ON OPTIMAL RECOVERY METHODS IN
HARDY-SOBOLEV SPACES

K. YU. OSIPENKO

ABSTRACT. In the paper a general approach to the construction
of optimal recovery methods for linear functionals by a known
solution of a dual extremal problem is proposed based on some
parametrization of the solution of this dual problem. Using the
proposed approach we succeeded in solving of series optimal recov-
ery problems in Hardy—Sobolev classes such as optimal recovery of
functions by the information of the Fourier coefficients or function
values at some system of nodes in periodic and non-periodic cases.

1. SETTING OF PROBLEM AND METHOD OF PARAMETRIZATION

Let W be some set of a linear space X. Consider the problem of
optimal recovery of a linear functional L on this set by the values of
linear functionals {y,... ,l,. For @ € W we set

T := Lz, ... ).

The operator I: W — K", where K = R or C depending on whether
X is a real or complex space, is called an information operator. The
value
e(L,W,I):= inf sup |Lx— S(1z)]
S: KnsK oW
is called the error of optimal recovery of functional L on the set W.

Any method Sy for which
sup |[Lax — So(Ix)| = e(L, W, 1),

zeEW
is said to be an optimal method of recovery.

S. A. Smolyak [1] proved that in the real case for a convex and
centrally symmetric set W among optimal methods of recovery there
exists a linear method and
(1) e(L,W,I)= sup |Lz|.

Fr2o
The analogous result in the complex case for a convex and balanced set
W was proved in [2] (more general settings of optimal recovery problems
and appropriate results may be found in [3] and in the literature cited
there).

This research was carried out with the financial support of the Russian Founda-
tion for Basic Research (grants N299-01-01181 and Ne00-15-96109).
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2 K. YU. OSIPENKO
Any element x¢o € W for which l2q =0 and

|Lxo| = sup |Lz|
Fr2o

we call extremal. The problem of finding an extremal element often
turns out more simple than the problem of finding an optimal recovery
method. The purpose of this paper is to offer a way allowing to obtain
an optimal method of recovery by extremal element (in the presence
of some its parametrization) and to construct a number of optimal
recovery methods, using the offered scheme.

Theorem 1. Let X be a real linear space, W a convex centrally sym-
metric set from X, and xq an extremal element in the problem of opti-
mal recovery of a linear functional L on the set W by the values of linear
Junctionals lyx, ...  l,x. Assume that for all M = (t1,... ,tsy,) € RS
from some neighborhood of Mg € R"* there exist x(M) € X such
that x(My) = xo and for the given functions 1 (M),... bs(M) such
that v;(My) = 0, 7 = 1,...,s, for all M from a neighborhood of
My, satisfying the condition ;(M) =0, 7 = 1,...,s, (M) e W
(in the case when s = 0 we assume that for all M from a neighbor-
hood of My, x(M) € W). Then if the functions (M) := Lax(M),
o;(M) :=La(M), j=1,...,n, and Y;(M), 7 = 1,...,s, have con-
tinuous partial derivatives with respect to all variables in a neighborhood
of My and the determinant of the matrix

Do Oen Oh O
50 oy 0y Ot T Ok
= a¢la¢na¢1 ......... a¢s
atn—l—s o atn—l—s atn—l—s o atn—l—s

does not vanish at My, then the method

La =~ Z C]‘l]‘l',
7=1
where Cy,...,C, are solutions of the system
J(My)C = grad c,o‘MO,

in which C = (Cy,...,Chys), is the unique linear optimal method of
TeCOveTy.

Proof. Let

Lz ~ Z C]‘l]‘l'
7=1
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be an optimal method of recovery. Then in view of the fact that ¢ is
an extremal element we have for all v € W

[La =Y Ciljx| < | Laol.
7=1
Consequently for all M from some neighborhood of M, such that
Y;(My) =0, 5=1,...,s, the inequality

ZC]% )| < [p(Mo)]

holds. Since ¢;(My) =0, 7 =1,...,n, from here it easily follows that

the function
— > Cipi(M
7=1

has an relative extremum at the point My. The method of Lagrange
leads to necessary conditions

0 > o,
ZC] i ZCnH@T%:(L m=1,... ,n+s,
=1 "

from which C 1,.-.,C, are uniquely determined. O

We cite one simple example. Let HY be the space of functions
analytic in the unit disk

D:={zeC:|z| <1},

bounded, and real in the interval (—1,1). As the set W we consider
HE which is the set of functions from HY satisfying the condition

sup [f(2)] < L.
z€D

For the problem of optimal recovery of functions from H: at the
point 7 € (—1,1) by their values at zero the dual problem (1) may be
solved immediately using the Schwartz lemma:

sup |f(7)] = 7|.

fEHE

f(0)=0
Thus the function fo(z) = z is extremal for the considered problem.
Set L
z

t) = .

hizt) 1+1z
It is easy to see that fi(z,¢) € HY for all t € (—1,1). Moreover,
fi(2,0) = fo(z) and f1(0,t) = ¢t. From Theorem 1 we get that the
method

1= (S0.0) D00 - 1= 0
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is the unique linear optimal method of recovery. More general results
concerning the considered problem may be found in [2] and [4] (they
also can be obtained by the proposed method).

2. OPTIMAL RECOVERY BY FOURIER COEFFICIENTS

We shall call the Hardy—Sobolev class H’_ ; the set of 27r-periodic
functions analytic in the strip S := {z € C: | Imz| < [} and satisfying

the condition |f()(2)] < 1, 2 € Ss. By H ’Rﬁ we denote the class of
functions from H_ 8 that are real on the real axis. In the case r = 0

we denote these classes by H., 3 and Hooﬁ, respectively.
Put

a;(f) ::%/Tf(x)coijdx, J=0,1,...,
bi(f) ::%/Tf(x)sinjxdx, =12 ...,

where T := [0, 27). Consider the problem of optimal recovery of f(¢),
J et 5 &€T,by the values of the information operator

L] = (ao(f);ar(f), - sana(f); b1 (f)s oo s 0na():

In view of a translate invariance of the considered class the optimal
recovery error does not depend on {. We denote it by e(H, 5, ).

The solution of the investigated problem gives in terms of the elliptic
function theory. We recall some definitions from this theory. The
complete elliptic integrals of the first kind with moduli £ and £ :=

v 1 — k? are defined by

1
:/0 \/(1—t2 — K22y / \/1—t2 — k22)

In what follows we assume that k is chosen from the condition
= ﬁ

T K'
2K

In this case k is defined by the equation (see, for example, [5])

b gt [ Lommp €Y ’
- <1+QE;O:1€_25m2> '

We shall use the standard notation sn(z, k), en(z, k), and dn(z, k) for
the Jacobi elliptic functions omitting the dependence on the modulus

when it equals k.
Set

2nA
o7 (z):= \/Xsn< "
’ m

Z,)\) , CI)QJ, =D, %P4, r>1,
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where A is the complete elliptic integral of the first kind for the modulus
A defined by

A K’ 4[37@

AR T

i mt—wr/Z) |9
, or=1,2000.,

is the Bernoulli kernel, and

(f+g /fz—t

The functions CI)ﬁr introduced in [6] have the properties similar to
the ones of the Euler perfect sphnes (see, for example, [7, p. 72]).
The Euler perfect splines are solutions of number of classical extremal
problems for the Sobolev classes (about exact values of n-widths, about
the Kolmogorov type inequality for derivatives, and others), and the
functions CI)gJ, turns out the solutions of analogous problems for analytic
functions from the Hardy—Sobolev classes. It follows from [6] that

s B T > sin((2m 4 )nz — 7r/2)
o, (2) > (

I VAAR" A= (2m + 1) sinh((2m + 1)2n8)’
o0 (_1)m(7’-|—1) r :0,1,...

q)ﬁ o = il . ?
| nr’H VAR mz::o (2m + 1) sinh((2m 4 1)2n03)

(we denote by || - || the standard norm in L. (T)).
It was proved in [8] that

e(Hlo 5. 1) = |9 ]l

and the extremal function for the problem of optimal recovery of f(0)
on the class H_ ; by the information operator / is the function

i34 < l) — 9
P2y i= e U g TR
7 8 (z), r=204+1.

Nevertheless the question about optimal recovery method remained
open. Using Theorem 1, we shall construct a linear optimal method of
recovery for this problem.

First we prove one auxiliary result. Set
cnzdnz
ctnz 1= ———

sn z

Lemma 1. For all 0 <t < ... <1y, < 2K the system of functions

K K
letn | —z—1%1),...,ctn | —z — 19,
T T

is a Chebyshev system on the set T\ {nt,/K,... 7wt/ K}.
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Proof. Assume that there exist real Cy, Cy, ... ,Cy, not all equal zero
for which the function

2n
[,7
Co + Z C;ctn (%Z — t]>

7=1
has 2n+1 zeros on the set T\{7t;/K,... ,mty,/K}. Then the function

2n

[,7
g(z) = Cy H sn (iz — t]>
=t T
K o (K
-I-ZC Cﬂ(—z—t >dn<—z—t ) jl;[lsn <?z—tj>
JFm

must have at least 2n + 1 zeros on T. The function ¢(z) is an elliptic
functions with periods 27, 2r K’/ K. By the Liouville theorem (see [5,
p. 14]) it follows that the number of zeros of ¢g(z), counting multiplici-
ties, in the parallelogram of periods coincides with the number of poles.
The number of poles of g(z) in the parallelogram of periods does not
exceed 2n + 1. Since the number of zeros counting multiplicities of 27-
periodic function should be even it does not exceed 2n what contradicts
with made assumption. O

Put oA e
o(z):=sn ( " Z,)\) ctn = 2.

T T

Theorem 2. For all £ € T the method

7€) % ™S+ 3 diastr)cos e+ () sin ),

Y

2 O . 2m — 1 2m —1
d; = na(0) Z(—l) tletn 5 K cos j 5T
m=1

7=0,...,n—1,
is optimal for the class Hy, 3. Forr >1 and all £ € T the method

(273} <l rd]r
e~ @ LY g+ b sn o)

where

2m —1 2m —1
(—1)7’/2 (D,,*O')< W; 7T> cos J W; T, =2l

n

n—1
(S0, 5 ) sin i, Pm2t,
n n
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is optimal for the class H ;.

Proof. First we consider the problem of optimal recovery of f(0) for
the class H;Rﬁ by the information operator

Iof = (ao(f),ar(f), - s ana(f)):

We have
e(H5, lo) = sup |f(0)] > |ef (0)].
feH;f‘i3
I f=0

On the other hand, if f € H;]% and Iyf = 0, then, putting

ey = 1)

we have fy € H;ﬂfﬁ, Iyfo = 0, and furthermore, since fy is an even
function, b,,(f) =0, m € N. Consequently,
F(0) = fo(0) < Sup £(0)] = |1, (0)].

€HL 5
If=0

Thus,
e(H. 5 Io) =[]l ,(0)]-
Using the first principal transform of elliptic functions of degree 2n,
it can be shown (see [9]) that

2n

2nA K 2m —1
c,ogo(z):\/Xsn(n Z—I—A,A)zk”Hsn(iz— m K).
' s i s 2n
For M = (t4,...,t,) put
. T K - K  2m—1_
ha(z) =k H sn (FZ — tm> H sn (FZ o [&) )
m=1 m=n-+1
Then for all M € [0,2K)", hy € Hgﬁ, and for
t?n = 2m — lK
2n

and Mo := (¢7,...,4), hpyy = 99570.
Let r = 0. Let us show that the determinant of the matrix consisting
of the elements

0 Ohas
%%‘(hM)‘MO = a; <—8tm

does not vanish. If we assume the converse, then there exist real
C1,...,C, not all equal zero such that for the function

“ Ohar
g = mzzzl Cm—atm ‘MO

), m=1,...,n, 7=0,...,n—1,
Mo
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the equalities ag(g) = ... = a,—1(g) = 0 hold. Consequently, for the
even function go(z) := g(2) 4+ g(—z) the equalities
Clo(go) = Cl1(go) = 51(90) = ... = Gn—l(go) = bn—l(go) =0
hold. Since
Ohar

T (z) = —hm(z) ctn (%Z — tm> \

in view of the evenness of hjy;, we have

K
)= —h § tn{ —z—1° | —ctn [ —z +¢°
go(2) Mo (2 Ch, (CH( z ) CH(ﬂ_Z—I— m))
=—h g Cp | ctn —Z—to —ctn 52—7'0
Mo T m )

where 70 = 2K — 9 . Put
F = g9 — Cohngy,
where Cy = ¢o(0)/har, (0). For the function F' the equalities
as(F)=a(F)=0(F)=...=ap1(F)=b,_1(F)=0
hold. In view of the fact that the trigonometric system
L,cos a,sina, ... cos(n — 1)x,sin(n — 1)z

is a Chebyshev system the function F' must have at least 2n sign
changes on T (see [10, p. 41]). In addition, in view of the evenness
F(z) has a zero at z = 0 without sign changes. Thus F' has at least
2n + 1 distinct zeros on T, which contradicts Lemma 1.

By Theorem 1 (for s = 0) it follows that for finding an optimal
recovery method it remains to solve the system

n—1
ZCjClj(ah—M ) = M :\/Xctn Qm_llf,
7=0

atm ‘MO atm MO 2n

m=1,...,

We have

a; (ah_M ) — —l / hag, (z) ctn (éz — t%) cos jzdz
atm My T Jr m
2m —
n

1 1 K . 2m — 1
=—— [ hy, | 2+ T )ctn—zcosy | 2+ T | dz
T Jr 7 2n

2m — 1

TT.

= (—1)m+1\/Xaj(U) cos J
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From the fact that the determinant of the system (2) does not vanish
it follows that a;(0) # 0, 7 = 0,...,n — 1. Thus the system (2) is
equivalent to the system

2m —1 2m —1
chaj(a)cosj W;n = (—1)"*"ctn W;n K,

In view of the orthogonality of the system 1,cosx,... cos(n — 1)z at

—1
m m,m=1,...,n, weobtain that Cy = dy/2, C; = d;,

2
the points
, n
7=1,... ,.n—1.
Now let » > 1. Consider the function

b (D, % har)(2), —
hp,(z):= 2
Pr tO T
§‘|‘(Dr*hM)<Z_2n>7 T:2l—|-1,

where P = (to,t1,... ,t,) € R* For all P such that
P(P) := ao(hy) = 0,

hp, € H;R , and furthermore, for Py := (0,¢9,... ,1%), hp, , = c,ogJ,. By
Theorem 1 (by now with s = 1) it follows that for finding an optimal
method of recovery one have to solve the system

0% Ohp,(0)

C, = m=20,...,n.
Py ot,, o |p, ’ ’

(4) ZC 8a] hp,,

We have (all partial derivatives are calculated at the point Fp)

dag(hp,) daj(hp,) - _8;/} =
o b o AT henTh g =0
hp,
Dolhn) g O (o), =
Via(o)  2m
rf24m41 XTI =
das(hrs) )Y cosi g r=2k
Mpw
( 1)7’/2+m 1/2M81njmﬂ'7 T:2l+17
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For r = 2/ the system (4) takes the form: Cy = 1/2,

n—1
2m —1
g r/za] Cj cos J W; T+ ao(o)C,,
n

=1

and is solved similarly to the system (2).
If r =20+ 1, then the system (4) is reduced to the following: Cy =
1/2,

—_

n—

( 1)(7’ 1)/2a]]( )C Sll’l]%ﬂ'—ao(a)cn

:(DT*O')<@7T>, m=1,...,n.
n

Using the orthogonality of the system sina,...,sin(n — 1)a at the
points mm/n, m =1,... ;n — 1, we obtain the solution of this system.

Let us prove that the constructed method (denote it by S) is optimal
for the class H], ;. Assume that there exists a function fo € H’_ ; for
which

(5) | fo(0) = S(Lofo)| > e(H, 5, lo)-

Then for fo(z) € H, ; the inequality (5) also holds. Without loss of
generality we may assume that fo(0) — S(/ofo) > 0. Consequently, for
the function

1

ECH
Il

olz) = LD ¢y
we have
9(0) = S(log) > e(HL 5, 1o) > e(H ", o),
which is impossible in view of optimality of the method S on the class

.
0075
To find an optimal method of recovery of f(¢) it is sufficient to

consider an optimal method of recovery at zero for the function F(z) =

fz+9). O
Corollary 1. For all € € T the method

n

f(é) ~ % Z (Z(—l)m"'l ctn QW;n_ lK CoszW;n_ 17‘[‘)

lil<n—1 “m=1

is an optimal method of recovery on the class H., 3 by the Fourier
coefficients

1 g
o) =5z [ fO de 1 <0 -1,
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Forr>1 and all £ € T the method

Gt
f& e+ 3 it yest))
n |j|]§£0_1 cilo

is an optimal method on the class H_ ;.

3. RECOVERY BY FUNCTION VALUES

Consider now the problem of optimal recovery of the value f(¢),
J et 5 &€T,by the values of the information operator

L= (f(m),..., f(m2n)),

where 7 = (71,... ,72,), 0 <71 < ... < Ty, < 27m. Assume that r > 1
(for r = 0 the solution of considered problem was obtained in [8]).
First we prove a number of auxiliary statements.

Lemma 2. for all 0 < 7 < ... < 79, < 27 there exist such 0 < 0, <
con < by, <21 that for the function fo € H], 5 which has the form

fo=c+ D, * By,
where ¢ € R and

Bo(t) = k”ﬁsm (g(t - Gj)> ,

Clo(Bo) =0 and fO(Tl) =...= fO(TQn) =0.

Proof. Recall that a Blaschke product of degree m for a domain Q C C
is a function of the form

B(z) = cexp (— ]i:; P(z, é})) ;

where (1, ..., (y are points from Q, || = 1, P(z,() = u(z, () +iv(z, (),
u(z,() is the Green’s function for © with singularity at ¢, and v(z,()
is the harmonic conjugate of u(z,() (which, in general, is multiple
valued). Denote by Bs, the set of single valued Blaschke products of
degree at most 2n for the annulus Q3 = {z € C: ¢7# < |2] < &7}
real on the unite circle £ = {z € C: |z| = 1}. Using the generalized
Pick-Nevanlinna problem in [11] an odd and continuous in the topology
of uniform convergence on compacts from Q5 mapping o: S** — By,
where
2n+1

52n — {l‘ — ($07-.. 7$2n) E Rzn-l—l . Z |$]|2 = 1}7
7=0

was constructed.
For € S?" we set

oo(x) = (ao(B), fe(12) — fB(T1), - s [B(T20) — fB(T1)),
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where B(t) = o(x)(e) and fg = D, * B. Then the mapping oy: 5" —
R?" is odd and continuous and consequently, by Borsuk’s theorem there
exists xg € S** such that og(xo) = 0. Thus the function E(t) =
o(xg)(e') for which ao(E) = 0 and the function ]/C\ =a-+ D, * B for
which for « = —(D, * E)(Tl)

o~

fir)=...= f(rs) =0

are constructed. Since J/C\(r) = E, by Rolle’s theorem follows that B has
at least 2n distinct zeros on T and in view of the fact that o(xg) € Ba,,
B has exactly 2n zeros on T. It remains to note that from the form of
Blaschke products for the annulus with zeros on the unite circle (see [9])
the equality

~

B(t) = < Bo(t)

follows, where ¢ = 1 or —1. Putting f, = 5]?, we obtain the assertion
of the lemma. 0

Proposition 1. Let 0 < 7 < ... < 7y, < 27 and fy be the function
Jrom Lemma 2. Then for any { € T and any function f € H’_ 5 such
that f(m) = ... = f(72,) = 0 the inequality

SO < [fo(&)]

holds.
Proof. Suppose that for some £ € T\ {my,..., 72, } there exists a func-
tion g € H, ; for which g(my) = ... = g(m2,) = 0 and [g(&)| > [fo(£)].

Since the function g(z) = g(z) exp(—iarg g(£)) satisfies the same con-
ditions without loss of generality we may assume that g(¢) > 0. Set

9(z) + 9=
WRFEEYc)
Evidently that gy € H;]% and go(&) = g(&). Consider the function

F:=fo—pgo, p= ;CZES

This function has zeros at the points 7,... ,7,,£. Consequently, by
Rolle’s theorem F(") has at least 2n+1 zeros on T. Hence it follows that
: .. : 1
the single valued and analytic in the annulus Q4 function F) [ = Inw
i
has on this annulus at least 2n 4 1 zeros. Since on the boundary 25 a
Blaschke product satisfies the condition

1
‘BO (TIHUJ)‘:l, weaQﬁ,

4
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and fér) = By, for w € Q5 we have

1 1 1
fér) <;1nw> — ) (;hlll))‘ = ‘pgér) (;hqw)‘

<lpl<1l=

fér) (l In w) ‘ .
7

1
As By (—,ln w) has exactly 2n zeros on the domain {23, by Rouche’s
i

theorem the function F) { Zlnw | must have the same number of
7

zeros. The contradiction so obtained completes the proof of the theo-
rem. U

Theorem 3. For all £ € T the method

2n

FO =Y Ci(O)f(m),

7=1
in which C1(&),...,Cq,(&) are the solutions of the system

1.1 0 C1(€) |
@ | A0 Al ) | [ O £A(6)

. . Y

f2n(7—1) f2n(7—2n) aO(Q?n) Czn+1(§) f2n(§)

fm =Dy *gm), gm(t) = Bo(t)ctn (%(t — Qm)> , m=1,...,2n,

and the function Bg with the zeros 8, is defined by Lemma 2, is optimal
on the class H 5. Moreover, for the error of oplimal recovery the
equality

(&, HE, gi I7) = |(Dr % Bo)(§) — (Dr % Bo) (7))
holds.

Proof. Set 8y := —(D, * By)(71) and

2n

K

Bp(t) = anSH (—(t—t]‘)> 5 fp = ilo—|-l),,>l<Bp7
=t T

where P = (to,t1,... ,t2,). Then in view of duality (1) and Proposi-

tion 1 for P = Py := (0o,01,...,02,) the function fp, is extremal in

the problem of optimal recovery of f(¢) on the class H ; and on the

class H;ﬂfﬁ, too. Put m9 := ¢,

0;(P):= fp(7j), 7=0,...,2n, (P):=ao(Bp).
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We have
9%
Jlo

a‘P]
ato

and for all m =1,..

=1, 7=0,...,2n, =0,

., 2n

Oy; K : oY K
R = ——Im i)y =VU,... 72 y == — mj-.
atm P T f (T]) J 0 n at 3 T Clo(g )

From Theorem 1 it follows that the coefficients of optimal recovery
method are determined from the system (6) under the condition that
the determinant of this system does not vanish. If we assume the

converse, then there should exist real ag, aq, ..., az, not all equal zero
for which the function
2n
g=oag+ D, * (Z Oé;;%‘)
=1
vanishes at the points 7,..., 7, and furthermore
2n
ao (Z ozjg]> = 0.
=1
Let 0 € T\ {71,... ,72,}. Consider the function

'=g—pfp, p= fi(?;z)'

The function F' has zeros at the points 79, 7(,... ,7,. Consequently,
by Rolle’s theorem F) has at least 2n + 1 zeros on T. We have

Zoz]g] — pBo(t) (Za]ctn< t—@))—p>.

From Lemma 1 it follows that F'0") can not have more than 2n zeros on
T. The contradiction so obtained proves that the determinant of the
system (6) does not vanish.

To prove the optimality of constructed method on the class H_ ;
one may use the same arguments which were realized in the proof of

Theorem 2. O

Denote by A the matrix of the system (6). Then the optimal method
constructed in Theorem 3 will have the form

F(&) = (AT G(E),f) = (G(§), (A7) ),
where G(&) = (1, fi(¢), .-, f2a(8)), £ = (f(m1),..., [(724),0) and A~

is the matrix conjugated to A (here (-, ) is the standard scalar product
in R**1). Thus the optimal method can be written in the form

2n

FO) mdo+ > du( Dy * gi)(€),

m=1
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where dg, dy, ... ,ds, are the solutions of the system

2n

dO—I—de(DT*gm)(Tj):f(Tj)v j:l,_,, ,2n,

g =
Z dmao(gm) =0

Let X! is the set of functions of the form

2n

Co —I' Zcm(Dr * gm)7

n=1

where c1,... , ¢y, satisfy the condition

2n

Z Cmao(gm) =0

=1

Then, taking into account (7), we obtain

Corollary 2. Let 0 <71 < ... <7, <2mand 0 < b; < ... < by, <
2w be defined by Lemma 2. Then the function g(£) € X5 interpolated
[ at the points 1,... Ty, is an optimal method of recovery of f(£),
£ €T, on the class H, 5 by the values at the poinls 7y, ... ,Ty,.

Consider the problem of optimal recovery for the equidistant points

0 m— 1

Put

o r =2, . )

Loy = =1,...,2n.

TSL—I——W, r=20+1, " "
2n

Theorem 4. For all £ € T the method

n

76) ~ f1+2iz<z L pmitmts- W“)(D £ 0)(E— L),

where

J/f;,: Zf 2m1]1)7r/717

o 7=1,...,2n,
N 1 . .
c; = 2n (D % 0.)( )ez(m—l)(J—l)w/n

m=1

Y

is an optimal method of recovery on the class Hr 5 by the information

about function values at the equidistant points 70, m =1,... ,2n.
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Proof. Let r = 2[. Then CI)Q,,(TSL) =0,m=1,...,2n. Since

®° = (D, B < _l)
n,r ( *S‘Qn,O) z m

and
2n k
S (o= 50) == Ton (Fe =),

for the system of points 72 the points #,, from Lemma 2 coincide with
2. Thus

gn(2) = (=)o (z = 7).

The system (7) in the considered case will have the form

2n
do + \/XZ(_l)m-Hdm(Dr * U)(T]Q - TT?’L) = f(T])7 .] = 17 s 72n7
m=1

2n
> (=1)"™d, =0.
m=1
Putting ¢ = do, v, = \/X(—l)m"'ldm, ¢m = (D, *0)(72), and using

the periodicity and evenness of the function D, % o, we arrive at the
system

1 ¢ e Con o f(Tlo)
0

1 Cop, C1 Copn—1 L1 f(TQ )

1 Cy C3 C1 Top_1 f(TZOn)

0 1 1 ... 1 o 0

Summing the first 2n equalities of this system and using the last equal-
ity, we find that x¢ = f;. Further, the solution may be easily found
using the equality

~ 0
Co
UCU = | ,
0 N
Can
where
9 (8] Coy ... Cop
1 (7 " C C Cee Copy—
U= {_ez(]—l)(m—l)w/n} 7 O = 2n 1 In—1
v 2n im=l e
Co C3 ... (8]

If r =20+ 1, then

CI)QJ, <TSL—I—%> =0, m=1,...,2n.
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Since

m
o), (24 5-) = (D +&lo)()

A =w I (2 (= (24 5))),

and

the points 6,, from Lemma 2 coincide in this case with the points

T+ . Consequently,
2n
gm(2) = (=1)"V Ao <z — <T£L + l)) .
2n
Further arguments are carried out similarly to the even case. O

4. THE NON-PERIODIC CASE

In the non-periodic case we call the Hardy-Sobolev class H’  the
set of functions analytic in the unit disk D := {2z € C: |z| < 1} and
satisfying the condition |f)(2)| < 1, 2 € D. Denote by HZ® the set
of functions from H’_ real on the interval (—1,1). For r = 0 we denote
the class H by H..

Consider the problem of optimal recovery of f(&), & € (—1,1) by the
values of the information operator

Lf = (f(m)e s F(Tagr ),

where —1 < 7 < ... < 7,4, < 1. In the case r = 0 the solution of
the considered problem was obtained in [2], therefore we assume that
r > 1.

For functions f analytic in the unit disk we put

O A e (LS

Obviously, (T,f)") = f and consequently, T, f € H’_ for all f € H,.
From [12] the following result follows.

Proposition 2. For all —1 < 7 < ... < Ty, < 1 there exist such
T <21 <...<zp < Tpyr that for the function fo € H. of the form

fO = Pr—l + TT’B07

where P._1 is a polynomial of degree r —1 and By is a Blaschke product
of degree n

Ly -z
Bolz) = H 1 — 24]27
i=1 !

the equalities
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hold. Moreover, for all £ € (—1,1)
(8) sup [F(E)] = 1fo(E)]-

JEHZ,
f(m)=..=f(Tn4r)=0

By the equality (8) it immediately follows that for the error of opti-
mal recovery of f(&) on the class H, the equality

e(§, H s I2) = | fo(€)]

holds. An optimal method of recovery may be also obtained in this
case from Theorem 1.

Theorem 5. For all £ € (—1,1) the method

n4+r

F&) =Y Ci(o)f(r)

i=1

in which C1(&),...,Chy, (&) are the solutions of the system

1 1 é
o ey |
(9) Tl Lrane 22(5) =1 &' |,
(Trgi)(r1) - (Lg1)(Tagr) Co © (Tr91)(€)
(Tgn)(Tl) . (Tgn)(Tn+) (Trg;)(f)
where
gm(z) = Bo(2) L— 2 m=1,...,n,

and the function By with the zeros z,, is defined by Proposition 2, is
optimal on the class H._.

Proof. For P = (ag,a1,... ,ar—1,t1,... ,t,) € R™" we set

—_

r—

fr(z) =) a;z" + (1. Bp)(z),

where
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Then for P = Py := (a8, al,... ,a%_,,z1,...,2,) the function fp, is
extremal in the problem of optimal recovery of f(£) on the classes H.
and H"E. Put 7o := ¢,

0i(P) = fp(7), J=0,....,n+r
We have for all j=0,... ,n+r

ey
af; =7, m=0,...,r—1,
9e;

5t =(Togm)(7j), m=1,....n+r.

To obtain an optimal method on the class H”® it remains to use Theo-
rem 1, checking previously that the determinant of the system (9) does
not vanish. If we assume that this determinant vanishes, than there
exist Cq,...,C,4, not all equal zero such that the function

r—1 n
F(2):=) Cpaz’ + > Cipa(Tg;)(2)
= P

vanishes at the points 7y, ... , 7,1,. Then by Rolle’s theorem there exist
points 7 < & < ... < €, < Ty at which FU) vanishes. Thus

F(T)ZZC]+rg](§m):07 m:l,...,n.
7=1

It was proved in [13] that the system of functions

1
(2 = &m)(1 = &m2)’

is a Chebyshev system on the set (—1,1) \ {1, ..., &, }. Consequently,
91,y gm is a Chebyshev system on the set (—1,1) and C,; = ... =
Cpir = 0. Hence it follows that C; = ... = C, = 0.

The proof of optimality of the constructed method on the class H_
is carrying out by the same scheme which was used in Theorem 2. [J

m=1,...,n,

For fixed -1 < z1 < ... < z, <1 set

X2, =span{l,z,.... 2" (T,01)(2), ..., (T,9.)(2)}.
Analogously to Corollary 2 we get

Corollary 3. Let -1 < < ... < Tpyr < land n < z1 < ... <
Zn < Tnyr are defined by Proposition 2. Then the function g(§) €
X%, interpolated [ at the points Ti,... Ty, ts an optimal method of
recovery of f(£), € € (=1,1), on the class H' by the values at the

POINES Ty, s Trir-
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