OPTIMAL RECOVERY AND GENERALIZED CARLSON INEQUALITY
FOR WEIGHTS WITH SYMMETRY PROPERTIES

K. YU. OSIPENKO

ABSTRACT. The paper concerns problems of the recovery of operators from noisy infor-
mation in weighted L4-spaces with homogeneous weights. A number of general theorems
are proved and applied to finding exact constants in multidimensional Carlson type in-
equalities with several weights and problems of the recovery of differential operators from
a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of
powers of generalized Laplace operators from a noisy Fourier transform in the Ly,-metric.

1. INTRODUCTION

Let T be a nonempty set, > be the o-algebra of subsets of T, and p be a nonnegative
o-additive measure on ¥. We denote by L,(T,%,p) (or simply L,(T,u)) the set of all
Y-measurable functions with values in R or in C for which

1/p
ey = ([ lo0P dut0) <o, 15p<o.
T
lz() Lo (1,0) = vraisup |z(t)] < oo, p = oo.
teT

If T C R? and dp = dt, t € R?, we put L,(T) = L (T, ).
The Carlson inequality [3]

1/2 1/2
le@lz @y < VAl g, Iz @} 2., R = [0,+00),

was generalized by many authors (see [4], [1], [2], [8], [9]). In [8] we found sharp constants
for inequalities of the form

lw ey < Kllwo)eONT, o ot Oz

where T is a cone in a linear space, w(:), wo(+), and wi(-) are homogenous functions and
1 <q<pr<oo (for T =R?the sharp inequality was obtained in [2]). This problem is
closely related with the following extremal problem

lw()a( Ly = max,  [wo()z()lL, @) <6, wi(-)z()]

where § > 0. In this paper we study the extremal problem

L, (T,p) <1,

(1) Nw)z()llL, = max, |lwo(-)z()lL, (1,0 <0,
lw; Dz, rw <1, G=1,...,n,
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where w(-), wo(+), and w;(-), j = 1,...,n, are homogenous functions with some symmetry
properties. Using the solution of this problem we obtain the sharp constant K for the
inequality

1—~
lw( )z () Ly < Kllwo()xOIT o7 (ggjagxn ||Wj(')x(‘)|LT(T,/L)> :
In particular, we find the sharp constant for the inequality

rB
()2, ey < Cllwo(a )R g (lrgfgd||Wj(')$(')||Lr(Ri>) :

where w(t) = (8 + ... + )72, wo(t) = (] + ... +13)%/2 w;(t) = 7', j = 1,....d,
0=d(1—-1/q), 0o =d—(A+d)/p, b1 =d+ (p—d)/r,
o A
o = s = —_—,
pp+TA pp 4T
and (p,q,7) € PU Py U Py, where

A >0,

PZ{(p,q,’l"):lSq<p7r}7 Pl:{(paqu):lngr<p}7
Py={(pgr):1<q=p<r}

Ford=1, ¢=1, and (p,1,r) € P this result was proved in [4] (see also [2]).

It is appeared that the value of (1) is the error of optimal recovery of the operator
Az(-) = w(-)x(-) on the class of functions z(-) such that ||w;(-)z()||z, (ru < 1,5 =1,...,n,
by the information about the function w(-)z(-) given with the error ¢ in Ly-norm. Therefore,
in section 2 we begin with the setting of optimal recovery problem and then in section
3 we prove some general theorems. In section 4 we consider the case when weights are
homogeneous in a cone of linear space and section 5 is devoted to the case of R?. In section
6 the results obtained are applied to optimal recovery and sharp inequalities of differential
operators defined by Fourier transforms.

2. GENERAL SETTING

Let Tp is not empty p-measurable subset of T'. Put
W= {LU() : SC() € LP(TOMU)’ ||@]()x()||LT(T,,u) < 00, j = 1) v 7n}7
W= {Z‘() EW: ||S0]()x()| L. (T,n) < 17 .7 = 17' e 7”})

where 1 < p,7 < oo, and ¢;(-) is a measurable function on 7. Consider the problem of
recovery of operator A: W — L (T, 1), 1 < g < oo, defined by equality Az(-) = ¢(-)z(-),
where 1)(+) is a measurable function on 7', on the class W by the information about functions
z(-) € W given inaccurately (we assume that ¥(-) and ¢;(-), j = 1,...,n, such that A
maps W to Lq(T, 1)). More precisely, we assume that for any function z(-) € W we know
y(+) € Ly(To, p) such that [[z() =y ()l L, (70,0 < 9,6 > 0. We want to approximate the value
Az(-) knowing y(-). As recovery methods we consider all possible mappings m: L,(To, 1) —
L,(T, 11). The error of a method m is defined as

e(p,q,m,m) = sup [Az(-) = m(y) )|z, (T,p)-
z(-)EW, y(-)ELy(To,p)
le() =y, (Tg,m) <6

The quantity

(2) E(p,q,r) = e(p,q,m,m)

inf
m: Ly(To,pu)—Lq(T,p)
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is known as the optimal recovery error, and a method on which this infimum is attained is
called optimal. Various settings of optimal recovery theory and examples of such problems
may be found in [5], [13], [12], [6], [11].

For the lower bound of E(p,q,r) we use the following result which was proved (in more
or less general forms) in many papers (see, for example, [7]).

Lemma 1.
(3) E(p,q,7) > sup Az () 2, (7,)-
z()EW
lz ()l Ly 1y, ) <O
3. MAIN RESULTS
Set

1, teTy, .
t) = ) =) Nt
XO( ) {07 t ¢ To, o (t) ; J|‘PJ( )

Theorem 1. Let 1 < g <p,r, A; >0, j=0,1,...,n, Ao + 0,.(t) # 0 for almost all t € Ty,
or(t) # 0 for almost all t € T\ Ty, T(t) > 0 be a solution of equation

(4) —q|()|T + proxP U (t)xo(t) + 1o, (t)z""(t) = 0,
X such that

(5) /Tw”()du()<5” /\% OFF (&) dp(t) <1, G=1,....m,

)\0</TO§5P(t)du(t) 5) (/I% D (¢ dﬂ()_1) =1,
Then

n 1/q
(6) E(p,q,r) = (qlp/\oé’”rql?”Z/\j) ;

3

and the method

- Al (E) = {q-lpxoap-%t)|w<t>|-w<t>y<t>, teTy, () £0,

0, otherwise,
is optimal recovery method.

To prove this theorem we need some preliminary results. The first one is actually a
sufficient condition in the Kuhn-Tucker theorem (the only difference is that we do not require
convexity of functions).

Let f;: A= R, j=0,1,...,k, be functions defined on some set A. Consider the extremal
problem

(8) fo(z) » max, f;(zx) <0, j=1,....k z€A,

and write down its Lagrange function

L(z,\) = —folz +Z/\fj C A=, )
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Lemma 2. Assume that there exist Xj >0,j=1,...,k, and an element T € A, admissible
for problem (8), such that

-~

(@) minl(z,3)=LEN), *=C. M),

() Nfi(@) =0, j=1,... k
Then T is an extremal element for problem (8).

Proof. For any x admissible for problem (8) we have

—folz) > L(z,A) > L(E,N) = —fo(7).

Put
F(u,v,a) = —((1 —a)u+av)?!+av? +bu”, w,v>0, ac]l0,1],
where a,b > 0, and 1 < p,q,r < 0.

Lemma 3 ([8]). Foralla,b>0,a+b>0, and all1 < g < p,r < 00, there exists the unique
solution u > 0 of the equation

—q + pau’" 1 4+ rbu""? = 0.
Moreover, for all u,v >0 and o = ¢~ 'pattP~ 7 =1 — g~ lrbu" 4
F(u,u,a) < F(u,v, q).
In particular, for all u >0
—u? + auP +bu” < —u? + auP + bu".

Proof of Theorem 1. 1. Lower estimate. The extremal problem on the right-hand side of (3)
(for convenience, we raise the quantity to be maximized to the g-th power) is as follows:

(9) /T ()] du(t) » max, [ [x(t)[P dp(t) < o7,

To
[ 1ei®atol dute) <1 5 =1,

If ¢ € T such that ¢(t) = 0, then evidently Z(t) = 0. If ¢(t) # 0 we obtain by Lemma 3 that
that there is the unique solution Z(t) of (4). It follows by (5) that Z(-) is admissible function
for problem (9). Therefore, by (3) we obtain

1/q
Epq.r) > ( [ o du<t>) .
From (4) we have

[0 ()172(t) = ¢~ pAoTP (t)x0(t) + ¢~ o (H)T" ().

Integrating this equality over the set T', we obtain

n

/T GOIEIE) du(t) = ¢ phod® +ar 3 A

j=1
Thus,

n 1/q
E(p,q,r) > (q_lpkoé” +q 'y /\j) :
j=1
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2. Upper estimate. To estimate the error of method (7) we need to find the value of the
extremal problem:

(10) [ (@)z(t) — (t)at)y(t)[* dp(t) + / b ()2(t)|* dp(t) — max,
To T\Tp

[2(t) — YO du(t) < o7, /T s du(t) <1, j=1,....n,

To

where

alt) = {q_lpw‘q<t>|w<t>|-q, te Ty, p(t) #0,

0, otherwise.

Put

_)z@) —y(@), teT,
0 = {0, te T\ T

Then (10) may be rewritten as follows:
/T @1 = a(®)z(t) + a(t)2(t)|* du(t) — max,

S0P dut) <87, [ leiOel du() <1, G = 1,0
To T

The value of this problem does not exceed the value of the problem
(11) / (O17((1 = a()u(t) + a(t)o(t)? du(t) — masx,
/ PO, [ OO <1 G =1,
To T

u(t) >0, v(t) >0 for almost all t € T.

The Lagrange function for this problem is

£(u(),0(), %) = /T L(t,u(t), v(t), X) dy(t),
where

L(t,u,v,\) = —|9®)]9((1 — a(t)u + a(t)v)? + AgvPxo(t) + o (t)u"

By Lemma 3 we have
Thus,

-) = Z(+) are extremal in (11). Consequently,

n

/q 1/q
e(p,q,r,m) (/ [ (t)] 72 () du()) =(q‘1p/\06P+Q‘1TZ/\j> < E(p.q,r).

j=1

It means that method (7) is optimal and equality (6) holds. O

Denote a4 = max{a,0}.
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Theorem 2. Let 1 <qg=r<p, Ao >0,7;>0,5=1,...,n,

1

q p—aq
(12) sy = G i -a,@).) " e,
0, t¢ T,
X satisfies conditions (5), and [(t)|7 — o4(t) < 0 for almost all t ¢ Ty. Then
n 1/q
(13) E(p,q,q) = (q_lp)\oép +3° ,\j> 7
=1

and the method

14 () = {(1—|¢<>| 104(0) 4 V(YO L€ To, v(t) £0,

0, othervise,
is optimal.

Proof. 1. Lower estimate. It follows by (5) that Z(:) is admissible function for extremal
problem in the right-hand side of (3). Therefore,

E(p,q,q) </ [ ()92 (t) dpu(t )> /q.

From the definition of Z(-) we have
[W(0)|929(t) = ¢~ AP () x0(t) + oq()T(1).
Integrating this equality, we obtain
/ WOIE(E) din(t) = g prod” + 3 A,
T =
Thus,
n 1/q
E(p,q,q) = (q_lpkoé” +> /\j) :

j=1
2. Upper estimate. Put

o(t) = {1—|w<>| Yoy(t)), . t €Ty B(t) #0.

0, othervise,

To estimate the error of method (14) we need to find the value of the extremal problem:
[()||2(t) — a(t)y(t)|? du(t) + / |¢p(t)x(t)|* dpu(t) — max,
To T\To

|[(t) = y(®)" du(t) < 67, /Tl%'(t)x(t)lqdu(t) <L j=1L...n

Putting z(-) = «(-) — y(-) this problem may be rewritten in the following form

To

[D(@O1*(1 = a(t))z(t) + a(t) 2(2)|* dpu(t) + / | ()2(t)[* dp(t) — max,
To T\To

HOPdu® <&, [ o0 du) 1 G =1,...m
To T
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The value of this problem evidently coincides with the value of the problem
(15) / (O)]7((1 = a()o(t) + at)u(t))? du(t) — masx,
/‘MuMMﬂs5ﬂ [lesrms@due <15 =1....m
T T

u(t),v(t) > 0, for almost all ¢t € T.

The Lagrange function of (15) has the form
L) 00N = [ Lu(e) o0). %) dute),
where

@)1 = a®))v + altyu)T + AouP + oy (E?, t € Ty,
Llu,v,2) = {_|¢(t)|qm + o (t)r, t¢T.

If a(t) > 0, then
L — 4" — (1~ )+ o)) oy ).

Therefore, for a(t) > 0 and any u > 0, the function L(u,v,\), v € (0,+00), reaches a
minimum at v = u. Set T§ = {¢t € Ty : a(t) > 0}. We have

L) 00N = [ L), u(),3) dutt).
It is easily checked that for t € T for all u(t; >0
L(u().u(). %) > LEC).70). ).
Consequently,
L0002 2 [ LEOF0R) dul) = £330,

Taking into account (5) we obtain by Lemma 2 that u(-) = v(-) = Z() are extremal functions
n (15). Thus,

n
“(p,q,q,™m / [T dp(t) = ¢ 'pAod” + > N < EUp,q,q).
j=1
It means that the method m is optimal and the optimal recovery error is as stated. O

Theorem 3. Let 1 <g=p<r, \g >0, >0,j=1,...,n, 0.(t) # 0 for almost all
teT,

(16) {(PTI ot (t)( ()|p—1/\0)+)ﬁ7 t € Ty,
(pr L) ()|P)TP, teT\To,

and \ satisfies conditions (5). Then

n 1/p
(17) E(p,p,?") = <>‘05P+;Z)\J> P
j=1
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and the method

N _ Ja@u(t)y(t), teTp,
(15) Ay (1) = {07 e
where
Oé(t) _ min{17 )‘Olllz[}(t”ip} , te T07 ¢(t) # 07
B 0, othervise,
is optimal.

Proof. 1. Lower estimate. By the definition of Z(-) we have
~ ~ r ~
[D(OPZP () = AT (t)x0(t) + Ear(t)wr(tl

Using the similar arguments as in the proof of Theorem 1 we obtain
1/p r 1/p
E(p,p,r) = </ [ (O)[Pz* (t) du(’i)) = (/\05p +pz)‘j> :
T =

2. Upper estimate. To estimate the error of method (18) we need to find the value of the
following extremal problem:

[ (@) [Pl (t) — a(t)y ()P du(t) +/ [ ()2(t)[” dp(t) — max,
To T\To

o®) -y du(®) <8, [ lsOal du(®) <1 G =1,
To T

Putting z(-) = z(-) — y(-) this problem may be rewritten in the form
(D@11 = alt))z(t) + alt)z(t)[” du(t) +/ () ()" du(t) — max,
To T\To

S0P au) <5, [ e e ) <15 =1,

The value of this problem evidently coincides with the value of the problem

To

(19) /T W(0)[P((1 — at))o(t) + a(t)u(t))? du(t) — max,

[ wwaw <, [ jeoreodao <t i=1..n
To T
u(t),v(t) > 0, for almost all ¢t € T.

The Lagrange function of (19) has the form

£(u(),0(), %) = / L(u(t), o(t), %) du(t),

T
where
L(U v X) _ _W(t)‘p((l - a(t))v + a(t)u)p + AouP + UT(t)UT7 te T07
Y —[p(&)[PoP + o ()0, te T\ Tp.
For ¢t € Ty and |1(t)|P > Ao we have

oL o™ — (1 — o)+ o)),
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Consequently, in this case for any v > 0 the function L(u,v,)), v € (0,+00), reaches a
minimum at v = u. If t € Ty, 0 < [¢p(¢)[P < Ao, then a(t) = 1 and L(u,v,\) > 0. If t € Ty
and t(t) = 0, then again L(u,v,A) > 0. Set Ty = {t € Ty : [1(t)|]” > Ao}. Then for all
u(t),v(t) > 0 we have

Lu(),v(-),A) Z/T L(v(-),v(-), A) du(t)+/T\T L(v(-),v(-), A) du(t).

It is easy to check that for all v(t) > 0

Therefore,
Llu(),0(), X) > / L@E(), 3(), N du(t) = LE(),2(), N).
T1U(T\T0)

Taking into account (5) we obtain by Lemma 2 that u(-) = v(-) = Z(-) are extremal functions
n (19). Consequently,

ep(p7p7 T, T/T\'L) = /T |’(/J(t>&3\(t>|qd/,b(t) = )\06]3 + ;Z)\] S Ep(p7p7 T)'

j=1

It means that the method m is optimal and the optimal recovery error is as stated. (I
Note that if conditions of Theorems 1, 2, and 3 are fulfilled, then we have
(20) E(p,q,r) = sup )z, (T,

e Ly (1, 0) <6
le; Dz pr,w <1, j=1,....;n

4. THE CASE OF HOMOGENOUS WEIGHT FUNCTIONS

Let T be a cone in a linear space, Top = T, u(-) be a homogenous measure of degree d,
|1(+)] be homogenous function of degree n, |¢;(-), 7 = 1,...,n, be homogenous functions
of degrees v, 1(t) # 0 and Z;'L=1 lp;(t)] # 0 for almost all ¢ € T'. Let assume, again, that

1<p<gq,r<oo. Forke€|0,1) the function ka (1— k)_ﬁ increases monotonically from
0 to +00. Consequently, there exists k(-) such that for almost all ¢ € T'

kva (¢ — e Y v
W @ e, )= Il
Jj=1

21 —
. (1= k(1)) ==

Set

min {1, [¢@)|""}.  (p,g,7) € P

Theorem 4. Let (p,q,r) € PUP, UPy, and v+ d(1/r — 1/p) # 0. Assume that for
(p,q,7) € PUP,

- /T ()| 747 k757 (1) dpa(t) < oo,

k(t) = {(1 — O ®),, (par) €D

I = / ()| 77 0 (8) K75 (2) da(t) < o0, j = 1,....m,
T
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and for (p,q,r) € Py

I = /(* OO - 1)2) 77 du(t) < o0

Lia = [ i@ (5 O06(OF = 14)77 dute) <0, j=1....n.
Moreover, assume that Io = ... =1,.1. Then
(22) E(p, q, T) _ (WI;’Y/PI;(lf'Y)/T(Il + nIz)l/q,
where
v—n—dl/q—1/r)

23 p—
(23) U v+d(1l/r—1/p)
The method

m(y)(t) = k(&) (t)y(t),
where
(24) gz ((Sll—l/g)IZI/'r)m7
is optimal.

Proof. 1. Let (p,q,r) € P. Put
() = <q|¢( )|q> K7 (eb),

PAo
where A\g will be specified later. We have
(25) pAz? (L) = qlv (1)K (EL)
and

ren()F (L) = ren(t) ( q';ﬁi?”) T ).

Since |¢(-)| and |@;(-)], s =1,...,n, are homogenous it follows by (21) that

a(p—r)

()| P B pae=n e Y@ o
=i (¢t) = 7@(&) ( k(&t)) = ¢ o) (1= k(&D)).
Thus,
re, (DT I(t) =7 (quo ) T ()| (1 — k(EL)).
Put
Then
(27) rAc (H)Z" () = qly(t)|1(1 — k(&t)).

Taking the sum of (25) and (27), we obtain
PAZP(E) + rAcy ()Z"(E) = qlv ()]
It means that Z(-) satisfies (4) for A\; = ... =\, = A
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Now we show that for

(28) Ao = gjl%f—nq—d%(gqu
p

[@oao =, [looreoan=1i=1..n
T T

hold. In view of the definition of Z(-) we need to check that

/ (qhﬁggw) b (€0 dult) — 5.
[ sor (O™ iy <1, 5o

Changing z = &t and taking into account that functions |1 (-)|, |¢;(-)|, j = 1,...,n, with the
measure p(-) are homogenous, we obtain

P _r_
<§) o I = oreitd, (i) e A I
PAo PAo

The validity of these equalities immediately follows from the definitions of A\g and &.
It follows by Theorem 1, (28), (26), and (24) that

the equalities

p
Ei(p,q,r) = M_ngnq Y

+n<17)\1> pe gyr nq<p p> _6q’y]' CI’Y/I?I q(1— ’Y)/T(I +nI2)
q

Moreover, the same theorem states that the method

m(y)(t) =~ 'proZ? U ()[()] " Y (t)y(t) = k(€Y ()y()
is optimal.
2. Let (p,q,7) € Pi. We use Theorem 2. Consider the function Z(-) defined by (12) with
A =...= X, = A\ Let us find A\g and A from the conditions

[@Oaun =, [ e orE@dn =1 i=1...n
T T

Then we obtain
p

Qﬁo) [ = sy 0)E dute) = o

(p)\o> /"’DJ O (w1 _)‘Sq(t))ﬁ dut)=1, j=1,...,n.

Put A = a")4 ¢ > 0. Changing t = az, we obtain

p q

<q> R ) <q) R = T AT
PAo PAo

It is easy to check that these equalities are fulfilled for
a= (Ill/pfgl/qéfl)u+7d<1/1q—1/p>, Ao = g]1]2—15*p(11—Q/P125q)7u+d<m”_1/p>.
p
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Substituting these values in (13) and (14) we obtain the statement of the theorem in the
case under consideration.

3. Let (p,q,7) € Py. Here we use Theorem 3. Put A\; = ... =\, = A in the definition of
Z(-) (see (16)). We find Ay and X from the conditions

/Tasp(t) du(t) = o7, /T\%(t)m(t) dut) =1, j=1,....n.
We have

(%)%p /T (87“_1(t)(|w(t)|p - )\0)+)ﬁ dﬂ(t) — 51)7
()77 [ lestor (s 000 = 200) ™ du(0 =1, 5 =1,....m

Put \g = a", a > 0. Changing ¢t = az, we obtain

= 2 rv
()77t =g
A

P \"p diryyprn _rv .
(a a r—p Tr—p j+1:1,]:1,...,n.

These equalities are valid for

)

_(7l/py—1/rs-1 %
a= (I,PI; "6 ) vraar=17m |

pn/r—v—d(1/r—1/p)

A= Blf/pflép_r(lf/plglé_r) VFd(T/T=17p)
r
It remains to substitute these values into (17) and (18). O
Corollary 1. Assume that conditions of Theorem 4 hold. Then for all x(-) # 0 such that
z(-) € Lp(T, 1) and @;()z(-) € L (T, ), j =1,...,n, the sharp inequality

1—y
(29) 102 Ly ) < CleONT, o (fgjagxn||S¢7j(-)$(-)||LT(T,,u)>

holds, where
C =177 0 (1 4 ndy) Ve
Proof. Let x(-) € Ly(T, p), |le; (-)z(-)]

A= Jax o (D)L (700)-

Consider z(-) = z(-)/A. Put § = [|Z()llL,(1y,0)- Then ;)2 vy <1, 7 =1,...,n.

In view of (20) and Theorem 4 we have

[ OEO 2yt < CIEONL, iz

LTy <00, j=1,...,nand z(-) # 0. Put

This implies (29).
If there exists a C' < C for which (29) holds, then
E(p, q, T) = Sup ||w(')x(')HLq(T,p,) < 66’}/ < 0§,

le () Ly (1) <O
le; Oz, (r,w <1, =1,...,n

This contradicts with (22). O
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Let |w(-)|, |wo(-)| be homogenous functions of degrees €, 6y, respectively and |w;(-)],
j =1,...,n, be homogenous functions of degree ;. We assume that w(t),wo(t) # 0 and
> i1 lwj(t)] # 0 for almost all t € T.

For (p,q,r) € P we define E() by the equality

~ 1 —

(1 —k(t))™a | w(t)

k7 () ‘wo@)

For (p,q,r) € P; set
R(t) = (1 ()Y wju)q)
i=1 +
Put
5 _7
A

(30) 0=0+d/q. Oo=00+d/p, O=01+d/r, 7=

Corollary 2. Let (p,q,7) € PUP; UP, and 6o #* 0,. Assume that for (p,q,7) € PUP;

~ w(t) %"'L
I, = kr—a(t) du(t < 00,
A (t) diu(t)
~ w(t % ry—r_ .
T = [ 2O 1 E7 (1) dut) < 00, j=1,...,m,

7 Jwo(8)] 7

andfor (paQ7r) € P2

I = p (@ = wo(®)P) ™7 o
I1—/T|wo(t)| < . ) | dp(t) < oo,

2 k=1 [wi(D)]

Fii o o (@ = [wo@))+ ) 7 . i .
I]Jrl_/T| J(t)l ( 2221 |wk(t)|T ) dlj‘(t)< s J 17"'7 .

Moreover, assume that I = ... = I,,y1. Then for all z(-) # 0 such that wo(-)z(-) € Ly(T, 1)
and w;(-)z(-) € L. (T, ), j =1,...,n, the sharp inequality

ﬁ

B OOl < ClanCO, o (sl OOl )

holds, where
O = I”l—:v/pf;(l—ﬁ)/r(’fl + an)l/q.

Proof. Set

_ wi(t)
wo ()

Then |¢(-)| is a homogenous function of degree n = 0 — 60y and |p;(-)], j = 1,...,n, are

homogenous functions of degrees v = 61 — y. The quantity v which was defined by (23) has

the following form:

, g=1,...,n.

_h-d
5~
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It follows by Corollary 1 that for all y(-) # 0 such that y(-) € L,(T,p) and ¢;(-)y(-) €
L.(T,pn), 7=1,...,n, the sharp inequality

IOt < CWONE i (235, I OVO N )

holds. Substituting y(-) = wo(-)z(-), we obtain (31). O

5. HOMOGENOUS WEIGHTS IN R¢

Let T be a cone in RY, du(t) = dt, |¢(-)| be homogenous function of degree 7, |¢; ()|,
j = 1,...,n, be homogenous functions of degrees v, ¥(t) # 0 and Z?Zl lo;(t)] # 0 for
almost all ¢t € T. Consider the polar transformation

t1 =pcoswy,
to = psinwy cosws,
tg—1 =psinw; sinwsy . ..sinwg_9 cOSwWg—_1,
tg=psinw; sinws...sinwg_osinwg_1.
Set w = (w1, ...,wq—1). For any function f(-) we put
(32) f(w) =|f(coswr,...,sinw; sinws...sinwg_ssinwg_1)|.

Note that if |f(-)| is a homogenous function of degree &, then f(w) = p~"|f(¢)|]. Denote by
Q the range of w. Since T is a cone, € does not depend on p. Put

J(w) = sin® 2wy sin? 3wy .. sinwg_o.
Assume that v € (0, 1), where ~ is defined by (23). Put

11 1-
(33) —=-_1_2-7

It is easy to verify that ¢* > ¢ > 1. Moreover,
«_ pgr(v+d(1/r —1/p))
vr(p—q) —nq(p =)
Theorem 5. Let (p,q,r) € PUP,UPy and v € (0,1). Assume that
~ .
I:/ L(W)J(w)dw < 00,
Q

'SVTQ*(l—’Y)/T(w)

and I = ... = I, where
I;: %J(w)dw,j:l,...,n.
Q sy (w)
Then
(34) E(p,q,r) = Ko7,
where

_1—y 1/q"
e A B(a*y/p,a* (1 —v)/r) 1
h= ( n ) <|V+d(1/7"—1/p)|(7r+(1—7)p)> ’

where B(,-) is the Eiler beta-function. Moreover, the method

y)(t) = (EFTT=TE) w(t)y(2),
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where

1/r * y 1/r=1/p
R & el B(¢*y/p. g (L =7)/r) 1T
E=ate (1) <u+d<1/r 1/p)|(v7"+(17)p)> |

is optimal recovery method.

Proof. First of all, we note that I + ...+ I, = I. Consequently, I} = I/n, j=1,...,n. We
will apply Theorem 4.
1. Let (p,q,r) € P. Passing to the polar transformation we obtain

kﬁ(p,w) nq(;z)—'r);ur(p)—q) {E% (w)
T o =p Otd
(1 —k(p,w))7 5 (w)
Using the same scheme of calculation of I; as it was given in [8, Theorem 3|, we obtain
gl vy 1=7\""
11: <+ ) B(ﬁ7a)l7
priv+d(l/r=1/p)\p
where
~_ 57 ~__ % 1-— Y
pP=q —, q=4¢q .
P r
In a similar way we calculate
1—vy Y, =T
Iy = -+ Bp, )L, j=1,...,n.
I priv+d(1/r —1/p)| <p r P.0)15, j
Thus,
-1
11—~ T o 1-7 ~ o
= — + B(p,q)I.
T ) B

It remains to substitute these values into (22) and (24).
2. Let (p,q,7) € P;. Now we use the scheme of calculation of I; which was given in [10,
Theorem 3]. We obtain

L=—""B(gv/p+2.q0-)/)

lv —nlq
| ¢y/p+1
lv =nlgq*y/p+14+q¢*(1—7)/q

B(¢*v/p+1,¢°(1=7)/q)-

Since r = g we have

_(1_1 _ v—n
q _W(q p)’ T U d(/q—1/p)

Therefore, ¢*v/p+ 1 = ¢*/q. Hence

I = B(q¢"y/p+1,¢"(1=7)/q)

_ I v/p
lv—=nlgq*y/p+a (1 —7)/q

¥
lv —nlq

B(q™y/p,q" (1 =7)/q)

1

Y v 1—7) PR

= -+ B(p,q)l.
prlo T d(1/r — 1/p)] <p - ®.)
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By the similar way we get

L = MIB (@v/p+1,q"(L=7)/a+1)
I .
Rz jnlq av/p+ ;‘(Z/p a1t @m et =mfat)
= B a1 = R =)
o - —1
- npr|v —I—il(l/’:“ —1/p)| <Z + 11“7) B(p, g1

Thus, we obtain the same formulas for I; and Iy as in the first case.
3. Let (p,q,r) € Py. Here we use the scheme of calculation of J; and Jy which was given

in [10, Theorem 3]. We obtain

1 * *
I :WB(Q v/p+1,¢°(1—v)/r+1),

I
Iy :WB(q*’y/p,q*(l—'y)/r—i—Q), ji=1,...,n.
Since ¢ = p we have
1 11 n
— =(1- —— =, 1-— = .
q* ( w(ﬁ 7") T A —1/p)

Therefore, ¢*(1 —v)/r +1 = ¢*(1 — v)/p. Hence

I q/p
L =— B(q¢*y/p,q" (1 —v)/r+1
Y b e /p (=) + 1 (@/p )/ )
Iy . . Iy (1 —~)/r . .
= ——B("/p, " (L =7)/r+1) = —— ” B(q"y/p,q" (1 —~)/r
Inlp (@ /pa( / ) Inlp a*v/p+q*(1—~)/r /pa( /)
—1
v v 1—7) P
= —+—] Bbal
prlv+ a1 /r = 1/p)] (p ; #.9
For I;41,j=1,...,n, we have
I ¢(L—7)/r+1
I B(q*v/p,qg" (1 =7)/r+1
T by /p+ (=) /r +1 (@/p.a( )/ )
I(1—~) I(1-7) vy 1=\
=L B(¢"Y/p.g" (1 =) /r+1) = ; (+ ) B(p,q
@O ) = i e T e ®.9
1—y v 1—~\"}
= L4 — B(p,q)I.
mprl A7~ 1/p) <p » ) ®9
Again we obtain the same formulas for I; and I3 as in the previous cases. O

For n =1 Theorem 5 was proved in [10]. Analogously to Corollary 1 we obtain

Corollary 3. Assume that conditions of Theorem 5 hold. Then for all z(-) such that z(-) €
L,(T,p) and ;(-)z(-) € Ly (T, ), j =1,...,n, the sharp inequality

12Ol < KleOI7, (max ||saj<~>x<->||LT<T,,t>> i

1<j<n
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holds.

Let |w(-)|, |wo(-)| be homogenous functions of degrees 6, 6y, respectively and |w;(-)],
j =1,...,n, be homogenous functions of degree ;. We assume that w(t),wo(t) # 0 and
Z?Zl |w;(t)| # 0 for almost all t € T'. Define w(-), wo(-), w1 (-) by (32). Similar to Corollary 2
we obtain

Corollary 4. Let (p,q,7) € PUP, UP, and ¥ € (0,1) where 7 is defined by (30). Assume

that
- el
1 :/ — nw (iu) =y J(w) dw < o0,
Q wi' (W) (X g=; W(w))
where
1 - 1 7 j 7 1-7
q q p ro
and I = ... = 1!, where

I :/ EHQIAC) Jw)dw, j=1 n
7 . e , o
Q TP (w) (Xp, @y (w)) 0

Then for all z(-) such that wo(-)z(-) € Lp(T, 1) and w;(-)z(-) € L (T,p), j =1,...,n, the
sharp inequality

a

1<j<n

~ ~ 17
OOz, a0 < KlanCeOI, 1, o s Ol o

holds, where

_13 ~\ Vi
s (1=3\" [ B@/p,g1-7)/r)]
(35) Ro52 ( v) <~ (qz/pg( 7)/7;) ) .
" 161 — bl (Y + (1 = 7)p)
The statement of Corollary 4 for (p,q,r) € P and n = 1 was proved in [2].

We give an example of weights for which conditions of Corollary 4 hold. Let T' = Ri,
01 > 0,

(36)  w(t)=(t7+...+t)"% wo(t) =+ ... +t)"2 wit)=t", j=1,....d

The condition 0 < 7 < 1 is equivalent to inequalities 51 >0 > 50 or 51 <0< 50. Therefore,
we assume that for 6 and 6y inequalities 61 + d(1/r —1/q) > 0 > 69+ d(1/p — 1/q) or
01 +d(1/r—1/q) <6 <6y+d(1l/p—1/q) hold.

It is easy to check that @(-) = wo(-) = 1 and w;(w) = t; (W), j = 1,...,d, where

t1(w) =coswy,

to(w) =sinw; coswa,

tg—1(w)=sinw; sinws . ..sinwy_s coswg_1,

ta(w)=sinw; sinws . ..sinwg_s sinwg_1.

Note that
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For I we have

(37) 'Iv: / J(OJ) dOJ~1 — HdJ:l _ [0’7_(_/2](1—1.
Hd—l d ~7r01 Q( 77)/7‘
+ (Zk:l tk (W))
If r6; <2, then
4 4,
(38) Stk (w) =) fk(w) =1
k=1 k=1

For r6; > 2 by Holder’s inequality

d d 2
1= Z,f(w)<<2’{,§‘91(w)> e

k=1 k=1

Thus,
d 0 .
(39) Dbk (W) zd T

It follows by (38) and (39) that I < oc.
For I’} we have

~ iros d

I_;:/ ’ J(w)~w~ ’j:17'--7d-

et 4~y q(1=7)/r+1
(oL a" W)

Consider the integrals
761

d
I / (Zk:l ti J
! R4 NBd ( d trel)a(l_:’)/”“l

)016(1—5)/2

dt, j=1,...,d,
k=1"k

where B is the unit ball in R?. If we change variables in L, changing places variables t; and
ti, then L; passes to L. Therefore, L; = ... = Lq. Passing to the polar transformation we
obtain that L; = I7/d, j =1,...,d. Consequently, I} = ... = I}.

Thus, we obtain

Corollary 5. Let (p,q,r7) € PUPLU Py, 61 >0, 6 and 6y be such that 01 +d(1/r —1/q) >
0>600+d(1/p—1/q) or 01 +d(1/r —1/q) <8 <6y +d(1/p—1/q). Then for weights (36)
and all z(-) for which wo(-)z(-) € Ly(RL) and w;i(-)z(-) € L.(RL), j = 1,...,d, the sharp
inequality

IOl ety < Rl eg, (o, sl
holds, where K is defined by (35) in which the value I is defined by (37).
We give one more example.

Corollary 6. Let (p,q,7) € PU Py U Py, weights w(-), wo(:), wi(:) be defined by (36) for
0=d(1-1/q), 0o=d— (A+d)/p, 1 =d+ (u—d)/r, where \,u > 0. Put

_ K P
ot CopprA
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Then for all z(-) such that wo(-)z(-) € Ly(RL) and w;(-)z() € L.(RL), j = 1,...,d, the
sharp inequality

T3
)0l ety < oo gy (0 s Ol

1<j<d

holds, where

& I a B Yamasp
C_(pa)“(rﬂ)ﬁ <A+#B<1/q—a—ﬁ’1/q—a—ﬁ>) ’

J(w) dw
I= -1 d ~r(d=1)+p 1/ = —B .
(L ET W)

Ford=1,¢=1, and (p,1,r) € P the statement of Corollary 6 was proved in [4].

and

6. RECOVERY OF DIFFERENTIAL OPERATORS FROM A NOISY FOURIER TRANSFORM

Let T be a cone in RY, du(t) = dt, |¢(-)| be homogenous function of degree 7, |¢; ()|,
j = 1,...,n, be homogenous functions of degrees v, ¥(t) # 0 and Z?=1 lo;(t)] # 0 for
almost all t € T.

Let S be the Schwartz space of rapidly decreasing C>°-functions on R?, S’ be the corre-
sponding space of distributions, and let F': S — S’ be the Fourier transform. Set

Xp,={z() €S 1 pj(")Fa() € Ly(R?), j=1,...,n, Fa(-) € L,(R%) }.
We define operators Dy, j = 1,...,n, as follows

Djz(-) = F Y (@i (VFz())(-), 5=1,...,n.
Put

(40) Az(-) = FH () Fa())().
Consider the problem of the optimal recovery of values of the operator A on the class
WpD = {CL’() € XP : ||Djx(')||L2(Rd) < 13 J: 17"'7”}3 D= (Dlv""Dn)a

from the noisy Fourier transform of the function z(-). We assume that for each z(-) € W),
one knows a function y(-) € L,(R?) such that ||[Fz(-) — y(-)||1,®ae) < 8, 6 > 0. It is required
to recover the function Az(-) from y(-). Assume that Az(-) € L,(R%) for all 2(:) € X,. As
recovery methods we consider all possible mappings m: L,(R?) — L,(R%). The error of a
method m is defined by

epq(A, Dym) = sup [Az(-) = m(y)()llz, @
2()EWP, y()eLy(RY)
IF() =y ()l ) <

The quantity

41 E (A, D) = inf A, D
(41) pa(A, D) m:Lp(]Rl’%—)Lz(Rd)epq(v ;1)

is called the error of optimal recovery, and the method on which the infimum is attained, an
optimal method.
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1. Recovery in the metric Ly(R?). By Plancherels theorem,

L) — PO e,

[A2() =mW))lam = G5

where Lz(-) = ¢(-)Fx(-). Moreover,

1 .
D2 ()| L, mey = W||<ﬂj(')FfU(')||Lg(Rd)7 j=1...,n.

So, the problem under consideration coincides, up to a factor of (27r)~%/2 with problem (2)
for ¢ = r = 2 with ¢;(-) replaced by (27)~%2p;(-), j =1,...,n.

For ¢ = r = 2 we denote by 7 and g* the values v and ¢*, which where defined by (23)
and (33):

. v—1 - _ 1
T vrdz -1 T T A1)
Set,
1A\ (B@amrLea-32) "
Cp(l/ﬂ?)—v p( n ) ( 2‘1/_77| ) :

Theorem 6. Let 2 <p < oo,y € (0,1). Assume that

D
(42) = /H Mj(w)dw <o, T =[0,7]%2 x [0, 2]
D w
and If = ... =1/, where
T ()32 (w) .
’_ J _
(43) ij/ndil g2@\*(1_%/24_1(0‘))J(w)d(,u, j=1...,n.
Then
1 v~
(44) E@Q(Ajl))::Z§;5557§C@(V,U)ILW 5.
The method
. - s2(t)
(15) (y)(t) = F! ((1 - 52200 w<t>y<t>) ,
[/
where
1-7 RS
s hncion ()
is optimal.

Moreover, the sharp inequality

(46)  [|Az ()| (e

1 P R 1-5
< ch(y, 77)[1/‘1 HF.'E(-)HZP(]Rd) <1r§f<xn|Djx(‘)|L2(Rd)>

holds.
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Proof. Let 2 < p < co. By Theorem 5 we have

1 ~
EpQ(A,D) == WK(YY’

where

n lv+d(1/2=1/pl(A+ (1 -7)p
From the properties of the beta-function we find that

B(@7/p.q"(1-7)/2)
lv+d(1/2 - 1/p)|(27 + (1 —=7)p)

_ B@A/p+ 1,7 -%)/2) (@/p+ 7 (1-7)/2)
lv+d(1/2=1/p)|(27 + (1 =F)p)T*7/p
_B@3/p+1,4(1-7)/2)

2lv — '

_1-3 1/q"
3 (1=AY B(q'y/p,a"(1-7)/2)1
K=7% ( ) ( ) )> .

(47)

Thus, equality (44) holds.
It follows by Theorem 5 that the method

() = (1 -

~

SE10)

(277)d|7/’(t)|2>+w(t)y(t)’

where

5 S ~ 1/2—-1/p
£ s(am A1/ (1 - 7)1/2 ( B(q*7/p,q*(1-7)/2) I > |
" )p)

lv+d(1/2=1/p)l(Zy+ (1 -7

is optimal. In view of (47) we obtain

~ o - R 25(1/2—1/p)

&2 _ 6= (1 -3\ ([ B(@7/p+1,35(1 —7)/2) I ! 3
@2md  (2m)H n 2y =]

1-5 1/2-1/p\ 2

= WCP(V,U) (5] / /p> .

Inequality (46) follows from Corollary 3. Consider the case p = co. It follows by Lemma 1
that

(48) Eoo2(A, D) > sup A2 ()| L, (ma)-
z()eW2
1F2() gy <6

Let Z(-) be such that

FEE(E) — 57 |1/)(5)| > >‘\/ 82(5)7
0, [ < Ay/s52(8).

We show that A > 0 may be selected from the condition

1 I~ .
a7 [ I OPIPEER dE =1, 5= 1,00

Thus, A > 0 should be chosen from the condition

52 (&) d¢ = (2m).
/w<s>>st<s> sl )
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Passing to the polar transformation for v > 7 we obtain

Py (w) Nw v—n
52 /H F(w) T () dw /0 Pl dp = (2m), @1(@:(%) .

If v <, then 2v +d < 0 (since 7 € (0,1)) and we have

+oo
52/ {5?( ) (w) dw/ Pl dp = (2m)?.
Hd 1 <I>1(w)
Hence
62 2u+d

AT v I = (2m) "
|2v + d| 7 (2m)

As already noted, it follows from the equality I] + ...+ I/, = I that I} =I/n,j=1,...,n
Consequently,
2 preel
)\ = 6—1 .
(2m)4n|2v + d

CZ(v,n) =

It is easily checked that

n+d/2
(n|2v 4+ d|)»+a72.

1
|27 + d|

As a result, \2 = 3. In view of (48), using calculations similar to those that were above, we
obtain

52
(49) E%5(0.D) 2 [A50|2,0) = ya [ 6(©)]? d
Lz (R%) (2m)d BOSAEE
52 _2n+d 1 9 2/ 2
= Rt dien? ”7”:@0@(%77)1 527,

We estimate the error of the method (45). Put

0= (1),

Taking the Fourier transform we obtain
A 1
1Az () = T(y) ()L, gy = @ /Rd (&) |F2(€) — al&)y(€)]” dé.
We set z(-) = Fz(-) — y(-) and note that

2Ol <6 g [ I OPIPROPAE <L, =10

Hence
I82() = RO, gy = @ [ O 11 = a(©) Fole) + a(@):(0)” ds.

The integrand can be written as

[(E)I(1 — a(§))V/Bs2(§) F +FFI¢
Bs2(€)

Using the Cauchy-Bunyakovskii-Schwarz inequality
lab + cd|* < (|af® + [e*)(Ib]* + |d*)
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we obtain the estimate

I40() = A Ol ) < vraiswp S€) s [ (Bsa(OIFa©F +a©(OPI(€)) de
¢£eRrd (27‘(’) Rd

where

ORI - a©)?
B O

If [1(€)]? < Bsa(€), then a(€) = 0 and S(€) < 1. If [(€)]? > Bs2(€), then S(€) = 1. So we

have

Ead D) < ol [ (3OO + a©WOPIO) de < 0
(2m)? Jpa
52 2
2_ S dé =n 2d
ey /w<5>|>x\/%(| YOI = Bea(8)) d =nf + 2mn) /w<€>I>M/W| V(eI de

1 52
—ﬁ—/sﬁFN?dﬁ:—/ B(E)PdE < B2, (A, D).
o @O = g [ e (4,D)
It follows that the method mi(y)() is optimal. Moreover, by (49) we have

0 2 ge _
(2m) /w(5)>>\\/82(5| i (2m) 5

Similar to the proof of Corollary 1 we prove that for p = oo inequality (46) is sharp . O

EZ»(A,D) = AC2 (n, k)T 5%,

Let a = (a1, ...,aq) € RT. We define the operator D (the derivative of order a) by
Dex() = F~((i€)* Fx(€))(),

where (1€)* = (i&1)* ... (i€q)*.
Consider problem (41) for D; = D%, j =1,...,d, where e;, j = 1...,d, is a standard
basis in R?, and A defined by (40). Assume that 1(-) has the following symmetry property

V(& my ) =00, G, ), 1< gm < d.

Moreover, we assume that {/;() is continuous function on T4,
In this case for (42) and (43) we have

_ O (W) (w) o

(%) = /nd ' (Zﬁzl?,?”(w))?(l_wz’
;) O (@) (W) T (@) dw

b= /m . (ZZ:@?”(W))M_WM’ J

Similar to how it was done for weights (36) we prove that I < co and I{ = ... = I). Thus,
from Theorem 6 we obtain

=1,....d

Corollary 7. Let2 <p< oo andv >n > 0. Then

Ey(A, (DY, ... DVe)) = Cy (v, ) IYT 67,

1
(2m)d7/2
where I is defined by (50). The method

N ] S It
Ay)(t) = F 1((1/3 =11 ) woe)y(t)),
ECERYS
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where

_ -7 1/2-1/p) %7
B - d(27r)da Cp(yﬂ 77) (5‘[ > )

is optimal.
The sharp inequality

1-3
1 - 5 e
||A$(-)|‘L2(Rd) S ch(% 77)11/(1 HFQ?()HZP(Rd) (fg]aé(dHD 5]1’(-)”L2(Rd>)

holds.

As functions 9 (-) defining the operator A we can consider the functions

Po(€) = (|&1]° + ...+ 1€4l)??, 6 >0.

The corresponding operator is denoted by Ay. In particular, Ay = —A, where A is the
Laplace operator. We denote by AZ/Q the operator A which is defined by ¢(-) = 3/2(~).
Now we consider the case when p = 2.

Theorem 7. Letv>n>0,v>1, and 0 < 0 <2v. Then

n/2 /6 g ol
(51) Ep(Ag'™, (DY, ..., DY) = d” ((QWW) 7
and all methods
(52) wy)(t) = F (ay*0y),
where a(-) are measurable functions satisfying the condition
1 —a(§)]? a(é))?
Ao iy g2 (2m)h

in which

/v Jv—1
A= azn/ (1 _ ﬁ) ((27T)d>n . Ao = Qd2n/971 <(27T)d>n 7

(2m)d v 02 v 02

are optimal.
The sharp inequality

1-n/v
(54) Y *2() Loy < LHM-» e max D" )
0 La(RY) = (27)d(1=n/v)/2 LaRY) \ 1<52q Ly(R%)

holds.

Proof. Tt follows by Lemma 1 that

(55) E22(AZ/2> (Dyela ceey Dyed)) > sup ||AZ/2$(')||L2(1R4)~
m(.)GWQ(D'/el,A.A,D"ed)
”F:E(‘)HLZ(]Rd)S&

Given 0 < € < (2m)¥ 5=/ we set

—~ (27r)d ED d e
56( 62 ) (1""71)*(&---’5)’ Bs:{geR :|€7§5|<E}'
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Consider a function z.(-) such that

0
Y S > N e BE7
(56) Fz.(¢) = mes B, ¢
0, £ ¢ B:
Then HF%(')HQLQ(M) =62 and

62
ve; 2 _ |2v s
D% 2 s = Gyt J, o 46 <1 =1

By virtue of (55) we have

2 ve ve 2
E3,(AQ2 (D7, DY) > [|A) 22 ()|, ey
2

62 5 I
- WIDQSBE/B wg(f) d{ = (27r)d¢g(€6)7 €s S Bs-

Letting € — 0 we obtain the estimate

2 N\ 1-n/v
2 /2 vel ve 21/6 J
(57) E22(Ag 7(D u"'?D d)) 2 d & <(2ﬂ-)d> !

We will find optimal methods among methods (52). Passing to the Fourier transform we
have

||A"/2 O =)o) = g7 L, 95O 1Fa(6) = al@w(O) e
We set z( —y(+) and note that
1 .
/ HOPdE <P o [ PP OP dE <1 f =1
Then
143720 = ) ey = Gz ., 94O 11— al©) Fole) + a()=(0)” .

We write the integrand as

d 2v 1/2
(- @R (S 6F)  FolO)  ago
e (Zle ‘§j|2u>1/2 (2w)d/2f

Applying the Cauchy-Bunyakovskii-Schwarz inequality we obtain the estimate

1AY 22 () = (y) C)IIZ, gy

b (€) (2m) 2/ Mz (€

d
< vaaisup S(6) g | (A2 >l PR + <27r>dA1|z<§>|2) &,

£€Rd

where

1—a()? a()?
S = 1/}3(5) ()\2| Z?—ﬁz]"p/ . (|271('§‘3)\1> ’
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If we assume that S(€) < 1 for almost all £, then taking into account (57), we get

) 1 -
Y% (D D) < o [ (R I IR + 2 A=) | de
j=1

62
(2m)?
This proves (51) and shows that the methods under consideration are optimal.

It remains to verify that the set of functions a(-) satisfying (53) is nonempty. Put
(27T)d/\1
a(g) = 4 d o
(2m)9A1 + A2 Zj:l €51

1-n/v
< Aad + A 67 =d2’7/9( ) < EL(A)? (D, ..., D¥e)).

Then
P (€)

S = .
© (2m) A1+ A2 X0 16512

Since 6 < 2v by Holder’s inequality
d

d 0/(2v)
Z |£j|0 < (Z §j|2u) d1=0/(2v)
j=1

j=1

Putting p = (|&1]% + ... 4+ [€4|%)'/?, we obtain

d

Z |£j|21/ > pQle_QV/G.

=1
Thus,
P>

S(€) < .
(f) - (27r)d)\1 + )\szudl—zu/e

It is easily checked that the function f(p) = (2m)%\; +Agp?’d'~2*/% — p?" reaches a minimum

on [0, 400) at
2r d\ 1/(2v)
pO:d1/9<(62) ) .
Moreover, f(po) = 0. Consequently, f(p) > 0 for all p > 0. Hence S(§) <1 for all .
Inequality (54) is proved by the analogy with the proof of Corollary 1. O

2. Recovery in the metric L. (R%). Put
v—n—d/2 1

N a2 —1/p) T A2+ n1/2-1/p)
_l-m Ya
~ _ 3 (l-m\ ? (Blan/p+1La(l—m)/2)
Cp(vsn) =m (n) ( 1 12|V—77—d/2| ) '

For 1 < p < oo we define k(-) by the equality
KOyl )P?
(1= k(t))P! sy (t)
We set
K(t) = {mm {Lenfwm}, p=1,
(L—s@®lO[),.  p=oo.
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Theorem 8. Let 1 <p < oo, 71 € (0,1). Assume that
a1
I= / d}i(w)(](w) dw < 0
II

~q1(1-71)/2

4ot sy (w)
and If = ... =1/, where
D9 (W) P2 (w
Ij{:/ %J(w)d@j:l,...,n.
ma-1 gt (w)
Then .
_ ~ 1

EpOO(Aa D) = ch(l/, 77)] /ql(sfh .

The method
1
)0 = £ (i (7 7771) wion )
where
~ 1/2—1
. (S 7% (]‘ - rYl)CP(V7 n)Il/QI e/ &
61 — N n(27r)d(1+"/1)/2 ’
is optimal.
The sharp inequality
(58)
1 ~ 1 1-m
||Ax(.)||Loo(Rd) < ch(y, n) I /QIHFm(')HE,(]Rd) (féljagxn |Djx(~>||L2(]Rd))

holds.
Proof. Using an estimate similar to (48) we have

Epoc(A, D) > sup [Az () o (ra)-

z(‘)GWI’)D
IF2()lly, gty <6

Assume that z(-) € WQ and [[Fz()|,,@®ey < 6. If Z(-) is such that FZ(£) =
£(&)e "8 Fa(€), where

EOFHE )
£ = { O Fa(e) VOO A0
0, HEF(E) = 0,

then we obtain Z(-) € WP, |[FZ(:)|| 1, &) < 6 and

P(E)FE(E)e ) d&‘ = / (&) Fx(€)| de.
Rd Rd

Hence
1
(59) Bpe(MD)2 g sup (&) Fa(€)|de.
) w()ewp R
”FI(')HLP(Rd)S(S

Let 1 < p < 0. It follows from (20) that
Epoo(A7 D) 2 E(pv ]-a 2),
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where, in the problem of the evaluation of E(p,1,2), the functions ¢;(-) should be replaced
by the function (27)~%2¢p;(-), and the function (-) by (27)~%)(-). From Theorem 5 we

obtain
1
N 7 o'
Epo(A, D) > CE=nTE K6,

where

n lv4+d(1/2 =1/p)|2n + (1 —m

From the properties of the beta-function

B (qiv1/p, (1 —71)/2)
lv+d(1/2—1/p)|(2v1 + (1 —7)p)
_B (am/p+ 1,01 —7)/2) (i /p+ @l —7)/2)
lv+d(1/2 = 1/p)|(27v1 + (1 = v1)p)@171/p

_ Blam/p+La(l-m)/2)
2|U -n— d/2|

_1-m 1/q1
I B e 2 B (g /p, (1 —71)/2) 1
h=n < ) ( )p)> '

Thus,
1 ~ 1/q1 s
Epoo(A, D) > ch(% IEA RS

Moreover, it follows from the same Theorem 5 that

1
/Rd WWE)F(O - m(y)(&)‘ d¢ < E(p,1,2),
where
m(y)(t) = (271r)dk (51”““/““%) S,
and
& = L (1 -7 > 1/2 B (Q171/p, Q1(1 _ 71)/2) I(27r)*dq1(1+v1)/2 1/2—1/p
R v +d(1/2=1/p)|27 + (1 = n)p)

5B ()Gt n /2= p)

—o n(2m)d1+71)/2 :
Consequently,

‘1 GOF© O de— [ m(y)(€)e df‘

(27T)d Rd Rd
L yere - m(y)(@] d€ < E(p.1,2) < By (A, D).

= / (2

It follows that the method m(y)(:) is optimal, and the error of optimal recovery coincides
with E(p, 1,2).
Now we consider the case when p = co. Put

()
s<s>{¢<§>|’ Ve #0,
L e =0,

1
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Let Z(-) be such that

© 5s(), [P = As2(8),
F2(§) = § 8u(¢)
Asa(€) [P(E)] < Asa(§)-

‘We choose A\ > 0 such that
1 R '
W/Rd s (OPIFEE)Pde =1, j=1,....n.

Now, to find A we have the equation

52 ) 5272 lo; ()| (€)[?
. d =22 e =1.
(2m) /|w<5>|>m<g> s e+ (2m)? /w<£><A52<s> s3(€) -

If v > 1+ d/2, then from the fact that v; € (0,1) it follows that n > —d. In this case it is
easy to check that 2v > n and 2v + d > 0. Passing to the polar transformation we obtain

6 2 2(w) Qvtd—1
— o5 (w)J(w dw/ vraTid
@n)? /Hd1 o5 (w)J(w) ; P p

§2A72 853(‘*’)1;2(‘*’) e —2u42n+d—1
G /n 2(w) seda | =1

D3 (w)
where )
vw) 7
i) = .
2(w) <A§2 ()
Thus,
2 . _
OB Ay — 2 I=1.
(2m)d 2uv+d)(2v —2n—d)

If v < n+ d/2, then it follows from v; € (0,1) that n < —d, 2v < 7, and 2v +d < 0.
Passing to the polar transformation we obtain

52 ~9 T a1
o [ B [ i
(2m)d /Hd1 ! By (w)
52\ / P (w) P2 (w) 2a(w)
+ J(w dw/ pvtItd=l g, — 1,
(27T)d g1 g%(“’y) ( ) 0
For this case we have
52 -2k 2n — 4v .
_— v—n = 1.
(2m)d Qv +d)(2v —2n—d)”’

Combining both of these cases and taking into account that I; = I/n, j =1,...,n, we get

A= ((27r)dn(21/ +d)(2v—2n—d
It follows by (59) that

2v—n
2622v — |1 2vtd
] .

1 I
B8 D)2 o [ w@PR@IE= g [ el

J [ (€)[?
_9 de.
e /w<£)<m<£> 52() ¢
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Using calculations similar to those that were above, we obtain

§|21/77]|>\ S T

= E07

where ., .
(n|v + d/2|)%%a (v —n)I TFd 5 ya
Ey = ) 2v+d
n+d (2m)4(2v — 2n — d)
We prove that for all 2(-) € X the equality
1 .
) Aelt) = 5 | (B(€) — As(€)s2(6) Fr()e ) dg
@M Sl zan

holds. Indeed,

1 )
— — As(€)sa Fa(€)et8 ¢
B o (PO~ (€526 P(©)e ) e

+ st [, OO FFE dg

1

= —As(€)s Fz(£)e't d
397 e (P16~ A5(005() P

1 1 ,
A Fz(€)e!t® d Fa(£)et9) g
(2m) /w(£)|>/\52(£) O FrO £ ey (2m)? /¢(5)|<A32( )Mf) =(ee .

2(€)e! ) d¢ = Ax(t).
%/wF dé = Ax(t)

+

We estimate the error of the method

1 .
m = — As(€)s2 M8 ge.
D0 =gt [ WO A5 (e

‘We have

IAa(t) — m(y)(1)] < ‘ !

()

[ VEOFe(©)e S dg

1 )
— —As(é)s Fz(£)e!t® d
(271_)d /W(f)lZ/\Sz(E) (w(ﬁ) (f) 2(5)) (5) €

1
— As(& Fz(¢ dg.
7 o 1H1E) ~ A5O2() F(E) — i)

If 2(-) such that
1
1F2() =y ()l oo (re) <6, W/R o (OPIFz(&)Pde <1, j=1,....n,

then, taking into account (60), we obtain

Az () =m{)(0)] < 6(2/:T)d /Rd $2(&)|F(&)||FZ(€)| dé + pu < ? +p,

where

= — s d€.
h= Gy /|¢<f)m32<5>('“’(5)' (6) de
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Passing to the polar transformation we find
= ©las = T

M) Jipo1=rs(0) -~ @m)dn+d”

. ©de= 2
rynw] 52 =T
M) Jiue)2rs (0 (2m)?2v +d|
Hence B

SAT T |20 — 1
2m)d(n+d)2v +d)
It is easily checked that n\/é 4+ u = FEy, and therefore

eoooo(Avpvm) < Ep < Eoooo(Aa D)

o

It follows that m(y)(-) is an optimal method, and the error of optimal recovery is Ey. It is
easily checked that for p = oo
1

o
Gyt Ce 00" = By,

We evaluate &; for p = co. We have

~ 2
(1= )V \ " e

n(2m)d0+m)/2 = AT

(61) &1=20

The method m(y)(-) can be written as

82(5))
[ (8)]

mly)(t) = (1—A ) By (0)
+

In view of (61) we have

1
m()(® =7 (5 (6770) w0 = a0,
Inequality (58) is proved by the analogy with the proof of Corollary 1. O

It is not difficult to formulate a corollary from Theorem 8 analogous to Corollary 7 for
the same A and D = (D"°,..., D¥¢?).
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