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EXACT INEQUALITIES AND OPTIMAL RECOVERY
BY INACCURATE INFORMATION

K. YU. OSIPENKO

ABSTRACT. The paper considers a multidimensional problem of
optimal recovery of an operator whose action is represented by
multiplying the original function by a weight function of a special
type, based on inaccurately specified information about the values
of operators of a similar type. An exact inequality for the norms
of such operators is obtained. The problem under consideration is
a generalization of the problem of optimal recovery of a derivative
based on other inaccurately specified derivatives in the space R¢
and the problem of an exact inequality, which is an analogue of the
Hardy-Littlewood—Polya inequality.

1. GENERAL SETTING

Let X be a linear space, Yp,Y:,...,Yy be normed linear spaces,
and A;: X = Y, j =0,1,..., N, be linear operators. Consider the
problem of optimal recovery of Ay on the set

W:{l’eXHA]l’HyJ S(Sj, 5j>07 j:m+1,,N},

where 1 < m < N (if m = N, then W = X)), by values of operators
Ay, ..., A, given with errors. More precisely, we will assume that for
each x € W we know y = (y1,...,Ym) € Y1 X ... X Y, such that
1A = yslly; < 05,05 >0,5=1,....m.

Any recovery method by known information y = (y1, . .., ym) should
give an element from Yj that is taken as an approximate value of Agzx.
Thus, every recovery method is a mapping ®: Y; x...xY,, = Y. The
error of a method ® is defined as

(Ao, W, 0,®) = sup Aoz — @(y)]lvs,
TEW, y=(Y1,---,Ym)EY1 X..x Vi,
1A 2—=yjlly; <65, j=1,....m

where 6 = (01,...,0m).
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We are interestedA in those methods for which the error is minimal,
i.e. those methods ® for which
(1) e(Ag, W, 8, D) = inf e(Ao, W, 5, ®).

P: Y1 X..XYm—Yo

We will call such methods optimal recovery methods. The quantity on
the right-hand side of (1) will be called the error of optimal recovery
and denoted by FE(Ag, W, 9).

Let

) a=(a,...,ap) €RY, o() = (e1(), -, k()

() =1 () - " (),
where ¢;(-), j =1,..., k are continuous (generally speaking, complex-
valued) functions on R?. Set

WARY = { o() € L(RY : o ()o() € Ly(RY, j =1,....N },

where 1 <p<oo,a? €RL, j=1,...,N,and A= {a},...,aV}. We
define operators A;: Wi{(R?) — L,(R?) as follows

ij('):(paj(')x('% ]:0a1>>N
For these operators we consider problem (1), in which X = W;{(R%),
Yo =Y, = ... =Yy = L,(R%. The corresponding set of functions
W is denoted by WA(R?, 0) where § = (641, - - .,0n). The case when
(&) = i€ was considered in [1].

The consideration of the problem posed is connected with the desire
to generalize the recovery problem for functions of many variables from
inaccurately given values of derivatives (see |2, p. 249]). In addition,
as a consequence of the solution of the problem under study, a gener-
alization of the exact inequality of the Hardy-Littlewood—Polya type
is obtained (see [3]).

Note that the idea of considering recovery problems for a whole fam-
ily of operators was used in [4-7].

2. GENERAL RESULT

Set
Q = co{(a’,In1/6,),..., (N, In1/6x5)},
where co A is the convex hall of A. Define the function S(-) on R* by
the equality

(3) S(a)=max{zeR: (a,2) €Q}
(S(ar) = —o0, if (a, 2) ¢ Q for all 2).
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Let a® € coA and let 2 = (o, 7)) +@, where ) = (73, ...,7,) € R¥, be
a support hyperplane to the graph of S(:) at a’. By Caratheodory’s
theorem there exist points in this hyperplane (o/*,In1/4;,),s = 1,...,1,
[ < k—+1, such that

1 l
(4) a® =00 0, >0, s=1,...,1, Y 6, =1
s=1 s=1

Set
M={j,....,5pNn{1,...,m}.

Theorem 1. Let o € co A. Assume that for any ay,...,a; > 0 there
exists £ € R such that |p;()| =a;, j=1,...,k. Then

(5) E(Ag, WARY ), 8) = e,

If M # 0, then all methods

(6) S(y()() =D a;()y;(-),
jEM
where functions a;,(-), s =1,...,1, satisfy the conditions
!
als al
(7) D™ (€)a;(6) = (),
s=1
( | / /
oF
> GOV st ) cpeoo, Ly loy
6r/P P
G
Js a]s —S(OCO) —
(8) max = se , p=1,
I
> la,(§))s;, < e p =0,
\ s=1

for almost all £ € R?, are optimal.
If M = () then the method ®(y(-))(-) = 0 is optimal.

Proof. We prove that

(9)  E(A, W;(RY,5),0) > sup [Aoz ()|l 2, (re)-
x(-)eWIf‘(Rd,(?)
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Indeed, for any method ®: (Ly(RY))™ — Ly(RY) and any function
z(-) € WA(R?, 6) such that |Ajz(-)||,,ge < 65, 5 =1,...,m, we have

2/ Aoz ()L, @ay = [[Aox(-) = @(0)(-) = (Ao(—=2()) = P(0) ()l L, me)
< [Aoz(-) = @(0)() ||z, ey + [[Ao(=2()) = ®0)() |l L, (re)
< 2€(A07 W;z‘;A(Rdv 8)7 57 (I)>
Due to the arbitrariness of @ it follows that
||A0x(')||LP(Rd) < E(A()v W]‘)A(Rdug)u(w

Taking the upper bound over all functions z(-) satisfying the given
conditions, we obtain inequality (9).

The extremal problem in the right-hand side of (9) may be written
in the form
(10)
e () zymey = max, o) 2()|r,@n <6, F=1,..., N,

where |A<p(§)|°‘ =|e1(&)]* ... |g0k(A§)|°‘k for a = (v, ..., ) € RE.

Let & € R? be such that |¢;(&)| = e, j =1,...,k. Consider the
case when 1 < p < oco. Due to the continuity of the functions ¢(-),
s=1,...,k, for any ¢ > 0 and any j € {0,1,..., N} there exist SJ
such that

(1) @) — leEP| < e
for all £ € Bj. (Eﬁ) where

Bs(&) ={¢eR: [€—&| <4}

Set & = min{d;,...,on}. Then for all £ € Bg(gﬁ) and all j €
{0,1,..., N} inequalities (11) hold.
Put A = e~%@ and

1 1/p
-~ , 5 € B+ é\A ,
GE (\Bg@ﬁ)m) i)
where R
Ye = I+e

(|B(;(§7\)| denotes the volume of the ball B(;(gﬁ)).
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We have

~

pad P A &\ |pal _
L 1e@rlsporde < 2 (lo@ +¢) =

e—ped M+a) | Ae

Since z = («, 1)) +a is the equation of support hyperplane of @), we get
(1) +@>1n1/s;.
Consequently,
7 + Ae
Ve

P

/Rd PO e, (€7 dE <

Thus, x.,(-) is an admissible function for extremal problem (10).
Therefore, taking into account (9) and (11), we obtain

_ 0 Ay oo
B(80, WARL 3.0 2 [ 1@ lae) s = = (1o )
(@0 +a) _ A,

Ve

Making € tends to zero, we have
E(Ag, WARY,3),0) > e~ (@"M4a) — (=50,

Now let p = oco. Similar to the previous reasoning, for any ¢ > 0
there exists ¢ > 0 such that for all £ € B;(¢;) and all j € {0,1,..., N}
inequalities

(1 — 1eE)I~| < e
hold.
Put
AFTY, € e Bi(&),
rel€) = 0SS PG
0, § ¢ Bs(&),
where
Ve = 1+e¢
min;<;j<n 9;
We have
ol A\ 0 pad 6_(<aj m)+a) + Ae
PO (Vo) < = (@ +6) = —— < ;.
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Consequently, .. (-) is an admissible function for extremal prob-
lem (10). Thus,

] . i
E(Ro, W (R,5),5) 2 lle Ol 7o)ty = = (1@ —<)

o—((a®i+a) _ A

Ve

Making € tends to zero, we have
12 E(A. WARLF).§) > e~ (em+a) _ o=S(°)
05 P ) I -

Now we prove the optimality of the recovery methods (6). To es-
timate the error of methods (6) we consider the following extremal
problem

o (V) = a;()y()

jeM
g ()a(-) = Yi()lo,mey <65, j=1,...,m,
||‘Pa](')x(')“Lp(Rd) <dj, j=m-+1,...,N.

— max,
Lp(R4)

1) |

For M = (), the corresponding sums are considered equal to zero.
Put Z](é-) = (poﬂ(g)x(g) - yj(£)7 j = 17 cee,m, and

w(&) =™ (§) = ) ¢ (§)a;(€)

JEM

Then (13) may be written in the form

2(€)+ Y a;(6)z(9)

JjeM

— max,
Lp(R9)

2 (e, mey <05, 7=1,...,m,
HSOQJ('):E(')HLp(Rd) <d;, j=m-+1,...,N.

It follows from (7) that

w@ = > " (©a;(O)x(&)

]G{Jl 7777 ]l}\M



EXACT INEQUALITIES AND OPTIMAL RECOVERY 7

Thus, we have to estimate the value of the following problem

Yo OO+ D a;(©)%()

j€{gn, i \M JEM
12; () Lymey < 05 GJ=1,...,m,
||¢a](')95(')||L,,(Rd) <d;, j=m-+1,...,N.

— max,
Lp(Re)

Let 1 <p < o0. Set

Xj =g, el et e

s Js 9

Consider the case when 1 < p < co. Then by Holder’s inequality we
have

Y e 0O+ g <s>zj<s>\

g1 \M JjeEM

> L @a + X LR

JE{gt, i} \M 73 JEM Vj

. ) . 1/p
s@p@)( 3 Aj\go@)\mﬂx(w+Aj\zj<§>|f°) ,

]G{Jl 7777 ]l}\M

where

! . P\ VP
@ = (X100
Js

s=1

In view of equalities
In1/d;, = (&P, Q) +a, s=1,...,1, S(a®) = (" n) +a
we obtain

N s A . 9
A, = 0;,e" —a%,7) _ 0;,ern 1/85,=8(a%) — 6_;’86_17S(00)
Js

Hence,

L s a, p'\ 1/
(14) @p@):(eﬂstM) |

p’ /P
s=1 ejs



8 K. YU. OSIPENKO

It follows from (8) that @,(¢) < 1 almost for all £ € RY. Therefore, we
get

Y ©a©ee) + Y a @56

jelit, i \M jeM Lp(R9)
< ¥ /wl )P (e |pd5+ZA/ 25 d
Jeljn, i \M jeM

Zl: . ] Ze e PS(@%) _ —pS(a?)

Consequently;,
(Ao, AR, 3),6,®) < =56,
Taking into account (12), it means that methods (6) are optimal and

equality (5) holds.
If p =1 we use the inequality

S e ©a OO + Y, <§>zj<s>\

J€{te it \M jeM

s@l@( 3 Xj|so<£>|aj\x<£>|+Xj|zj<£>|),

JE{]l 7777 ]l}\M

where

;. (€)
@1(§) = max %,

By analogy with (14) we get
Q1(f) _ eS(aO) max 5js a’js(g)| .

1<s<l Hjs

Using the same arguments as for the case 1 < p < oo, we obtain the
assertion of the theorem in the case under consideration.
For p = co we use the inequality

Yo e (Oa(O2(€) + D a;(6)%(¢)

GE{G Lt \M JEM

Loo (R?)

Loo (RY)
It follows from (8) that
e(No, WA(R?,5),6,®) < e,
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Consequently, using (12), we obtain that methods (6) are optimal and
(5) holds.

It remains to show that the set of functions «; (-), s = 1,...,1,
satisfying conditions (7) and (8) is nonempty. Let 1 < p < oo. Consider
the function

l
f(’r]) = —1 + Z/)\\jse_p<a78—a07n>7 n c Rk‘
s=1

A

This is obviously a convex function, and it is easy to verify that f(7)
0 and the derivative of this function at the point 7 is also zero. It
follows that f(n) > 0 for all n € R¥. Consequently,

filn) = e () > 0
for all n € R*. Putting e™ = |p;(£)], = 1,...,k, we obtain that

P& >0

l
9(&) =~ + 3N,
s=1

for all ¢ € R¢. Thus,
(&)

— <1

S Al

Set

0y 20V () (€)
a;,(§) = ™ (§) = > s=1,...,L
> emt il p ()l

It is easy to check that condition (7) is valid. If 1 < p < oo, then

1 / ’ l /
> 0las OV _ s 3l ©r

s=1 ‘9;)8/7’ s=1 A?s/p
af Pl
_ 6_prs(a0) ( : |(€\(§)|p . ) < e—p'S(ao)‘
23:1 >\]s @(5)|pa]$
If p=1, then
a0
5js ajs(§)| _ e_S(QO) l |Si(€)| < 6—5(040)7 s=1, 7[
ejs ZS:l )\Js SO(£>|QJS
If p= o0, we set
o R et ©)
0.6 = ¢ (O s=heh
Zs:l )\].s
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where

~ 0.
Aj, = ie_s(o‘o), s=1,...,1
0j,

Then condition (7) is obviously satisfied, and

l a9
Z ‘aj (£)|5 _ e—S(aO) l |9i(§)| _ < e—S(aO).
s=1 Zs:l >\js (p(g)‘ajs

Note that it follows from the proof of Theorem 1 that

l
—S(a 0
(15) Sup Aoz ()|, mey = € 5@?) = de
z(-) WA (RY,0) -

”A ()”L (Rd)<6] J=1.. m

3. ExacT CARLSON TYPE INEQUALITIES

The Carlson inequality [8|
le e < VO IO ., Ry = 10,+00),

was generalized by many authors (see [9-15]). In [14] we found exact
constants in inequalities of the form

(16)  Nw( )z (), < Kllwo( YOI, e llwr Dz O -

where T is a cone in a linear space, w(-), wo(+), and wy(-) are homoge-
nous functions, p is a homogenous measure, and 1 < ¢ < p,r < o
(for T = R? the exact inequality was obtained in [12]). Recall that a
constant K is called exact if it cannot be replaced by a smaller value.
The inequality in this case is called exact.

Weighted inequalities and inequalities for derivatives do not always
have a multiplicative form. For example, for analytic and bounded in
the strip Sp = {# € C: |Im 2| < B} functions x(t) # 0 the inequality

1
2" (e < a5t WMemllz()Es,)
/ dt
\/Hx ks, 05>+ [[2()][ &gy sin® ¢

holds (see [2, c. 177]).
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In this regard, it becomes necessary to use a more general definition

of exact inequalities. Let X be a linear space, Yy, Y7, ..., Yy be normed
linear spaces, and A;: X — Y}, 7 = 0,1,..., N, be linear operators.
We say that the inequality
(17)

1Aozlly, < w(Az), Az = ([Azlvi, .., [[Avallyy), & RY = Ry,

is exact, if it is fulfilled for all x € X and there is no such zy € X for
which

SU.)I? Aoz |ly, < K(Axyg).
Te

1A selly; <IA5@0lyys J=LywsN
Proposition 1. Let 6 = (&1,...,0x) € RY. Set

K(0) = sup Aoy,
zeX
||A](E||yj S5]7 ]:lva
Then inequality (17) is exact.
Proof. For x € X we put
0= (HAleYlv T HANIHYN)

From the definition of x(-) inequality (17) holds. Assume that it is not
exact. Then there is an element x¢ € X for which

sup 1Aoz]lyy < 5(8°),
reX
1A jaly; <69, j=L,...N
where
0" = (87, 0x) = (Mszollvis - - [IAnzoll v )-
This contradicts the definition of x(+). O

The solution of extremal problem (15) allows us to obtain new exact
inequalities of Carlson type.

Let o(-) = (v1(+), .-, k(). Assume that ¢;(-),. .A.,gpk(-) are con-

tinuous on R? and for any ay, ..., a; > 0 there exists £ € R? for which
;&) =aj, j=1,... k. It follows from Proposition 1 and (15) that
for a® € co{al,...,a™} we have the exact inequality

16 (el ey < mm{_H 6™ (2O gy

J=1
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In particular, for p(€) = i€ and a® € co{al,...,aN} we obtain the
exact inequality

N
lef*'a(€)r, e < min] T e :
j=1

Consider one more example. Let

2/6

(18) o(€) = (&) = (160 + ...+ 1), >0

In this case k = 1, Q is a convex set on R?, and S(-) is a broken line.
For a® € co{a?, ..., o™V} we have the exact inequality

is” 2l gyimey < mm{nwh<->x<->||2p(Rd)||¢3”<->a:<->||z;3Rd) :

0<A<1, o’ =X+ (1 —)\)ajz}.

4. RECOVERY OF DIFFERENTIAL OPERATORS AND EXACT
INEQUALITIES

Using notation (2), we set
WARY = {2() € Lo(BY) : ' ()Fa() € Lo(RY, j=1,...,N }

where Fz(-) is the Fourier trancform of x(-). Define operators

Aj: WARY) — Ly(RY), j =0,1,..., N, as follows
(19) Aje() = FH 9™ (VFe())(), j=0,1,...,N.
Consider problem (1) of optimal recovery of Ay on the set

Wi (R?) = {z(-) € Wi (RY) : | A2 ()| ooy < 65, 65 >0,
j=m-+1,...,N}

by values of Aq,..., A, given with errors.
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Passing to Fourier transforms, we have

e(A(]a Wﬁ"l(Rd% 67 (I))

1 0
- sup l™ () Fa(:)
(2m) ( VEWRRY), y=(y1,..-,ym)E(La(RF)™

I (VF2()=Fy; (v, <65, j=1,..m

@y

Putting
1 1
Z() = (271')de(>’ Zj(') = (27T)d

it is easy to verify that the problem under consideration is reduced to
the one considered earlier in Theorem 1 for p = 2.

Fy]() jzl,...,m,

Theorem 2. Let the conditions of Theorem 1 be satisfied with respect
to the functions p;(+), 7 =1,...,k, and a® € co A. Then

E(Ag, WA(RY),§) = 5@,
If M # 0, then all methods of the form
240 = (T alFu0)
jeEM

where functions a; (-), s =1,...,1, satisfy the conditions

Z o (€ §)a;, (§) = 0 (6),

S SO _ s
9.75 N

s=1

for almost all € € R?, are optimal.
If M = (), then the method ®(y(-))(-) = 0 is optimal.
The exact inequality

[180()2 ()| Loy <H||A]s O] [

holds.

For ¢(£) = i€ the operators A; defined by (19) are the Weyl deriva-

tives of orders o/ which are denoted by D®. Thus, it follows from
Theorem 2 the following result.
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Corollary 1 ( [2|, Theorem 5.19). Let o® € co A. Then
E(D*" WA(RY),§) = 5@,
If M # 0, then all methods of the form
240 = (T alFu0)
jeEM
where functions a; (-), s =1,...,1, satisfy the conditions
!
> (6" az,(€) = (i€)",
s=1

l
Z 03 la;, () < o—25(a°)
0;

s=1
for almost all £ € R?, are optimal.
If M = (), then the method ®(y(-))(-) = 0 is optimal.
The exact inequality

0;s
Lo (Rd)

l
af als
1Dz () ae) < [T ID" ()]
s=1

holds.
Set _ _
Ay = F Yy () Fx())(), j=0,1,...,N,
where the function () is defined by (18). Note that Ay = —A, where
A is the Laplace operator. In this case () is the set on R? because

k = 1. Consequently, 1 <[ < 2. Assume that oy ¢ A (otherwise the
answer is written out in a trivial way). Then [ = 2.

Corollary 2. Let o° € co A and ag ¢ A. Then
BA WARY), 5) = 5.
If M # 0, then all methods of the form
240 = (T alFu0)
jeM
where functions a;, (+), aj,(-) satisfy the conditions
5 (€)ai,(€) + ¥5” (€)az(€) = 5 (©),
Blan(OF  52as(@F _ _sen
6, 1—06,

for almost all £ € RY, are optimal.
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If M = (), then the method ®(y(-))(-) = 0 is optimal.
The exact inequality

ad ol 0; ol 1-0;
A8 (Ml gagesy < IAG" 212 g IAG* 2 1L
holds.

In particular, for # = 2 we obtain the exact inequality

o adl 63‘1 ad2 1—9j1
=AY sy < =) )| g (= A 22
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