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Abstract. In the paper for a function of complex variable ana-
lytic in a strip the extremum of the L2(R)-norm of the k-th de-
rivative is found under the restriction on the L2(R)-norm of the
function and the norm of its n-th derivative in the Hardy–Sobolev
space metric. The problem which is closely connected with this one
of optimal recovery of the k-th derivative of a function from the
Hardy–Sobolev class by the trace of this function on the real axis
given inaccurately is also studied. An optimal method of recovery
is obtained.

1. Statement of the problems

In the book [1] Hardy, Littlewood, and Pólya proved that for all
integers 0 < k < r the exact inequality

(1) ‖x(k)(·)‖L2(R) ≤ ‖x(·)‖1− k
r

L2(R)‖x(r)(·)‖
k
r

L2(R)

holds for all functions x(·) ∈ L2(R) for which the (r − 1)-st derivative
is locally absolute continuous on R and x(r)(·) ∈ L2(R). The inequal-
ities of the form (1) are called Landau–Kolmogorov type inequalities:
Landau [2] was the first who obtained several exact results in similar
inequalities and Kolmogorov [3] in 1939 obtained one of the most re-
markable result in this problems (he found the exact constant in the
inequality similar to (1) when all the norms are taken in the space
L∞(R)). More detailed information about Landau–Kolmogorov types
inequalities for real functions may be found in [4] and [5].

It should be stressed that already in Kolmogorov’s paper [3] an in-
terest in inequalities of such type for analytic functions was shown.
An analogue of the Kolmogorov inequality for functions analytic in
the strip Sβ = {z ∈ C : | Im z| < β} was obtained in [6]. In this
paper an analogue of the Hardy–Littlewood–Pólya inequality for func-
tion analytic in the strip Sβ is obtained and a series of optimal recovery
problems closely connected with this inequality is also considered. In-
equalities for derivatives for functions analytic in the strip Sβ are also
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interested since the passage to the limit when β → 0 gives exact in-
equalities for the real case.

Now we proceed to the accurate statement of the problem. The
Hardy space Hβ

2 is the set of functions f(·) that are analytic in the
strip Sβ for which

‖f(·)‖Hβ
2

=

(
sup

0≤η<β

1

2

∫

R

(|f(t + iη)|2 + |f(t − iη)|2) dt

)1/2

< ∞.

We denote by Hr,β
2 (the Hardy–Sobolev space) the set of functions an-

alytic in the strip Sβ for which f (r)(·) ∈ Hβ
2 .

By the exact Hardy–Littlewood–Pólya inequality for functions from
Hr,β

2 we mean the problem of finding the value

(2) sup
f(·)∈Hr,β

2 ∩L2(R)

‖f(r)(·)‖
H

β
2

≤γ1

‖f(·)‖L2(R)≤γ2

‖f (k)(·)‖L2(R)

for all γ1, γ2 > 0. We shall consider a more general problem (about

optimal recovery of the k-th derivative of f(·) ∈ Hr,β
2 in the L2(R)-

metric by inaccurate values of function f(·) on R) solving which we
obtain the value (2).

Denote by Hr,β
2 the set of functions f(·) ∈ Hr,β

2 for which
‖f (r)(·)‖Hβ

2
≤ 1. Consider the problem of optimal recovery of the k-th

derivative of f(·) ∈ Hr,β
2 ∩ L2(R) by its trace on R given with an error

in the L2(R)-metric, that is, we assume that instead of the trace of f(·)
on R we know a function y(·) ∈ L2(R) such that

‖f(·) − y(·)‖L2(R) ≤ δ.

The task is to recover f (k)(·) on R by y(·) in the best way.
Any maps ϕ : L2(R) → L2(R) are admitted as recovery methods. For

a given recovery method ϕ the quantity

ek(H
r,β
2 , δ, ϕ) = sup

f(·)∈Hr,β
2 ∩L2(R), y(·)∈L2(R)

‖f(·)−y(·)‖L2(R)≤δ

‖f (k)(·) − ϕ(y)(·)‖L2(R)

is called the error of the method. The quantity

Ek(H
r,β
2 , δ) = inf

ϕ : L2(R)→L2(R)
ek(H

r,β
2 , δ, ϕ)

is called the error of optimal recovery , and a method delivering the
lower bound is called an optimal recovery method.

Consider one more extremal problem: the problem of estimation of
L2(R)-norm of f(·) ∈ Hβ

2 on the line Im z = ρ, −β < ρ < β, by
its L2(R)-norms of boundary values on the lines Im z = ±β (it is the

well-known fact that functions from Hβ
2 have boundary values almost
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everywhere on the lines Im z = ±β which are functions from L2(R)).
Thus we mean the extremal problem

(3) ‖f(· + iρ)‖L2(R) → max, ‖f(· − iβ)‖L2(R) ≤ δ1,

‖f(· + iβ)‖L2(R) ≤ δ2.

When norms are taken in the spaces L∞(R) and functions are analytic
and bounded in a strip the result of such kind is known as Theorem on
three lines (see, for example, [7]). The corresponding result for a disk
is the Hadamar theorem on three disks [8].

We associate with the problem (3) the problem of optimal recovery

of f(·) ∈ Hβ
2 on the line Im z = ρ by its approximate boundary values

on the lines Im z = ±β. More precisely, we assume that for every
f(·) ∈ Hβ

2 we know y1(·), y2(·) ∈ L2(R) such that

‖f(· − iβ) − y1(·)‖L2(R) ≤ δ1, ‖f(· + iβ) − y2(·)‖L2(R) ≤ δ2.

The task is to recover the function f(· + iρ) by y1(·), y2(·).
Any operators ϕ : L2(R)× L2(R) → L2(R) are admitted as recovery

methods. For a given method ϕ its error is defined by the following
equality

eρ(Hβ
2 , δ1, δ2, ϕ) = sup

f(·)∈Hβ
2 , y1(·),y2(·)∈L2(R)

‖f(·+iβ)−y1(·)‖L2(R)≤δ1
‖f(·−iβ)−y2(·)‖L2(R)≤δ2

‖f(· + iρ) − ϕ(y1, y2)(·)‖L2(R).

The quantity

Eρ(Hβ
2 , δ1, δ2) = inf

ϕ : L2(R)×L2(R)→L2(R)
eρ(Hβ

2 , δ1, δ2, ϕ)

is called the error of optimal recovery.

2. Main results

Let r ∈ N and β be a positive real number. The function tr
√

cosh 2βt
is monotonically increase for t ∈ R+ from 0 to +∞. Therefore for any
x ∈ R+ there exists the unique solution of the equation

tr
√

cosh 2βt = x,

which belongs to the interval [0, +∞). Denote it by µrβ(x).

Theorem 1. Let r, k ∈ N and k ≤ r. For all γ1, γ2 > 0 the equality

sup
f(·)∈Hr,β

2 ∩L2(R)

‖f(r)(·)‖
H

β
2

≤γ1

‖f(·)‖L2(R)≤γ2

‖f (k)(·)‖L2(R) = γ2µ
k
rβ

(
γ1

γ2

)

holds.
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In other words, Theorem 1 states that for all functions from the space
Hr,β

2 which are not equivalent to zero the exact inequality

‖f (k)(·)‖L2(R) ≤ ‖f(·)‖L2(R)µ
k
rβ

(
‖f (r)(·)‖Hβ

2

‖f(·)‖L2(R)

)

holds.

Theorem 2. Let r, k ∈ N, k ≤ r, and δ > 0. Then for the error of

optimal recovery of the k-th derivative the equality

Ek(H
r,β
2 , δ) = δµk

rβ(δ−1)

holds, and the method

ϕ0(y)(·) = (Kr,β
k,δ ∗ y)(·),

where

(4) Kr,β
k,δ(x)

=
1

2π

∫

R

(it)k

(
1 +

kδ2t2r cosh 2βt

r − k + βµrβ(δ−1) tanh(2βµrβ(δ−1))

)−1

eixt dt,

is an optimal recovery method.

Theorem 3. For all −β < ρ < β and δ1, δ2 > 0 the equalities

Eρ(Hβ
2 , δ1, δ2) = sup

f(·)∈Hβ
2

‖f(·−iβ)‖L2(R)≤δ1
‖f(·+iβ)‖L2(R)≤δ2

‖f(· + iρ)‖L2(R) = δ
β−ρ
2β

1 δ
β+ρ
2β

2

hold, and the method

ϕ0(y1, y2)(x) = δ2
2(β − ρ)(Kρ,β

δ1,δ2
∗ y1)(x − i(β − ρ))

+ δ2
1(β + ρ)(Kρ,β

δ1,δ2
∗ y2)(x + i(β + ρ)),

where

(5) Kρ,β
δ1,δ2

(x) =
1

2π

∫

R

eixt

δ2
2(β − ρ)e2βt + δ2

1(β + ρ)e−2βt
dt,

is optimal.

In particular, it follows by Theorem 3 that for −β < ρ < β for all
f(·) ∈ Hβ

2 the exact inequality

‖f(· + iρ)‖L2(R) ≤ ‖f(· − iβ)‖
β−ρ
2β

L2(R)‖f(· + iβ)‖
ρ+β
2β

L2(R)

holds.
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3. Proofs

To prove Theorems 1 and 2 we need one general result about optimal
recovery of linear operators based on the method which was developed
in [9], [10]. We proceed to the statement of some general problem of
optimal recovery.

Let X be a linear space, Y1, . . . , Yp linear spaces with the semi-inner
products (·, ·)Yj

, j = 1, . . . , p, and the corresponding semi-norms ‖·‖Yj
,

j = 1, . . . , p, Ys = L∞(∆s), ∆s ⊆ R, s = p + 1, . . . , m, Ij : X → Yj,
j = 1, . . . , m, linear operators, and Z a normed linear space. Consider
the problem of optimal recovery of the operator T : X → Z on the set

W = { x ∈ X : ‖Ijx‖Yj
≤ δj , j = 1, . . . , l, 0 ≤ l ≤ p }

by values of operators Il+1, . . . , Im given with an error (for l = 0 we
take W = X). We assume that for any x ∈ W we know the vector
y = (yl+1, . . . , yp, yp+1(·), . . . , ym(·)) ∈ Yl+1 × . . .× Ym such that ‖Ijx−
yj‖Yj

≤ δj , j = l + 1, . . . , p, and |Isx(t) − ys(t)| ≤ δs(t) for almost
all t ∈ ∆s, s = p + 1, . . . , m (throughout what follows for functions
from L∞(∆s) we will not note each time that inequalities hold almost
everywhere on ∆s).

Any operators ϕ : Yl+1 × . . . × Ym → Z are admitted as recovery

methods of the operator T . For a given method ϕ the quantity

e(T, W, I, δ, ϕ) = sup
x∈W, y∈Yl+1×...×Ym

‖Ijx−yj‖Yj
≤δj , j=l+1,...,p

|Isx(t)−ys(t)|≤δs(t), s=p+1,...,m

‖Tx − ϕ(y)‖Z

is called the error of recovery (here I = (Il+1, . . . , Im), δ =
(δl+1, . . . , δp, δp+1(·), . . . , δm(·))). The quantity

E(T, W, I, δ) = inf
ϕ : Yl+1×...×Ym→Z

e(T, W, I, δ, ϕ)

is called the error of optimal recovery , and a method delivering the
lower bound is called optimal.

The formulated problem is closely connected with the extremal prob-
lem

(6) ‖Tx‖2
Z → max, ‖Ijx‖2

Yj
≤ δ2

j , j = 1, . . . , p, |Isx(t)|2 ≤ δ2
s(t),

s = p + 1, . . . , m.

Denote by L(x, λ) the Lagrange function for this extremal problem

L(x, λ) = −‖Tx‖2
Z +

p∑

j=1

λj‖Ijx‖2
Yj

+
m∑

s=p+1

∫

∆s

λs(t)|Isx(t)|2 dt,

where λ = (λ1, . . . , λp, λp+1(·), . . . λm(·)), λj ≥ 0, j = 1, . . . , p, and
λs(·) are measurable nonnegative functions on ∆s, s = p + 1, . . . , m.
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Theorem 4. Suppose that there exist measurable nonnegative functions

λ̂s(·), s = p + 1, . . . , m, on ∆s and λ̂j ≥ 0, j = 1, . . . , p, such that for

λ̂ = (λ̂1, . . . , λ̂p, λ̂p+1(·), . . . λ̂m(·))
(a) L(x, λ̂) ≥ 0 ∀x ∈ X.

Furthermore, suppose that there exists a sequence {xn} of admissible

elements in (6) such that the following conditions hold:

(b) lim
n→∞

L(xn, λ̂) = 0,

(c) lim
n→∞

(
p∑

j=1

λ̂j

(
‖Ijxn‖2

Yj
− δ2

j

)

+

m∑

s=p+1

∫

∆s

λ̂s(t)
(
|Isxn(t)|2 − δ2

s(t)
)

dt

)
= 0.

Then the value of the extremal problem (6) is equal to

p∑

j=1

λ̂jδ
2
j +

m∑

s=p+1

∫

∆s

λ̂s(t)δ
2
s (t) dt.

Moreover, if for all y = (yl+1, . . . , yp, yp+1(·), . . . , ym(·)) ∈ Yl+1×. . .×Ym

there exists xy which is a solution of the extremal problem

(7)
l∑

j=1

λ̂j‖Ijx‖2
Yj

+

p∑

j=l+1

λ̂j‖Ijx − yj‖2
Yj

+

m∑

s=p+1

∫

∆s

λ̂s(t)|Isx(t) − ys(t)|2 dt → min, x ∈ X,

then

(8) ϕ0(y) = Txy

is an optimal method of recovery and

(9) E(T, W, I, δ) =

√√√√
p∑

j=1

λ̂jδ2
j +

m∑

s=p+1

∫

∆s

λ̂s(t)δ2
s (t) dt.

Proof. Let us show that the values of the problems (6) and

(10) ‖Tx‖2
Z → max,

p∑

j=1

λ̂j‖Ijx‖2
Yj

+
m∑

s=p+1

∫

∆s

λ̂s(t)|Isx(t)|2 dt ≤ S,

where

S =

p∑

j=1

λ̂jδ
2
j +

m∑

s=p+1

∫

∆s

λ̂s(t)δ
2
s(t) dt,
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coincide and are equal to S. Indeed, for any admissible element x ∈ X
in (6) or in (10) with regard to (a) we have

− ‖Tx‖2
Z ≥ −‖Tx‖2

Z +

p∑

j=1

λ̂j

(
‖Ijx‖2

Yj
− δ2

j

)

+
m∑

s=p+1

∫

∆s

λ̂s(t)
(
|Isx(t)|2 − δ2

s(t)
)

dt ≥ −S.

On the other hand, using (c) and (b), we obtain

− lim
n→∞

‖Txn‖2 = lim
n→∞

(
− ‖Txn‖2

Z +

p∑

j=1

λ̂j

(
‖Ijxn‖2

Yj
− δ2

j

)

+
m∑

s=p+1

∫

∆s

λ̂s(t)
(
|Isxn(t)|2 − δ2

s (t)
)

dt

)
= −S,

that is, S is the value of problems (6) and (10).
The lower bound. For any method ϕ for all x ∈ W such that

‖Ijx‖Yj
≤ δj , j = l + 1, . . . , p, and |Isx(t)| ≤ δs(t), s = p + 1, . . . , m,

we have

2‖Tx‖Z ≤ ‖Tx − ϕ(0)‖Z + ‖T (−x) − ϕ(0)‖Z ≤ 2e(T, W, I, δ, ϕ).

Consequently, for any method ϕ

e(T, W, I, δ, ϕ) ≥ sup
x∈W

‖Ijx‖Yj
≤δj , j=l+1,...,p

|Isx(t)|≤δs(t), s=p+1,...,m

‖Tx‖Z =
√

S.

Thus,

(11) E(T, W, I, δ) ≥
√

S.

The upper bound. Consider the linear space E = Y1 × . . .×Ym with
the semi-inner product

(y1, y2)E =

p∑

j=1

λ̂j(y
1
j , y

2
j )Yj

+

m∑

s=p+1

∫

∆j

λ̂s(t)y
1
j (t)y

2
j (t) dt.

Then the extremal problem (7) can be rewritten in the form

‖Ĩx − ŷ‖2
E → min, x ∈ X,

where Ĩ = (I1, . . . , Im) and ŷ = (0, . . . , 0, yl+1, . . . , yp, yp+1(·), . . . , ym(·)).
If xy is a solution of this problem, then it is easily seen that for all x ∈ X
the equality

(Ĩxy − ŷ, Ĩx)E = 0

holds. It follows that

(12) ‖Ĩx − ŷ‖2
E = ‖Ĩx − Ĩxy‖2

E + ‖Ĩxy − ŷ‖2
E.
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If x ∈ W and ŷ such that ‖Ijx − yj‖Yj
≤ δj , j = l + 1, . . . , p, |Isx(t) −

ys(t)| ≤ δs(t) almost everywhere on ∆s, s = p+1, . . . , m, then it follows
from (12) that

‖Ĩx − Ĩxy‖2
E ≤ ‖Ĩx − ŷ‖2

E =

l∑

j=1

λ̂j‖Ijx‖2
Yj

+

p∑

j=l+1

λ̂j‖Ijx − yj‖2
Yj

+

m∑

s=p+1

∫

∆s

λ̂s(t)|Isx(t) − ys(t)|2 dt ≤ S.

By setting z = x − xy, we arrive at the inequality

p∑

j=1

λ̂j‖Ijz‖2
Yj

+
m∑

s=p+1

∫

∆s

λ̂s(t)|Isz(t)|2 dt ≤ S.

Thus for the method (8) we have

‖Tx − ϕ0(y)‖Z = ‖Tz‖Z

≤ sup

{
‖Tx‖Z :

p∑

j=1

λ̂j‖Ijx‖2
Yj

+
m∑

s=p+1

∫

∆s

λ̂s(t)|Isx(t)|2 dt ≤ S

}

=
√

S.

Taking account of (11), we obtain the equality (9) and prove the opti-
mality of the method (8). �

Proof of Theorem 1. Consider the extremal problem

(13) ‖f (k)(·)‖2
L2(R) → max, ‖f (r)(·)‖2

Hβ
2

≤ γ2
1 , ‖f(·)‖2

L2(R) ≤ γ2
2 .

For this problem the Lagrange function has the form

L(f(·), λ1, λ2) = −‖f (k)(·)‖2
L2(R) + λ1‖f (r)(·)‖2

Hβ
2

+ λ2‖f(·)‖2
L2(R).

It follows by the basic theorem about the representation of functions
from spaces H2 in tubular domains (see [7]) that f(·) ∈ Hβ

2 iff it has
the form

(14) f(z) =
1

2π

∫

R

f̂(t)eizt dt,

where f̂(·) is a function satisfying the condition

sup
|y|<β

∫

R

|f̂(t)|2e−2yt dt < ∞

(f̂(·) is the Fourier transform of f(x), x ∈ R). Then it follows by the
Plancherel theorem that

‖f(·)‖2
Hβ

2

=
1

2π
sup

0≤y<β

∫

R

|f̂(t)|2 cosh 2yt dt =
1

2π

∫

R

|f̂(t)|2 cosh 2βt dt.
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Passing to Fourier transforms and writing (2π)−1|f̂(·)|2 = u(·), we have

L(f(·), λ1, λ2) =

∫

R

(−t2k + λ1t
2r cosh 2βt + λ2)u(t) dt.

Set
α(t) = −1 + λ1t

2(r−k) cosh 2βt + λ2t
−2k.

It is easy to verify that α(t) is a convex function for t > 0. Therefore,
if at some point t0 > 0 the equalities

(15) α(t0) = α′(t0) = 0

hold, then α(t) ≥ 0 for all t ≥ 0. Let t0 be a positive solution of the
equation

(16) γ2
2t

2r cosh 2βt = γ2
1 ,

that is, t0 = µrβ(γ1/γ2). We take λ̂1 and λ̂2 such that equalities (15)
are fulfilled. We have

λ̂1 =
kt

2(k−r)
0

r cosh 2βt0 + t0β sinh 2βt0
,

λ̂2 =
(r − k)t2k

0 cosh 2βt0 + t2k+1
0 β sinh 2βt0

r cosh 2βt0 + t0β sinh 2βt0
.

Thus, for the chosen λ̂1 and λ̂2 for all t ∈ R

−t2k + λ̂1t
2r cosh 2βt + λ̂2 ≥ 0.

Consequently, for all f(·) ∈ Hr,β
2 ∩ L2(R)

L(f(·), λ̂1, λ̂2) ≥ 0.

For sufficiently big n (such that t0 − 1/n > 0) we set

un(t) =

{
γ2

2n, t ∈ (t0 − 1/n, t0),

0, t /∈ (t0 − 1/n, t0).

Denote by fn(·) the sequence of functions obtained by (14) for f̂(·) =√
2πun(·). We have

‖fn(·)‖2
L2(R) = ‖un(·)‖2

L2(R) = γ2
2

and

‖f (r)
n (·)‖2

L2(R) = γ2
2n

∫ t0

t0−1/n

t2r cosh 2βt dt ≤ γ2
2t

2r
0 cosh 2βt0 = γ2

1 ,

that is, the functions fn(·) are admissible in the problem (13). It is
easy to verify that

lim
n→∞

L(fn(·), λ̂1, λ̂2) = 0,(17)

lim
n→∞

‖f (r)
n (·)‖2

L2(R) = γ2
1 .(18)
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It follows by Theorem 4 that the value of the extremal problem (13) is
equal to

λ̂1γ
2
1 + λ̂2γ

2
2 = γ2

2µ
2k
rβ

(
γ1

γ2

)
.

�

Proof of Theorem 2. Set γ1 = 1, γ2 = δ and for the corresponding λ̂1,

λ̂2 for some y(·) ∈ L2(R) consider the extremal problem

λ̂1‖f (r)(·)‖2
Hβ

2

+ λ̂2‖f(·) − y(·)‖2
L2(R) → min, f(·) ∈ Hr,β

2 ∩ L2(R).

Passing to Fourier transforms this problem can be rewritten in the form

1

2π

∫

R

(λ̂1t
2r|f̂(t)|2 cosh 2βt + λ̂2|f̂(·) − ŷ(·)|2) dt → min,

f(·) ∈ Hr,β
2 ∩ L2(R).

It is easy to show that

f̂y(t) =
λ̂2

λ̂2 + λ̂1t2r cosh 2βt
ŷ(t)

is the solution of this problem. I follows by Theorem 4 that the method

ϕ0(y)(·) = f (k)
y (·)

is optimal. Since the Fourier transform of f
(k)
y (·) equals

(it)k λ̂2

λ̂2 + λ̂1t2r cosh 2βt
ŷ(t),

it can be written in the form of convolution of y(·) and Kr,β
k,δ(·) which

is defined by (4). �

Proof of Theorem 3. For convenience we pass to squares in the ex-
tremal problem (3)

(19) ‖f(· + iρ)‖2
L2(R) → max, ‖f(· − iβ)‖2

L2(R) ≤ δ2
1 ,

‖f(· + iβ)‖2
L2(R) ≤ δ2

2 .

and write the corresponding Lagrange function

L(f(·), λ1, λ2) = −‖f(· + iρ)‖2
L2(R) + λ1‖f(· − iβ)‖2

L2(R)

+ λ2‖f(· + iβ)‖2
L2(R).

In view of the representation (14) passing to Fourier transforms by the
Plancherel theorem we have

L(f(·), λ1, λ2) =
1

2π

∫

R

(−e−2ρt + λ1e
2βt + λ2e

−2βt)|f̂(t)|2 dt.

It is easy to verify that the function

γ(t) = −1 + λ1e
2(β+ρ)t + λ2e

−2(β−ρ)t
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is convex on R. Therefore if at some point t0 ∈ R

(20) γ(t0) = γ′(t0) = 0,

then γ(t) ≥ 0 for all t ∈ R. We set

t0 =
ln δ1 − ln δ2

2β

and take λ̂1 and λ̂2 from the condition (20). We have

λ̂1 =
β − ρ

2β
e−2(β+ρ)t0 , λ̂2 =

β + ρ

2β
e2(β−ρ)t0 .

Thus for all f(·) ∈ Hβ
2

L(f(·), λ̂1, λ̂2) ≥ 0.

For sufficiently big n denote by fn(·) the sequence of functions obtained
by (14) for

f̂n(t) =

{
An, t ∈ (t0 − 1/n, t0 + 1/n),

0, t /∈ (t0 − 1/n, t0 + 1/n),

where

An = n

√
πδ1δ2

n + 1
.

Direct calculations show that

‖fn(· − iβ)‖2
L2(R) =

1

2π

∫

R

|f̂n(t)|2e2βt dt = δ2
1

n

n + 1

sinh 2β/n

2β/n
,

‖fn(· + iβ)‖2
L2(R) =

1

2π

∫

R

|f̂n(t)|2e−2βt dt = δ2
2

n

n + 1

sinh 2β/n

2β/n
.

In view of the fact that

sinh 2β/n

2β/n
< 1 + 1/n,

the sequence f̂n(·) is admissible in the problem (19) for sufficiently large
n and moreover

lim
n→∞

‖fn(· − iβ)‖2
L2(R) = δ2

1 ,

lim
n→∞

‖fn(· + iβ)‖2
L2(R) = δ2

2 .

It is easy to verify that

lim
n→∞

L(fn(·), λ̂1, λ̂2) = 0.

Thus it follows by Theorem 4 that the value of the extremal problem
(19) is equal to

λ̂1δ
2
1 + λ̂2δ

2
2 = δ

β−ρ
β

1 δ
β+ρ

β

2 .

Consider now the extremal problem

λ̂1‖f(·−iβ)−y1(·)‖2
L2(R)+λ̂2‖f(·+iβ)−y2(·)‖2

L2(R) → min, f(·) ∈ Hβ
2 .
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Passing to Fourier transforms and using (14) this problem is rewritten
in the form

1

2π

∫

R

(
λ̂1|f̂(t)eβt − ŷ1(t)|2 + λ̂2|f̂(t)e−βt − ŷ2(t)|2

)
dt → min,

f(·) ∈ Hβ
2 .

It is easy to verify that the function fy1,y2(·) such that

f̂y1,y2(t) =
λ̂1e

βtŷ1(t) + λ̂2e
−βtŷ2(t)

λ̂1e2βt + λ̂2e−2βt

is the solution of this problem.
It follows by Theorem 4 that the method

ϕ0(y1, y2)(·) = fy1,y2(· + iρ)

is optimal. We have

ϕ0(y1, y2)(x)

=
1

2π

∫

R

δ2
2(β − ρ)eβty1(t) + δ2

1(β + ρ)e−βty2(t)

δ2
2(β − ρ)e2βt + δ2

1(β + ρ)e−2βt
ei(x+iρ)t dt

= δ2
2(β−ρ)(Kρ,β

δ1,δ2
∗y1)(x−i(β−ρ))+δ2

1(β+ρ)(Kρ,β
δ1,δ2

∗y2)(x+i(β+ρ)),

where the kernel Kρ,β
δ1,δ2

(·) is defined by (5). �

4. Further results

4.1. Recovery of the k-th derivative on the whole strip. In-
equalities for derivatives of analytic functions and recovery problems
connected with them are in certain sense an intermediate case be-
tween one-dimensional and many-dimensional problems. Nevertheless
already here there is some variety connected, in particular, with the
fact that the optimal recovery can be considered on various domains
(however just as the assignment of input information about a function).
As an example consider the optimal recovery problem of the k-th de-
rivative of f(·) ∈ Hr,β

2 ∩ L2(R) on the whole strip Sβ by its trace on R

given with some error in the metric of L2(R).

Any operators ϕ : L2(R) → Hβ
2 are admitted as recovery methods.

For a given recovery method ϕ the quantity

ek(H
r,β
2 , δ, Sβ, ϕ) = sup

f(·)∈Hr,β
2 ∩L2(R), y(·)∈L2(R)

‖f(·)−y(·)‖L2(R)≤δ

‖f (k)(·) − ϕ(y)(·)‖Hβ
2

is called the error of the method. The quantity

Ek(H
r,β
2 , δ, Sβ) = inf

ϕ : L2(R)→Hβ
2

ek(H
r,β
2 , δ, Sβ, ϕ)

is called the error of optimal recovery, and a method delivering the
lower bound is called the optimal recovery method.
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The corresponding problem about the exact inequality has the form

(21) sup
f(·)∈Hr,β

2 ∩L2(R)

‖f(r)(·)‖
H

β
2

≤γ1

‖f(·)‖L2(R)≤γ2

‖f (k)(·)‖Hβ
2

where γ1, γ2 > 0.

Theorem 5. Let r, k ∈ N, k < r, and γ1, γ2, δ > 0. Then

sup
f(·)∈Hr,β

2 ∩L2(R)

‖f(r)(·)‖
H

β
2

≤γ1

‖f(·)‖L2(R)≤γ2

‖f (k)(·)‖Hβ
2

= γ1µ
k−r
rβ

(
γ1

γ2

)
,

Ek(H
r,β
2 , δ, Sβ) = µk−r

rβ (δ−1),

and the method

ϕ0(y)(·) = (Mr,β
k,δ ∗ y)(·),

where

(22) Mr,β
k,δ(x)

=
1

2π

∫

R

(it)k

(
1 +

δ2t
2(r−k)
0

r − k
(k + βt0 tanh(2βt0))t

2r cosh 2βt

)−1

eixt dt,

t0 = µrβ(δ−1),

is an optimal method of recovery.

Proof. Consider the extremal problem

(23) ‖f (k)(·)‖2

Hβ
2

→ max, ‖f (r)(·)‖2

Hβ
2

≤ γ2
1 , ‖f(·)‖2

L2(R) ≤ γ2
2 .

For this problem the Lagrange function has the form

(24) L(f(·), λ1, λ2) = −‖f (k)(·)‖2
Hβ

2

+ λ1‖f (r)(·)‖2
Hβ

2

+ λ2‖f(·)‖2
L2(R).

Passing to Fourier transforms (using the Plancherel theorem and rep-
resentation (14)) we have

L(f(·), λ1, λ2) =

∫

R

(−t2k cosh 2βt + λ1t
2r cosh 2βt + λ2)u(t) dt,

where u(·) = (2π)−1|f̂(·)|2.
Set

ω(t) = −1 + λ1t
2(r−k) + λ2t

−2k cosh−1 2βt.

It is easy to show that ω(t) is a convex function for t > 0. Therefore if
at some point t0 > 0 the equalities

(25) ω(t0) = ω′(t0) = 0
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hold, then ω(t) ≥ 0 for all t ≥ 0. Let t0 be a positive solution of (16),

that is, t0 = µrβ(γ1/γ2). We take λ̂1 and λ̂2 such that equalities (25)
are fulfilled. We have

λ̂1 =
k cosh 2βt0 + t0β sinh 2βt0

t
2(r−k)
0 (k cosh 2βt0 + t0β sinh 2βt0) + (r − k) cosh 2βt0

,

λ̂2 =
(r − k)t2k

0 cosh2 2βt0

t
2(r−k)
0 (k cosh 2βt0 + t0β sinh 2βt0) + (r − k) cosh 2βt0

.

Thus, for the chosen λ̂1 and λ̂2 for all t ∈ R

−t2k cosh 2βt + λ̂1t
2r cosh 2βt + λ̂2 ≥ 0.

Consequently, for all f(·) ∈ Hr,β
2 ∩ L2(R)

L(f(·), λ̂1, λ̂2) ≥ 0.

The functions fn(·) defined in the proof of Theorem 1 are admissible in
the problem (23), too. It follows from (18) and (17) which is fulfilled
for the Lagrange function (24) that the value of the extremal problem
(23) is equal to

λ̂1γ
2
1 + λ̂2γ

2
2 = γ1µ

2(k−r)
rβ

(
γ1

γ2

)
.

The error of optimal recovery and optimal method are obtained by
the same scheme which was used in the proof of Theorem 1. �

In particular, it follows by Theorem 5 that for all functions from the
space Hr,β

2 that are not equivalent to zero the exact inequality

‖f (k)(·)‖Hβ
2
≤ ‖f (r)(·)‖L2(R)µ

k−r
rβ

(
‖f (r)(·)‖Hβ

2

‖f(·)‖L2(R)

)

holds

4.2. Recovery of the k-th derivative by the inaccurate Fourier

transform. Denote by Hr,β
2,∞ the set of functions f(·) ∈ Hr,β

2 ∩L2(R) for

which f̂(·) ∈ L∞(R) (we denote as before by f̂(·) the Fourier transform

of f(x), x ∈ R). Denote by Hr,β
2,∞ the set of functions Hr,β

2,∞ ∩ Hr,β
2 .

Consider the problem of optimal recovery of the k-th derivative of

f(·) ∈ Hr,β
2,∞ by its Fourier transform f̂(·) given with an error in the

metric of L∞(∆σ) where ∆σ = (−σ, σ), 0 < σ ≤ ∞, that is, we assume

that instead of function f̂(·) we know y(·) ∈ L∞(∆σ) such that

‖f̂(·) − y(·)‖L∞(∆σ) ≤ δ.

The task is to recover f (k)(·) on R in the best way knowing the function
y(·).
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According to the general statement of the recovery problem of oper-
ators the quantity

ek(H
r,β
2,∞, δ, σ, ϕ) = sup

f(·)∈Hr,β
2,∞, y(·)∈L∞(∆σ)

‖f(·)−y(·)‖L∞(∆σ)≤δ

‖f (k)(·) − ϕ(y)(·)‖L2(R)

is the error of the recovery method ϕ : L∞(∆σ) → L2(R), the quantity

Ek(H
r,β
2,∞, δ, σ) = inf

ϕ : L∞(∆σ)→L2(R)
ek(H

r,β
2,∞, δ, σ, ϕ)

is the error of optimal recovery, and method delivering the lower bound
is optimal method of recovery.

Set

Ir,β(σ) =
1

2π

∫ σ

−σ

t2r cosh 2βt dt.

It follows from the monotonically increase of the function Ir,β(σ), σ ∈
(0, +∞), and the fact that Ir,β(0) = 0 and Ir,β(σ) → +∞ as σ → +∞
that for all δ > 0 there exists the unique σ̂ ∈ (0, +∞) for which

(26) Ir,β(σ̂) = δ−2.

Theorem 6. Let r, k ∈ N, k ≤ r, δ > 0, and σ̂ be defined by (26).
Then

Ek(H
r,β
2,∞, δ, σ) =






√
σ−2(r−k)

cosh 2βσ

(
1 − δ2Ir,β(σ)

)
+

δ2σ2k+1

π(2k + 1)
, σ < σ̂,

δσ̂k+1/2

√
π(2k + 1)

, σ ≥ σ̂,

,

and the method

ϕ0(y)(·) =
1

2π

∫ σ0

−σ0

(iτ)k

(
1 −

(
τ

σ0

)2(r−k)
cosh 2βt

cosh 2βσ0

)
y(τ)eiτt dτ

where σ0 = min{σ, σ̂} is optimal.

Proof. Consider the extremal problem

(27) ‖f (k)(·)‖2
L2(R) → max, ‖f (r)(·)‖2

Hβ
2

≤ 1, ‖f̂(·)‖2
L∞(∆σ) ≤ δ2.

For this problem the Lagrange function has the form

L(f(·), λ1, λ2(·)) = −‖f (k)(·)‖2
L2(R) +λ1‖f (r)(·)‖2

Hβ
2

+

∫

∆σ

λ2(t)|f̂(t)|2 dt.

Passing to Fourier transforms and writing (2π)−1|f̂(·)|2 = u(·), we have

L(f(·), λ1, λ2(·)) =

∫

R

(−t2k+λ1t
2r cosh 2βt)u(t) dt+2π

∫

∆σ

λ2(t)u(t) dt.
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Set λ̂1 = σ
−2(r−k)
0 cosh−1 2βσ0 and

λ̂2(t) =





(2π)−1
(
t2k − λ̂1t

2r cosh 2βt
)

, |t| < σ0,

0, |t| ≥ σ0.

Then for all f(·) ∈ Hr,β
2,∞

L(f(·), λ̂1, λ̂2(·)) =

∫

|t|≥σ0

(
−t2k + λ̂1t

2r cosh 2βt
)

u(t) dt ≥ 0.

If σ ≥ σ̂, then denoting by g(·) the inverse Fourier transform of the
function which equals δ on the interval (−σ̂, σ̂) and vanishes outside,
it is easy to verify that conditions (b) and (c) of Theorem 4 are fulfilled
for the constant sequence fn(·) = g(·).

If σ < σ̂, we set
γ = 1 − δ2Ir,β(σ).

Consider the sequence of functions

un(t) =





δ2

2π
, |t| < σ,

nγ

2(σ + 1/n)2r cosh 2β(σ + 1/n)
, σ ≤ |t| ≤ σ + 1/n,

0, |t| > σ + 1/n

(by gn(·) we denote the inverse Fourier transforms of the functions√
2πun(·)). It is easy to verify that

lim
n→∞

L(gn(·), λ̂1, λ̂2(·)) = 0.

Moreover,

(28) ‖g(r)
n (·)‖2

Hβ
2

=

∫

R

t2run(t) cosh 2βt dt

= 1 − γ +
nγ

(σ + 1/n)2r cosh 2β(σ + 1/n)

∫ σ+1/n

σ

t2r cosh 2βt dt < 1,

that is, the functions gn(·) are admissible in the problem (27). It follows
also from (28) that

lim
n→∞

‖g(r)
n (·)‖Hβ

2
= 1.

Here the problem (7) has the form

λ̂1‖f (r)(·)‖Hβ
2

+

∫

∆σ

λ̂2(t)|f̂(t) − y(t)|2 dt → min, f(·) ∈ Hr,β
2,∞.

Passing to Fourier transforms it can be written in the form

λ̂1

2π

∫

R

t2r|f̂(t)|2 cosh 2βt dt +

∫

∆σ

λ̂2(t)|f̂(t) − y(t)|2 dt → min,

f(·) ∈ Hr,β
2,∞.
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It is easy to verify that the function fy(·) such that

f̂y(t) =





2πλ̂2(t)

2πλ̂2(t) + λ̂2t2r cosh 2βt
y(t), |t| < σ0,

0, |t| ≥ σ0,

that is,

f̂y(t) =






(
1 −

(
t

σ0

)2(r−k)
cosh 2βt

cosh 2βσ0

)
y(t), |t| < σ0,

0, |t| ≥ σ0,

is the solution of this problem. It follows by Theorem 4 that the method

ϕ0(y)(·) = f (k)
y (·)

is optimal, and for its error the equality

Ek(H
r,β
2,∞, δ, σ) =

√
λ̂1 + δ2

∫

∆σ

λ̂2(t) dt

holds. Substituting the expressions for λ̂1 and λ̂2(·), we obtain the
statement of the theorem. �

It follows by Theorem 6 that for a given δ, starting from σ̂, further
extension of the interval on which the Fourier transform of a function
in Hr,β

2,∞ is given with error δ in the uniform metric does not result in a
decrease in the recovery error. In other words, if the relation

(29)
δ2

2π

∫ σ

−σ

t2r cosh 2βt dt ≤ 1

between the error of input data and the size of the interval on which
the data is measured is violated, then the available information turns
out to be redundant.

4.3. Theorem about three circles. Denote by H2 the set of func-
tions f(·) analytic in the unit disc D = {z ∈ C : |z| < 1} for which

sup
0<r<1

∫

T

|f(reit)|2 dt < ∞.

Consider the analogue of theorem about three lines (Theorem 3) for
functions from H2. We are interested in the extremal problem on find-
ing the value

sup
f(·)∈H2

‖f(r1ei·)‖L2(T)≤δ1

‖f(r2ei·)‖L2(T)≤δ2

‖f(ρei·)‖L2(T)

where 0 < r1 < ρ < r2 ≤ 1. We connect this problem with the problem
of recovery of f(·) ∈ H2 on the circle |z| = ρ by approximate values of
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this function on the circles |z| = r1 and |z| = r2. We assume that for
every function f(·) ∈ H2 we know y1(·), y2(·) ∈ L2(T) such that

‖f(rje
i·) − yj(·)‖L2(T) ≤ δj , j = 1, 2.

The task is to recover f(ρei·) in the best way by functions y1(·), y2(·).
The quantity

eρ(H2, δ1, δ2, ϕ) = sup
f(·)∈H2, y1(·),y2(·)∈L2(T)

‖f(rjei·)−yj(·)‖L2(T)≤δj , j=1,2

‖f(ρei·) − ϕ(y1, y2)(·)‖L2(T)

is called the error of the recovery method ϕ : L2(T) × L2(T) → L2(T).
The quantity

Eρ(H2, δ1, δ2) = inf
ϕ : L2(T)×L2(T)→L2(T)

eρ(H2, δ1, δ2, ϕ)

is called the error of optimal recovery, and a method delivering this
lower bound is called the optimal method.

Theorem 7. Let 0 < r1 < ρ < r2 ≤ 1 and δ1, δ2 > 0. Set

∆s = [(r1/r2)
s+1, (r1/r2)

s), s = 0, 1, . . . ,

µs1 =
r2
2 − ρ2

r2s
1

, µs2 =
ρ2 − r2

1

r2s
2

.(30)

Then

Eρ(H2, δ1, δ2) = sup
f(·)∈H2

‖f(r1ei·)‖L2(T)≤δ1

‖f(r2ei·)‖L2(T)≤δ2

‖f(ρei·)‖L2(T)

=





ρs

√
r2
2 − r2

1

√
δ2
1µs1 + δ2

2µs2 δ1/δ2 ∈ ∆s, s = 0, 1, . . . ,

δ2, δ1 ≥ δ2.

For δ1/δ2 ∈ ∆s, s = 0, 1, . . . , the method

ϕ0(y1, y2)(·) = µs1Kρ,δ1,δ2(ρr1e
i·) ∗ y1(·) + µs2Kρ,δ1,δ2(ρr2e

i·) ∗ y2(·),
where

(31) Kρ,δ1,δ2(z) =

∞∑

k=0

zk

µs1r2k
1 + µs2r2k

2

,

is optimal. If δ1 ≥ δ2, then the method

ϕ0(y1, y2)(t) =
1

2π

∫

T

r2

r2 − ρeik(t−u)
y2(u) du

is optimal.
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Proof. We consider the extremal problem

(32) ‖f(ρei·)‖2
L2(T) → max, ‖f(rje

i·‖2
L2(T) ≤ δ2

j , j = 1, 2,

and write the corresponding Lagrange function

L(f(·), λ1, λ2) = −‖f(ρei·)‖2
L2(T) +λ1‖f(r1e

i·)‖2
L2(T) +λ2‖f(r2e

i·)‖2
L2(T).

For f(·) ∈ H2 which has the form

f(z) =
∞∑

k=0

akz
k

for all 0 < r ≤ 1 the equality

‖f(rei·)‖2
L2(T) =

∞∑

k=0

|ak|2r2k

holds. Therefore the Lagrange function can be written in the form

L(f(·), λ1, λ2) =
∞∑

k=0

(−ρ2k + λ1r
2k
1 + λ2r

2k
2 )|ak|2.

For all λ1, λ2 ≥ 0 the function

α(x) = −1 + λ1

(
r1

ρ

)2x

+ λ2

(
r2

ρ

)2x

is convex. Consequently, if at some s

(33) α(s) = α(s + 1) = 0,

then α(x) ≥ 0 for all x ∈ [0, s] ∪ [s + 1, +∞). Thus, if we take λ̂1 and

λ̂2 from the condition (33), then for all k ∈ Z+

−ρ2k + λ̂1r
2k
1 + λ̂2r

2k
2 = ρ2kα(k) ≥ 0.

For λ̂1 and λ̂2 we have

λ̂1 =
ρ2s

r2
2 − r2

1

µs1, λ̂2 =
ρ2s

r2
2 − r2

1

µs2,

where µs1 and µs2 are defined by (30). Thus, for all f(·) ∈ H2

L(f(·), λ̂1, λ̂2) ≥ 0.

Let δ1/δ2 ∈ ∆s. Set

g(z) = âsz
s + âs+1z

s+1

where

âs =

(
δ2
1r

2s+2
2 − δ2

2r
2s+2
1

(r1r2)2s(r2
2 − r2

1)

)1/2

, âs+1 =

(
δ2
2r

2s
1 − δ2

1r
2s
2

(r1r2)2s(r2
2 − r2

1)

)1/2

.

It is easy to verify that

‖g(r1e
i·)‖L2(T) = δ1, ‖g(r2e

i·)‖L2(T) = δ2
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and L(g(·), λ̂1, λ̂2) = 0. It follows by Theorem 4 that the value of the
extremal problem (32) is equal to

λ̂1δ
2
1 + λ̂2δ

2
2 =

ρ2s

r2
2 − r2

1

(δ2
1µs1 + δ2

2µs2).

Here the extremal problem (7) has the form

‖f(r1e
i·) − y1(·)‖2

L2(T) + ‖f(r2e
i·) − y2(·)‖2

L2(T) → min, f(·) ∈ H2.

It is easy to verify that its solution is the function

fy1,y2(z) =
∞∑

k=0

λ̂1r
k
1(y1)k + λ̂2r

k
2(y2)k

λ̂1r
2k
1 + λ̂2r

2k
2

zk,

where (y1)k, (y2)k, k = 0, 1, . . . , are the Fourier coefficients of y1(·) and
y2(·), respectively. It follows by Theorem 4 that the method

ϕ0(y1, y2)(·) = fy1,y2(ρei·)

= µs1Kρ,δ1,δ2(ρr1e
i·) ∗ y1(·) + µs2Kρ,δ1,δ2(ρr2e

i·) ∗ y2(·)
is optimal.

For δ1 ≥ δ2 we set λ̂1 = 0, λ̂2 = 1, g(·) = δ2. In all other respects
this case is considered analogously as before. �
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