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Abstract—We address the problem of optimal reconstruction of the values of a linear op-
erator on R

d or Z
d from approximate values of other operators. Each operator acts as the

multiplication of the Fourier transform by a certain function. As an application, we present
explicit expressions for optimal methods of reconstructing the solution of the heat equation (for
continuous and difference models) at a given instant of time from inaccurate measurements of
this solution at other time instants.
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1. STATEMENT OF THE PROBLEM AND FORMULATION OF THE MAIN RESULT

Let T = R
d or Z

d, where R and Z are the sets of real and integer numbers, respectively, and d
is a positive integer. Let T̂ = R

d if T = R
d and T̂ = T

d (T is the unit circle) if T = Z
d.

Let α(·) be a continuous (in general, complex-valued) function on T̂ , R > 0, and F : L2(T ) →
L2(T̂ ) be the Fourier transform. Set

XR
α (T ) =

{
x(·) ∈ L2(T )

∣∣ αr(·)Fx(·) ∈ L2(T̂ ) ∀ r ∈ [0, R]
}
.1

For every r ∈ [0, R], define an operator Ar : XR
α (T ) → L2(T ) by the rule

Arx(·) = F−1
(
αr(·)Fx(·)

)
(·),

where F−1 : L2(T̂ ) → L2(T ) is the inverse Fourier transform.
In terms of generalized functions, such an operator can always be expressed as a convolution

with some kernel.
Natural problems related to the reconstruction of functions and their derivatives, the solutions of

differential equations, etc., can be reduced to the reconstruction of this type of operators. Consider
two simple examples. Let T = R and α(ξ) = iξ. Then Arx(·) is the rth Weyl (fractional) derivative.
If α(ξ) = e−ξ2 , then Arx(·) is the temperature distribution in an infinite rod at time r for the initial
distribution x(·).

We address the following problem: reconstruct the values of an operator Ar0 from approximate
values of operators Ar1 , . . . , Arn , rj ∈ [0, R], j = 0, 1, . . . , n (in terms of the examples considered, this
is the reconstruction of a function and/or its derivatives from approximate values of other derivatives
and the reconstruction of the rod temperature at a given instant of time from its approximate
measurements at other time instants).
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A precise statement is as follows. Suppose given functions yj(·) ∈ L2(T ), j = 1, . . . , n, such that

‖Arjx(·) − yj(·)‖L2(T ) ≤ δj , j = 1, . . . , n, 0 ≤ r1 < . . . < rn ≤ R,

and δj > 0, j = 1, . . . , n. By the optimal reconstruction of the values of Ar0 from given information
we mean the following. Any mapping m : (L2(T ))n → L2(T ) is declared a reconstruction method.
The error of a method m is the quantity

er0(r, δ,m) = sup
x(·),y1(·),...,yn(·)∈L2(T )

‖Arj x(·)−yj(·)‖L2(T )≤δj , j=1,...,n

‖Ar0x(·) − m(y(·))(·)‖L2(T );

here r = (r1, . . . , rn), δ = (δ1, . . . , δn), and y(·) = (y1(·), . . . , yn(·)). We are interested in the
quantity

Er0(r, δ) = inf
m : (L2(T ))n→L2(T )

er0(r, δ,m),

which is called the error of optimal reconstruction, and in the method m̂ for which the lower bound
is attained, which is called the optimal reconstruction method.

To formulate the main result, we need some definitions. We will say that a continuous function
α(·) on T̂ satisfies condition A if

(i) the infimum a = inf
t∈T̂

|α(t)| is attained on T̂ if a > 0, and the supremum b = sup
t∈T̂

|α(t)|
is attained on T̂ if b < ∞;

(ii) the set of functions y(·) ∈ L2(T ) such that

F−1

(
αr1(·)

|α(·)|2r1 + |α(·)|2r2
Fy(·)

)
(·) ∈ XR

α (T )

for all r1, r2 ∈ [0, R] is dense in L2(T ).

Consider the following set on the plane (t, x):

M = co
{
(rj , ln(1/δj)), 1 ≤ j ≤ n

}
+

{
(t, t ln(1/a)) | t ≤ 0

}
+

{
(t, t ln(1/b)) | t ≥ 0

}
,

where co denotes the convex hull of the set and the second (third) term should be omitted if a = 0
(b = ∞). Define a function θ(·) on [0, R] by the rule θ(t) = max{x | (t, x) ∈ M} and θ(t) = −∞ if
(t, x) /∈ M for any x. It is clear that θ(·) is a concave polygonal curve on [r1, rn]. Let rs1 < . . . < rsk

be its salient points (see the figure for a > 0 and b < ∞).
Theorem 1. Let α(·) be a continuous function on T̂ that satisfies condition A. Then

Er0(r, δ) = e−θ(r0).

If r0 ∈ [rsj , rsj+1 ], 1 ≤ j ≤ k − 1, then the method

m̂(y(·))(·) = F−1
(
αr0−rsj (·)βj(·)Fysj(·) + αr0−rsj+1 (·)(1 − βj(·))Fysj+1(·)

)
(·),

where

βj(·) =
(rsj+1 − r0)δ2

sj+1
|α(·)|2rsj

(rsj+1 − r0)δ2
sj+1

|α(·)|2rsj + (r0 − rsj)δ2
sj
|α(·)|2rsj+1

,

is optimal.
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Figure.

If a > 0 and 0 ≤ r0 < rs1, then the method

m̂(y(·))(·) = F−1
(
αr0−rs1 (·)Fys1(·)

)
(·)

is optimal.
If b < ∞ and rsk

< r0 ≤ R, then the method

m̂(y(·))(·) = F−1
(
αr0−rsk (·)Fysk

(·)
)
(·)

is optimal.
Note that the optimal method is linear and uses at most two measurements; moreover, these

measurements are “smoothed” beforehand.

2. EXAMPLES

1. Optimal reconstruction of the solution of the heat equation. Consider the problem
of optimal reconstruction of temperature in R

d at time instant τ from its approximate measurements
at time instants t1, . . . , tn. The heat propagation in R

d is described by the equation
∂u

∂t
= ∆u, (1)

where ∆ is the Laplace operator, with a given initial distribution of temperature

u(0, x) = u0(x), x ∈ R
d. (2)

We assume that u0(·) ∈ L2(Rd). A unique solution of problem (1), (2) for t > 0 is given by the
Poisson integral

u(t, x) = u(t, x;u0(·)) =
1

2
√

πt

∫
Rd

e−
|x−ξ|2

4t u0(ξ) dξ,

with u(t, ·) → u0(·) as t → 0 in the metric of L2(Rd).
Suppose that we know approximate temperature distributions u(t1, ·), . . . , u(tn, ·) at instants

0 = t1 < . . . < tn; i.e., we are given functions yj(·) ∈ L2(Rd) such that ‖u(tj , ·) − yj(·)‖L2(Rd) ≤ δj ,
where δj > 0, j = 1, . . . , n. We aim to reconstruct temperature at time τ > 0 from the information
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about the functions y1(·), . . . , yn(·). Here the error of optimal reconstruction has the form

Eτ (t, δ) = inf
m

sup
u0(·),y1(·),...,yn(·)∈L2(Rd)

‖u(tj ,·)−yj(·)‖L2(Rd)
≤δj , j=1,...,n

‖u(τ, ·) − m(y(·))(·)‖L2(Rd),

where the lower bound is taken over all methods m : (L2(Rd))n → L2(Rd) (t = (t1, . . . , tn), y(·) =
(y1(·), . . . , yn(·)), and δ = (δ1, . . . , δn)).

The Fourier transform of the solution of the heat equation is given by (see, for example, [1])

Fu(t, ξ) = e−|ξ|2tFu0(ξ).

Thus, our problem is a particular case of the problem considered in Section 1 for T = R
d and

α(ξ) = e−|ξ|2 .
We can easily verify that the conditions of Theorem 1 are satisfied. In this case,

inf
ξ∈Rd

|α(ξ)| = 0, sup
ξ∈Rd

|α(ξ)| = 1;

therefore,
M = co

{
(tj , ln 1/δj), 1 ≤ j ≤ n

}
+

{
(t, 0) | t ≥ 0

}
.

The function θ(·) on [t1,+∞) is defined by θ(t) = max{x | (t, x) ∈ M}. Let ts1 < . . . < tsk
be the

salient points of θ(·).
Theorem 1 implies
Theorem 2. The following equality holds:

Eτ (t, δ) = e−θ(τ).

For τ ∈ [tsj , tsj+1], 1 ≤ j ≤ k − 1, the method

m̂(y(·))(·) = F−1
(
e−(τ−tsj )|ξ|2βj(ξ)Fysj (ξ) + e−(τ−tsj+1 )|ξ|2(1 − βj(ξ))Fysj+1(ξ)

)
(·),

where

βj(ξ) =
(tsj+1 − τ)δ2

sj+1
e−2tsj |ξ|2

(tsj+1 − τ)δ2
sj+1

e−2tsj |ξ|2 + (τ − tsj)δ2
sj

e−2tsj+1 |ξ|2
,

is optimal. For τ > tsk
, the method

m̂(y(·))(·) = F−1
(
e−(τ−tsk

)|ξ|2Fysk
(ξ)

)
(·)

is optimal.

2. Reconstruction of the temperature of a rod from inaccurate discrete data. Con-
sider the problem of optimal reconstruction of temperature in R

d from its approximate values at a
discrete set of points at time instants t1, . . . , tn. We will assume that the temperature distribution
is described by the implicit difference scheme

us+1,j − usj

τ
=

d∑
p=1

us+1,j+ep − 2us+1,j + us+1,j−ep

h2
, (3)

where usj = u(sτ, jh) is the rod temperature at the point jh, j ∈ Z
d, of the space at the instant sτ ,

s ∈ Z+, and e1, . . . , ed is a standard basis in R
d.
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Suppose we know approximate values of the rod temperature at the points jh at time instants
tk = rkτ : yk = {ykj}j∈Zd , where 0 ≤ r1 < . . . < rn, rk ∈ Z+, k = 1, . . . , n. We will assume that
‖urk

− yk‖l2 ≤ δk, k = 1, . . . , n, where us = {usj}j∈Zd , and

‖x‖l2 =

( ∑
j∈Zd

|xj |2
)1/2

for x = {xj}j∈Zd . It is required to reconstruct the values of temperature at the same points jh at a
time instant r0τ , r0 ≥ 0, from the vectors yk, k = 1, . . . , n. As reconstruction methods, we consider
all possible mappings m : (l2)n → l2. For a given method m, define its error as

er0(r, δ,m) = sup
u0,y1,...,yn∈l2

‖urk
−yk‖l2

≤δk, k=1,...,n

‖ur − m(y)‖l2 ,

where, as above, r = (r1, . . . , rn), δ = (δ1, . . . , δn), and y(·) = (y1(·), . . . , yn(·)). The quantity

Er0(r, δ) = inf
m : (l2)n→l2

er0(r, δ,m)

is called the error of optimal reconstruction, and the method for which the lower bound is attained
is said to be optimal.

The Fourier transform of a vector us has the form

Fus(ξ) =
∑
j∈Zd

usje
−i〈j,ξ〉.

Passing to Fourier transforms in (3), we obtain

Fus+1(ξ) − Fus(ξ)
τ

=
d∑

p=1

eiξpFus+1(ξ) − 2Fus+1(ξ) + e−iξpFus+1(ξ)
h2

,

which yields

Fus+1(ξ) =

(
1 +

2τ
h2

d∑
p=1

(1 − cos ξp)

)−1

Fus(ξ).

Thus,

Fus(ξ) = αs(ξ)Fu0(ξ), α(ξ) =

(
1 +

2τ
h2

d∑
p=1

(1 − cos ξp)

)−1

.

In our case,

a = inf
ξ∈Td

|α(ξ)| =
(

1 +
4dτ

h2

)−1

, b = sup
ξ∈Td

|α(ξ)| = 1.

Therefore,

M = co
{
(rj , ln(1/δj)), 1 ≤ j ≤ n

}
+

{
(r, 0) | r ≥ 0

}
+

{(
r,−r ln

(
1 +

4dτ

h2

)) ∣∣∣ r ≤ 0
}

.

The function θ(·) on [0,+∞) is defined by the equality θ(t) = max{x | (t, x) ∈ M}, and
rs1 < . . . < rsk

are the salient points of θ(·).
Theorem 1 immediately implies an expression for the error of optimal reconstruction and the

form of the optimal method for such θ(·) and α(·).
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If the heat propagation in a rod is described by the explicit difference scheme

us+1,j − usj

τ
=

d∑
p=1

us,j+ep − 2usj + us,j−ep

h2
,

then the Fourier transform of the solution is given by

Fus(ξ) = αs(ξ)Fu0(ξ), α(ξ) = 1 − 2τ
h2

d∑
p=1

(1 − cos ξp).

In this case, a similar result can also be easily derived from Theorem 1.

3. PROOF OF THEOREM 1

The proof of the theorem is based on a fact concerning the optimal reconstruction of linear
operators. To formulate this fact, we first give a more general statement of the problem of optimal
reconstruction.

Let X be a vector space, Z a normed space, Y1, . . . , Yn be spaces with inner products (·, ·)Yj

and the corresponding norms ‖ · ‖Yj , and Ij : X → Yj, j = 1, . . . , n, be linear operators. Consider
the problem of optimal reconstruction of a linear operator A : X → Z on the class

Wk =
{
x ∈ X : ‖Ijx‖Yj ≤ δj , 1 ≤ j ≤ k, 0 ≤ k < n

}
(when k = 0, we assume that W0 = X) from inaccurate information about the values of the operators
Ik+1, . . . , In; i.e., we assume that for every x ∈ Wk a vector y = (yk+1, . . . , yn) ∈ Yk+1 × . . . × Yn is
known such that

‖Ijx − yj‖Yj ≤ δj , j = k + 1, . . . , n.

As reconstruction methods, we consider all possible mappings m : Yk+1 × . . . × Yn → Z. The
error of a reconstruction method m is the quantity

e(A,Wk, I, δ,m) = sup
x∈Wk

sup
y=(yk+1,...,yn)∈Yk+1×...×Yn

‖Ijx−yj‖Yj
≤δj , j=k+1,...,n

‖Ax − m(y)‖Z .

We aim to find the error of optimal reconstruction

E(A,Wk, I, δ) = inf
m : Yk+1×...×Yn→Z

e(A,Wk, I, δ,m)

and the optimal method of reconstruction m̂ for which the lower bound (if it exists) is attained.
Theorem 3. Suppose that the values of the problems2

‖Ax‖2
Z → max, ‖Ijx‖2

Yj
≤ δ2

j , j = 1, . . . , n, x ∈ X, (4)

and

‖Ax‖2
Z → max,

n∑
j=1

λ̂j‖Ijx‖2
Yj

≤
n∑

j=1

λ̂jδ
2
j , x ∈ X, (5)

coincide for some λ̂j ≥ 0, j = 1, . . . , n.

2That is, the values of the functionals to be maximized.
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Let also Ỹ be a dense subset in Yk+1 × . . .× Yn such that, for every y = (yk+1, . . . , yn) ∈ Ỹ , the
problem

k∑
j=1

λ̂j‖Ijx‖2
Yj

+
n∑

j=k+1

λ̂j‖Ijx − yj‖2
Yj

→ min, x ∈ X, (6)

has a solution xy and, in addition, there exists a linear continuous operator Λ: Yk+1×. . .×Yn → Z,3

such that Λy = Axy for all y ∈ Ỹ .
Then E(A,Wk, I, δ) = S, where S is a general solution of problems (4) and (5), and the method

m̂ = Λ is optimal.
Proof. First, let us estimate the quantity E(A,Wk, I, δ) from below. Let x ∈ X, ‖Ijx‖Yj ≤ δj ,

j = 1, . . . , k, and m be an arbitrary method of reconstruction. Then

2‖Ax‖Z = ‖Ax − m(0) − (−Ax − m(0))‖Z ≤ ‖Ax − m(0)‖Z + ‖−Ax − m(0)‖Z

≤ 2e(A,Wk, I, δ,m).

Taking the upper bound over all such x and then the lower bound over all m, we obtain

E(A,Wk, I, δ) ≥ sup
‖Ijx‖Yj

≤δj , j=1,...,n
‖Ax‖Z = S.

Now let us estimate E(A,Wk, I, δ) from above construct the optimal method. Consider the
vector space E = Y1 × . . . × Yn with the semi-inner product

(y1, y2)E =
n∑

j=1

λ̂j(y1
j , y

2
j )Yj ,

where y1 = (y1
1, . . . , y

1
n) and y2 = (y2

1 , . . . , y
2
n). Then the extremum problem (6) can be rewritten as

‖Ĩx − ỹ‖2
E → min, x ∈ X, (7)

where Ĩx = (I1x, . . . , Inx) and ỹ = (0, . . . , 0, yk+1, . . . , yn). One can easily verify that if xy is a
solution of problem (7), then (Ĩxy − ỹ, Ĩx)E = 0 for all x ∈ X. Hence we obtain

‖Ĩx − ỹ‖2
E = ‖Ĩx − Ĩxy + Ĩxy − ỹ‖2

E

= ‖Ĩx − Ĩxy‖2
E − 2Re

(
Ĩx − Ĩxy, Ĩxy − ỹ

)
E

+ ‖Ĩxy − ỹ‖2
E

= ‖Ĩx − Ĩxy‖2
E + ‖Ĩxy − ỹ‖2

E .

Thus, for all x ∈ X,

‖Ĩx − Ĩxy‖2
E ≤ ‖Ĩx − ỹ‖2

E =
k∑

j=1

λ̂j‖Ijx‖2
Yj

+
n∑

j=k+1

λ̂j‖Ijx − yj‖2
Yj

. (8)

Let x ∈ Wk and y = (yk+1, . . . , yn) ∈ Yk+1 × . . . × Yn be such that ‖Ijx − yj‖Yj ≤ δj for
j = k + 1, . . . , n. Then, for any ε > 0, there exists an element ỹ = (ỹk+1, . . . , ỹn) ∈ Ỹ such that
‖yj − ỹj‖Yj < ε, j = 1, . . . , n, and hence

‖Ijx − ỹj‖Yj ≤ ‖Ijx − yj‖Yj + ‖yj − ỹj‖Yj ≤ δj + ε, j = k + 1, . . . , n.

3The norm of an element y = (yk+1, . . . , yn) ∈ Yk+1 × . . . × Yn is defined as ‖y‖ =
(∑n

j=k+1 ‖yj‖2
Yj

)1/2.
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Set z = x − xy. Then it follows from (8) that
n∑

j=1

λ̂j‖Ijz‖2
Yj

≤
n∑

j=1

λ̂j δ̃
2
j , (9)

where δ̃j = δj if 1 ≤ j ≤ k and δ̃j = δj + ε if k + 1 ≤ j ≤ n. One can easily verify that

sup
z∈X∑n

j=1 λ̂j‖Ijz‖2
Yj

≤a2

‖Az‖Z =
c1

c2
sup
x∈X∑n

j=1 λ̂j‖Ijx‖2
Yj

≤b2

‖Ax‖Z

for all c1, c2 > 0. Therefore, taking into account (9) and the fact that the values of problems (4)
and (5) coincide, we obtain

‖Ax − Axỹ‖Z = ‖Az‖Z ≤ sup
z∈X∑n

j=1 λ̂j‖Ijz‖2
Yj

≤
∑n

j=1 λ̂j δ̃2
j

‖Az‖Z

=

(∑n
j=1 λ̂j δ̃

2
j∑n

j=1 λ̂jδ2
j

)1/2

sup
z∈X∑m

j=1 λ̂j‖Ijz‖2
Yj

≤
∑n

j=1 λ̂jδ2
j

‖Ax‖Z

=

(∑n
j=1 λ̂j δ̃

2
j∑n

j=1 λ̂jδ2
j

)1/2

sup
x∈X

‖Ijx‖Yj
≤δj , j=1,...,n

‖Ax‖Z .

Since ε > 0 is arbitrary, it follows that

‖Ax − Λy‖Z ≤ sup
x∈X

‖Ijx‖Yj
≤δj , j=1,...,n

‖Ax‖Z = S.

In view of the lower estimate proved above, we find that E(A,Wk, I, δ) = S and m̂ = Λ is an
optimal method. �

Now, based on this result, we prove Theorem 1.
Proof of Theorem 1. The problem corresponding to problem (4) in Theorem 3 is

‖Ar0x(·)‖2
L2(T ) → max, ‖Arjx(·)‖2

L2(T ) ≤ δ2
j , j = 1, . . . , n. (10)

Let us find the value of this problem. For the Fourier transforms, by Plancherel’s theorem, we
obtain ∫

T̂

|α(ξ)|2r0 |Fx(ξ)|2 dξ → max,

∫
T̂

|α(ξ)|2rj |Fx(ξ)|2 dξ ≤ δ2
j , j = 1, . . . , n.

It can easily be shown that this problem has no solution; therefore, we consider its extension to the
set of all nonnegative measures dµ(·) on T̂ :∫

T̂

|α(ξ)|2r0 dµ(ξ) → max,

∫
T̂

|α(ξ)|2rj dµ(ξ) ≤ δ2
j , j = 1, . . . , n. (11)

This is a linear (infinite-dimensional) programming problem. Its Lagrange function has the form

L(µ(·), λ) = −
∫
T̂

|α(ξ)|2r0 dµ(ξ) +
n∑

j=1

λj

⎛⎝ ∫
T̂

|α(ξ)|2rj dµ(ξ) − δ2
j

⎞⎠ ,

where λ = (λ1, . . . , λn) is the set of Lagrange multipliers.
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If we find a measure dµ̂(·) admissible in (11) and Lagrange multipliers λ̂j ≥ 0, j = 1, . . . , n, such
that (λ̂ = (λ̂1, . . . , λ̂n))

min
dµ(·)≥0

L(dµ(·), λ̂) = L(dµ̂(·), λ̂) (12)

and

λ̂j

⎛⎝ ∫
T̂

|α(ξ)|2rj dµ̂(ξ) − δ2
j

⎞⎠ = 0, j = 1, . . . , n, (13)

then dµ̂(·) is a solution to problem (11). Indeed, let dµ(·) be an admissible measure in (11). Then,
using this fact (and taking into account that λ̂j ≥ 0, j = 1, . . . , n) and then (12) and (13), we obtain

−
∫
T̂

|α(ξ)|2r0 dµ(ξ) ≥ −
∫
T̂

|α(ξ)|2r0 dµ(ξ) +
n∑

j=1

λ̂j

⎛⎝ ∫
T̂

|α(ξ)|2rj dµ(ξ) − δ2
j

⎞⎠ = L(dµ(·), λ̂)

≥ L(dµ̂(·), λ̂) = −
∫
T̂

|α(ξ)|2r0 dµ̂(ξ) +
n∑

j=1

λ̂j

⎛⎝∫
T̂

|α(ξ)|2rj dµ̂(ξ) − δ2
j

⎞⎠
= −

∫
T̂

|α(ξ)|2r0 dµ̂(ξ),

which implies what was required.
Let r0 ∈ [rsj , rsj+1], 1 ≤ j ≤ k − 1. We present a measure dµ̂(·) admissible in (11) and a set of

Lagrange multipliers λ̂ that satisfy conditions (12) and (13). Set dµ̂(ξ) = Cδ(ξ−ξ0), where δ(·−ξ0)
is the Dirac delta function with support shifted to the point ξ0, and take C and ξ0 such that the
following equalities hold: ∫

T̂

|α(ξ)|2rp dµ̂(ξ) = δ2
p, p = sj, sj+1. (14)

This implies that

C = δ

2rsj+1

rsj+1−rsj
sj δ

−
2rsj

rsj+1−rsj
sj+1 , ln

1
|α(ξ0)|

=
ln(1/δsj+1) − ln(1/δsj )

rsj+1 − rsj

. (15)

It follows from the form of the set M that, for a > 0 and a finite b,

ln
1
b

<
ln(1/δsj+1) − ln(1/δsj )

rsj+1 − rsj

< ln
1
a
.

Hence, by the continuity of α(·), there exists a point ξ0 ∈ T̂ for which the second equality in (15)
holds. It is also easy to show the existence of such a point in the case when a = 0 and/or b = ∞.

Set λ̂k = 0, k 	= sj, sj+1, and choose λ̂sj and λ̂sj+1 such that the straight line y = λ̂sj + λ̂sj+1x
is tangent to the curve {

y = |α(ξ)|2(r0−rsj ),

x = |α(ξ)|2(rsj+1
−rsj

)
(16)
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at the point ξ0. A straightforward calculation shows that

λ̂sj =
rsj+1 − r0

rsj+1 − rsj

(
δsj+1

δsj

) 2(r0−rsj )

rsj+1−rsj
, λ̂sj+1 =

r0 − rsj

rsj+1 − rsj

(
δsj

δsj+1

)2(rsj+1−r0)

rsj+1−rsj
. (17)

It is clear that these numbers are positive; therefore, conditions (13) hold for this measure µ̂(·) and
the set λ̂.

Since the curve (16) is concave, we have

|α(ξ)|2(r0−rsj ) ≤ λ̂sj + λ̂sj+1 |α(ξ)|2(rsj+1−rsj )

for any ξ ∈ T̂ , or, equivalently,

−|α(ξ)|2r0 + λ̂sj |α(ξ)|2rsj + λ̂sj+1|α(ξ)|2rsj+1 ≥ 0

for any ξ ∈ T̂ . Hence we can easily deduce that condition (12) is satisfied.
Finally, since∫

T̂

|α(ξ)|2rp dµ̂(ξ) = C|α(ξ0)|2rp = δ
2

rsj+1−rp

rsj+1−rsj
sj δ

2
rp−rsj

rsj+1−rsj
sj+1 = e−2θj(rp) ≤ e−2θ(rp) ≤ δ2

p

for any p = 1, . . . , n, where θj(·) is a straight line passing through the points (rsj , ln(1/δsj )) and
(rsj+1 , ln(1/δsj+1)), the measure dµ̂(·) is admissible in (11).

Thus, dµ̂(·) is a solution to problem (11), and its value is∫
T̂

|α(ξ)|2r0 dµ̂(ξ) = C|α(ξ0)|2r0 = δ
2

rsj+1−r0

rsj+1−rsj
sj δ

2
r0−rsj

rsj+1−rsj
sj+1 = e−2θ(r0).

Consider the case when rsk
< r0 ≤ R. First, let b < ∞. Set

λ̂sk
= b2(r0−rsk

), λ̂j = 0, j 	= sk, dµ̂(·) = δ2
sk

b−2rsk δ(· − ξb),

where ξb is the point at which the upper bound of |α(·)| is attained (which, recall, is equal to b).
One can easily verify that conditions (12) and (13) hold and that the measure is admissible because∫

T̂

|α(ξ)|2rp dµ̂(ξ) = δ2
sk

b2(rp−rsk
) = e−2θk(rp) ≤ e−2θ(rp) ≤ δ2

p

for all p = 1, . . . , n, where θk(·) is a straight line that coincides with the polygonal curve θ(·) for
r > rsk

. Thus, dµ̂(·) is a solution to problem (11), and its value is∫
T̂

|α(ξ)|2r0 dµ̂(ξ) = δ2
sk

b2(r0−rsk
) = e−2θ(r0).

Now, let b = ∞; then sk = n. There exists a sequence ξl such that bl = |α(ξl)| → ∞ as
l → ∞. Set dµ̂l(·) = δ2

nb−2rn
l δ(· − ξl). If the equation of θ(·) for rsk−1

< r ≤ rsk
= rn has the form

θ(r) = β(r − rn) + ln(1/δn), then we have∫
T̂

|α(ξ)|2rp dµ̂l(ξ) = δ2
nb

2(rp−rn)
l ≤ e−2θ(rp) ≤ δ2

p
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for bl > e−β . Thus, the measures dµ̂l(·) are admissible and∫
T̂

|α(ξ)|2r0 dµ̂l(ξ) = δ2
nb

2(r0−rn)
l → ∞

as l → ∞. This implies that the value of problem (11) is +∞.
For r1 < r0 < rs1 (in this case a > 0), set

λ̂s1 = a2(r0−rs1 ), λ̂j = 0, j 	= s1, dµ̂(·) = δ2
s1

a−2rs1 δ(· − ξa),

where ξa is the point at which the lower bound of |α(·)| is attained. As in the previous cases, one
can show that the measure dµ̂(·) is a solution to problem (11) and its value is e−2θ(r0).

When a = 0, the value of problem (11) is +∞, and the arguments here are the same as in the
case of b = ∞.

Thus, we have found the value of problem (11) in all possible cases. Applying the standard
approximation of the delta function by δ-like sequences, we find that the value of this problem
coincides with the value of problem (10). Now, let us show that the value of problem (10) coincides,
in turn, with the value of the following problem:

‖Ar0x(·)‖2
L2(T ) → max,

n∑
j=1

λ̂j‖Arjx(·)‖2
L2(T ) ≤

n∑
j=1

λ̂jδ
2
j , (18)

where (λ̂1, . . . , λ̂n) is the set of Lagrange multipliers found above. This problem corresponds to
problem (5) from Theorem 3.

Again, passing to the Fourier transforms and then to nonnegative measures, we reduce (18) to
the problem ∫

T̂

|α(ξ)|2r0 dµ(ξ) → max,

∫
T̂

n∑
j=1

λ̂j |α(ξ)|2rj dµ(ξ) ≤
n∑

j=1

λ̂jδ
2
j . (19)

Its Lagrange function is given by

L1(dµ(·), ν) = −
∫
T̂

|α(ξ)|2r0 dµ(ξ) + ν

⎛⎝ ∫
T̂

n∑
j=1

λ̂j|α(ξ)|2rj dµ(ξ) −
n∑

j=1

λ̂jδ
2
j

⎞⎠ .

If dµ̂(·) is a solution to problem (11) (it is obvious that the measure dµ̂(·) is admissible in (19))
and ν̂ = 1, then analogs of conditions (12) and (13) clearly hold in this case and, hence, dµ̂(·) is
a solution to problem (19). Next, by the same arguments as above, the values of problems (19)
and (18) coincide. However, since the values of problems (11) and (19) coincide, the values of
problems (18) and (10) also coincide.

Now, let us construct an optimal method in the case when r0 ∈ [rsj , rsj+1 ]. According to the
general Theorem 3, consider the problem

λ̂sj‖Arsj
x(·) − ysj(·)‖2

L2(T ) + λ̂sj+1‖Arsj+1
x(·) − ysj+1(·)‖2

L2(T ) → min, x(·) ∈ XR
α (T ). (20)

For all ysj(·) and ysj+1(·) in a dense subset of (L2(T ))n (see condition A, which holds for α(·)),
the Fourier transform of the solution x̂(·) to problem (20) has the form

Fx̂(·) =
λ̂sjα

rsj (·)Fysj(·) + λ̂sj+1α
rsj+1 (·)Fysj+1(·)

λ̂sj |α(·)|2rsj + λ̂sj+1|α(·)|2rsj+1
.
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This defines a continuous linear operator from a dense subset of (L2(T ))n to L2(T ). Taking the
superposition of this operator with the operator Ar0 and extending it by continuity to the whole
space (L2(T ))n (and replacing the Lagrange multipliers with their expressions from (17)), we obtain
an optimal method for the situation under consideration.

The cases when a > 0, 0 ≤ r0 < rs1 and b < ∞, rsk
< r0 ≤ R are treated in a similar way. �

Let us make a few concluding remarks. While the problems of reconstructing linear functionals
have been studied in a rather general form (see, for example, [2–4]), some progress in analogous
problems with linear operators has been achieved only in Euclidean spaces with the use of specific
features of the latter. The first results of this type were obtained in [5]. This direction was further
developed in our papers [6–8], where we applied an approach based on the general principles of
extremum theory.

The application of the theory of optimal reconstruction of linear operators to problems of
mathematical physics is described in [9–13]. The result presented in Theorem 2 as an example
of application of the general Theorem 3 was proved in [14].
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