T, W, I, δ) = δ

(
|µ1|2 +

s∑
k=2

|µk|2
(

1− γk(1− c2)
γ2

))1/2

,

where

c2 = 1−
δ2γ2

∑s
k=2(νk/γk)

1 + δ2
∑s

k=2 νk
, (5.2)

and the method

φ(y) = µ1y1e1 +
s∑

k=2

(
1− γk(1− c2)

γ2

)
µkykek

is optimal.

Proof. Using the same arguments as in the lower estimate in the proof of Theorem 1
we arrive at inequality (3.5).

In estimating the error of methods of the form

φ(y) =
n∑

j=1

αjyjej

from above, we obtain again the equality

e2(T, W, I, δ, φ) = sup
x∈W

∥Tx− φ(Ix)∥2ln2 + δ2
n∑

j=1

|αj |2.

However, the extremal problem

∥Tx− φ(Ix)∥2ln2 → max, x ∈ W,

since we now have ν1 = 0, can be written this time in the form
n∑

j=1

|µj − αj |2|xj |2 → max,

n∑
j=2

νj |xj |2 ⩽ 1.
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For α1 ̸= µ1 the solution of this problem is equal to ∞, so we assume below that
α1 = µ1. From the inequality

n∑
j=2

|µj − αj |2|xj |2 =
n∑

j=2

|µj − αj |2

νj
νj |xj |2

⩽ max
{
|µ2 − α2|2

ν2
, . . . ,

|µn − αn|2

νn

} n∑
j=2

νj |xj |2

we obtain

sup
x∈W

∥Tx− φ(Ix)∥2ln2 ⩽ max
{
|µ2 − α2|2

ν1
, . . . ,

|µn − αn|2

νn

}
.

Thus,

e2(T, W, I, δ, φ) ⩽ max
{
|µ2 − α2|2

ν2
, . . . ,

|µn − αn|2

νn

}
+ δ2

n∑
j=1

|αj |2.

Set
cj =

αj

µj
, j = 2, . . . , n.

Then for the error of the method φ we have

e2(T, W, I, δ, φ) ⩽ max
{
|1− c2|2

γ2
1

, . . . ,
|1− cn|2

γ2
n

}
+ δ2|µ1|2 + δ2

n∑
j=2

|µj |2|cj |2.

Let 1/δ ∈ (ξs, ξs+1] for some 2 ⩽ s ⩽ n− 1. Then it is easy to show that

1
γs+1

⩽
δ2

∑s
k=2(νk/γk)

1 + δ2
∑s

k=2 νk
<

1
γs

.

If we define c2 by (5.2), then

1
γs+1

⩽
1− c2

γ2
<

1
γs

.

Let

ck = 1− γk
1− c2

γ2
, for k = 3, . . . , s, and ck = 0, for k = s + 1, . . . , n.

Then we have
(1− ck)2

γ2
k

=
(1− c2)2

γ2
2

, k = 3, . . . , s.

For k ⩾ s + 1
(1− ck)2

γ2
k

=
1
γ2

k

⩽
1

γ2
s+1

⩽
(1− c2)2

γ2
2

,
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and therefore

max
{
|1− c2|2

γ2
2

, . . . ,
|1− cn|2

γ2
n

}
=

(1− c2)2

γ2
2

. (5.3)

Consequently,

e2(T, W, I, δ, φ) ⩽
(1− c2)2

γ2
2

+ δ2|µ1|2 + δ2
s∑

k=2

|µk|2c2
k.

Using transformations similar to (3.7) we obtain

e2(T, W, I, δ, φ) ⩽ δ2|µ1|2 + δ2
s∑

k=2

|µk|2ck.

Consider a vector τ̂ ∈ ln2 of the form

τ̂1 = τ1, τ̂2
k = δ2

(
γ2

(1− c2)γk
− 1

)
for k = 2, . . . , s, τ̂k = 0 for k = s + 1, . . . , n.

Then we have
n∑

k=2

νk τ̂2
k = δ2

s∑
k=2

νk

(
γ2

(1− c2)γk
− 1

)
=

δ2γ2

1− c2

s∑
k=2

νk

γk
− δ2

s∑
k=2

νk

=
(

1 + δ2
s∑

k=2

νk

)
− δ2

s∑
k=2

νk = 1.

Thus, τ̂ ∈ W . Substituting τ̂ (for τ1 ⩾ τ̂2) into (3.5) we obtain

E2(T, W, I, δ) ⩾
s∑

k=1

δ2|µk|2τ̂2
k

δ2 + τ̂2
k

=
δ2|µ1|2τ2

1

δ2 + τ2
1

+
s∑

k=2

δ4|µk|2(γ2/((1− c2)γk)− 1)
δ2γ2/((1− c2)γk)

=
δ2|µ1|2τ2

1

δ2 + τ2
1

+ δ2
s∑

k=2

|µk|2
(

1− (1− c2)γk

γ2

)
=

δ2|µ1|2τ2
1

δ2 + τ2
1

+ δ2
s∑

k=1

|µk|2ck.

Letting τ1 tend to infinity yields

E2(T, W, I, δ) ⩾ δ2|µ1|2 + δ2
s∑

k=1

|µk|2ck ⩾ e2(T, W, I, δ, φ).

Hence φ is an optimal method.
Now let 1/δ > ξn. Then

δ2
∑n

k=2(νk/γk)
1 + δ2

∑n
k=2 νk

<
1
γn

.

Set

c2 = 1− γ2
δ2

∑n
k=2(νk/γk)

1 + δ2
∑n

k=2 νk
.
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Then
1− c2

γ2
<

1
γn

.

Let

ck = 1− γk
1− c2

γ2
, k = 3, . . . , n.

Then we have
(1− ck)2

γ2
k

=
(1− c2)2

γ2
2

, k = 3, . . . , n.

Thus, as in the previous case, we obtain (5.3). Using transformations similar to (3.7)
for s = n, we obtain

e2(T, W, I, δ, φ) ⩽ δ2|µ1|2 + δ2
n∑

k=2

|µk|2ck.

Consider the vector τ̂ ∈ ln2 of the form

τ̂1 = τ1, τ̂2
k = δ2

(
γ2

(1− c2)γk
− 1

)
, k = 2, . . . , n.

Then we have

n∑
k=2

νk τ̂2
k = δ2

n∑
k=2

νk

(
γ2

(1− c2)γk
− 1

)
=

δ2γ2

1− c2

n∑
k=2

νk

γk
− δ2

n∑
k=2

νk

=
(

1 + δ2
n∑

k=2

νk

)
− δ2

n∑
k=2

νk = 1.

Thus, τ̂ ∈ W . Plugging τ̂ (for τ1 ⩾ τ̂2) into (3.5) we obtain

E2(T, W, I, δ) ⩾
n∑

k=1

δ2|µk|2τ̂2
k

δ2 + τ̂2
k

=
δ2|µ1|2τ2

1

δ2 + τ2
1

+
n∑

k=2

δ4|µk|2(γ2/((1− c2)γk)− 1)
δ2γ2/((1− c2)γk)

=
δ2|µ1|2τ2

1

δ2 + τ2
1

+ δ2
n∑

k=2

|µk|2
(

1− (1− c2)γk

γ2

)

=
δ2|µ1|2τ2

1

δ2 + τ2
1

+ δ2
n∑

k=1

|µk|2ck.

Letting τ1 tend to infinity yields

E2(T, W, I, δ) ⩾ δ2|µ1|2 + δ2
n∑

k=1

|µk|2ck ⩾ e2(T, W, I, δ, φ).

Hence φ is an optimal method.
Theorem 6 is proved.
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Now we apply this theorem to the solution of our problem. Set

ξj =
(

2
j∑

l=2

(l − 1)r+k((j − 1)r−k − (l − 1)r−k)
)1/2

, j = 2, . . . , n + 1.

Theorem 7. Let 1/δ ∈ (ξs, ξs+1] for some 2 ⩽ s ⩽ n, or let 1/δ ∈ (ξn+1, +∞)
(and then set s = n + 1). Then

E(T, W, I, δ) = δ

(
χ2

k

2
+ 2

s∑
l=2

(
(l − 1)2k − (l − 1)r+k(1− c2)

))1/2

,

where

c2 = 1−
2δ2

∑s
l=2(l − 1)r+k

1 + 2δ2
∑s

l=2(l − 1)2r
, (5.4)

and the method

φ(y) =
ã0√
2
χk +

s∑
l=2

(
1− (l − 1)r−k(1− c2)

)
×

(
(l − 1)kãl−1 cos

(
(l − 1)t +

πk

2

)
+ (l − 1)k b̃l−1 sin

(
(l − 1)t +

πk

2

))
where y = (ã0, ã1, b̃1, . . . , ãn, b̃n), is optimal.
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