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Exact n-Widths of Hardy—Sobolev Classes

K. Yu. Osipenko

Abstract. Let ﬁ;ﬁ and ﬁ(:oy denote those 2m-periodic, real-valued
functions on IR that are analytic in the strip | Im z| < 8 and satisfy the re-
strictions | Re f(") (z)| < 1 and |f(")(2)| < 1, respectively. We determine the
Kolmogorov, linear, and Gel’fand widths of iLZO”B in Lg[0,27], 1 < ¢ < oo,

and ﬁgo,ﬁ in Lo [0, 27].

Introduction

The Kolmogorov n-width of a subset A of a normed linear space X is defined by

dn(A, X) :=infsup inf ||z — ¥,
Xn v€EAYEX,

where X, runs over all n-dimensional subspaces of X. The linear n-width of A
in X 1s defined by

An (A, X) :=infsup ||z — Px||,
P, reA

where P, varies over all bounded linear operators mapping X into itself whose
range has dimension n or less. The Gel’fand n-width is given by

d"(A, X) :=inf sup |2/,
XnpeAnXn
where the infimum is taken over all subspaces X™ of X of codimension n (here
we assume that 0 € A).

Set S5 :={z € € :|Imz| < 8}. For integer r > 0 denote by /Nl’;oﬁ (ﬁgo,ﬁ) the
set of 2m-periodic functions, real-valued on IR and analytic in the strip Sz which
satisfy the conditions | Re f")(z)| < 1 (|f{")(2)| < 1). For # = 0 we shall omit the
upper index in the notation of these classes. In this paper we determine the exact
values of the Kolmogorov, linear, and Gel’fand widths of /Nl’;oﬁ in L, := L,[0, 2x],

1 < ¢ < oo, and f]goﬁ in Lo,. We also show that the n-widths of the subset
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of analytic functions on [0, 27) from the Sobolev class Wg‘o are the same as for
wr.

For ¢ = 0o the n-widths of the class 77,007@ were obtained by V. M. Tikhomirov
[11]. For 1 < ¢ < oo the exact values of the even n-widths of the classes ]Nlooﬁ and

H., s were determined in [9] and [7]. In the nonperiodic case for the functions
which are analytic on the open unit disk, real-valued on (—1,1), and which
satisfy the restriction | f(")(2)| < 1, the n-widths were obtained in [4]. The results
concerning the n-widths of the classes of analytic functions of several variables
whose rth radial derivative is bounded may be found in [3] and [8].

1. Exact n-Widths of ﬁ;’ﬁ

If fe izooyg, then (see [1, p. 269])

1 27
F6) =5 [ Ko=) Re ft 4 i) dr,
27 0
where
Kp(z) = 1+2§: coskz
A= — cosh k3’
Set

e =g [ " () dt,

= cos(kt — 7r/2)
D, (t) ::2Zk—r, r=1,2,....
k=1

Using the representation

2w
f6)= g [ 10+ (0, 1))
for » > 1 we have

R ={a+Grsxh:|hlls <1, hLl, a€ R},

where G g 1= D, x Kz.

We say that a real, 2m-periodic, continuous function (' satisfies Property B
(cf. [10, p. 129]) if for every choice of 0 < #; < ... <ty < 27 and each m, the
subspace

X =8 b+ Y b;G(—t;) 1Y b;j=0
j=1

j=1
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is of dimension m, and for every f € Xomy1, f Z 0, the number of cyclic sign
changes S.(f) < 2m.
Set

A2n::{€:€:(€1a"'a€2n)a0§€1<"'<€2n<2ﬂ-}~
For each £ € Ay, we define
he(t):= (1), tel§-1,&), j=1,....2n+1,

where &y := 0, {ap41 := 27. Denote by hy, (t) the function ke for &; = (j — 1)w/n,
j=1,...2n. R
To calculate the exact n-widths of h7 ;5 we need the following theorem of

A. Pinkus [10, p. 180, 182].
Theorem 1. Let G satisfy Property B. Set

Boo :={a+Gxh:|hlle <1, hil, a€R}.
Then:

(1) don—1(Boo, Loo) = Aan—1(Boo, Loo) = d** " (Boo, Leo) = |G # hn|oo;
(#3) for each 1 < ¢ < 0

d2n(gooan) = /\2n(gooan) = dzn(gooan) = ||G * hyllq.

We say that a real, 2m-periodic, continuous function X € NCV D (nondegen-
erate cyclic variation diminishing) if S. (K x f) < S¢(f) for all real, 2r-periodic,
piecewise continuous functions f, and

dimspan {K(t1 — ), ..., K{t, — )} =n

for every choice of 0 <¢; < ... < t, < 27 and all n. Tt is known (see [10, p. 128,
133]) that Ks € NCV D and for each r > 2, D, satisfies Property B (D1(«) also
satisfies all conditions of Property B except that it is not continuous at x = 0).
Therefore, G, 5 satisfies Property B for every » > 1.

The Euler perfect splines are defined by

nr(t) = , =0,1,....
Lt (2k + 1)7+ "

mn’

i sin((2k + 1)nt — 7r/2)

Several properties of this splines may be found, for example, in [6, p. 104]. In
particular,

Ono=hn,  nr=Dpxhy, r=12 ..

Put

oQ

4 sin((2k + 1)nt — wr/2)
g K
Son,r( ) ( A6 * Pn, 7' Z Qk 4+ 1 r+1 COSh((?k + 1)716)

7rn’“
k:O
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It was proved in [9] that
4 2nA
(1.1) o () = (Kp * hy)(t) = — arctan (\/Xsn (Lt /\))
: T
where A is the complete elliptic integral of the first kind with modulus
e—4Bnk(k+1)
(1.2) A =dem 2 Lo
1+2 Zk:l —4hnk?
By analogy to the Euler perfect splines it can be shown that
4 & (_1)k(r+1)
= (2k + 1)7+1 cosh((2k + 1)nB)

2

[(ﬁ,r = ||gpg,r||00 =

For r > 1, ¢f = G, *h,. Thus from Theorem 1 (r > 1) and Theorems 4.8
and 4.9 of [10, p. 179, 180] (r = 0) we obtain the following result.

Theorem2. Let r > 0. Then:

(1) dan—1(hly 5, Loo) = Asn—1(hly 5, Leo) = d*" "ML, 5, Leo) = Kf ;
(#8) for each 1 < ¢ < o0

d2n(hoo NeR) )_/\271(]7'00 NeE ) dzn( goﬁ’ )_ngn r”q

For integer r > 1 denote by Wg‘o the class of real, 2m-periodic functions whose
(r — 1)st derivative is absolutely continuous and whose rth derivative satisfies

the condition |f(") ()] < 1. Let A" be the set of functions from Wg‘o which are
analytic on [0, 27).

Theorem 3. Let r > 1. Then:

(4)
~ ~ ~ K,
(13) dZn—l(Ago,Loo) = AZn—l(AgoaLoo) — dzn_l(Ago,Loo) = X—T,
n
where

. 7‘+1’
T k:O Qk —|— 1)

(#8) for each 1 < ¢ < o0
(1.4) dan(ALy, Lg) = Aan (AL, Lg) = d™ (AL, Lg) = llen,rllo-

Proof. For the class W’“ the equations analogous to (1.3) and (1.4) are a
well-known fact (the details and references may be found in [10] and [6]). Since

A’“ C W’“ 1t 1s sufficient to prove the lower bound. For all 5 > 0, hZ, 5 C A’“
Therefore, the lower bound follows from Theorem 2 and the obV1ous equations

o K .
lim K7, = £ L[l = llon o

The theorem is proved. a



Exact n-Widths of Hardy—Sobolev Classes 5

2. Exact n-Widths of ﬁ;’ﬁ

To calculate the exact n-widths of f]go g we shall need some preliminary results.

Proposition4. Let ¢ be a continuous, odd, and strictly increasing function

defined on [—1,1]. Put
A ={&€ Aoy i p(Kg xhe)L1}.
Then
inf {{|a+ Dy % p(Kp x he)lloo 10 €R, £ € AT} =[Dr# o(Kp % hn)||oo-
Proof. Let & € AS . Set
Je:=Drxp(Kgxhe),  fni=Drxp(Kp x hn).
Suppose that there exists an @ € IR and a ¢ € AS, for which ||a+ fe||oo < || fn]]oo-

As fo(t + 7/n) = —fn(t) there exist at least 2n points 0 <3 < ... <tap < 27
such that

Falty) = (=1 fallo, G=1,....2n,

where € = 1 or —1. Denote by Z(f) the number of distinct zeros of a function f
on [0, 2m). We have

Z(fo(-+a)xat fe() > 2n
for every « € IR. By Rolle’s Theorem
Se(J (4 a) £ I () = Sl (K ha) (- + @) & ¢ (K % he)(4)) > 2n.
Since ¢ is an odd and strictly increasing function,
S (K5 ha) (- + ) (K # he) () > 2n.
From the fact that Kg € NCV D it follows that
Se(hn(- + @) £ he () > 2n.

Using Lemma 4.1 of [10, p. 170], we obtain the existence of an « € IR and ¢ = 1
or —1 for which

Se(hn(- + @) —ehe (1) <2(n—1).

This contradiction proves the proposition. a
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Set @o(z) :=tan §z,

D = po(Kp*hn), P8 =Dpxpo(Kgxhy), r=12....

In view of (1.1) and the representation (see [2, p. 266])

2n/1 sin((2k + 1)nt)
o ( ) bV Z sinh( 2k +1)2n0)

we have

R sin((2k + 1)nt — 7r/2)
@y (1) = rAn ;; (2k + 1) sinh((2k +1)2n3)"

r=01,....
It also follows from (1.1) that
2nA
@Z,o(t) =vAsn (Lt /\)

Using the same arguments as for gogyr, we obtain

T = —1)k(r+1)
125 ][0 = S 1) |
VAAn” Pt (2k + 1)" sinh((2k + 1)2n5)

Put

It is easily seen that §Z5 ( 22«) =0,j=1,...,2n.

Proposition5. For allt € [0,27) and v > 0
sup{ (@) f e B 5 [ =0, j=1,. zn} = |&f . (1)].

Proof. Suppose there exists a t* € [0,27) and a function f, € ﬁgo,ﬁ for which
fot)) =0, =1,....2n, and |fo(t*)| > |@F . (t*)]. Set

p=0p () fot"),  F:=) . —pfo.

The function F' has at least 2n+ 1 distinct zeros at the points t%{z«, j=1,...,2n,
and t*. By Rolle’s Theorem

FUNt) = v Asn (%t, /\) — o (1)

has at least 2n + 1 zeros on [0, 27).
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Denote by Hoo(Ap) the set of functions which are analytic on the annulus
Ag={zeC:e P <|z|<ef }

and which satisfy the condition |f(z)| < 1, z € Az. If f(z) € ffoo,ﬁ, then
f(% log z) € Hoo(Ap). It is easy to check that the function

G(z) := Vsn (Mlog z,/\)
T

has exactly 2n zeros on Ag. Since on JdAg
1 Ml
|G(z) = £ (S log 2) | = [pfs” (S log =) | < o] < 1= 1G(2)],

Rouche’s Theorem implies that F(T)(t) has 2n or fewer zeros on [0, 27). We thus
reach a contradiction, which proves the proposition. a

Theorem 6. [For all integers v > 0
d2n( ooﬁa )—AZH( ooﬁa )_d2n( goyﬁaLoo)
T (_1)k(r+1)
Ay l;) (2k + 1)7 sinh((2k + 1)2np)’

where A 1s the complete elliptic integral of the first kind with modulus A defined
by (1.2).

Proof. The case r = 0 follows from [7] where the equalities

d2n( Ooﬁ’ )_/\271( Ooﬁ’L) dzn(HOOﬁ’ ) ||@n0||q’ lgqgooa

were proved. So we shall assume that » > 1.
We shall first prove the lower bound for the Kolmogorov widths. Set

2n+1
SZn = { r = (l‘l,...,l‘zn_H) S IRZH-H : Z |l‘k| = 271'},

k=1

J
ro(z) =0, 7i(x) ::Zm" Jj=1,....2n+1.

For each x € S?” put

ge(t) :=signe;, moi(z) <t<7(e), j=1,...,2n+1,
fo =Dy xpo(Kg * go).

Let X5, be any 2n-dimensional subspace of L,, 1 < ¢ < oo, such that 1 € X»,.
Suppose that Xa, = span{fi,..., fan} and f1(t) = 1. Let a1(z), ..., az,(x) be
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the coefficients of fi,..., fan, respectively, in the best approximation to f, from
Xs,,. The mapping

where
br) = / " oo((Ks % 02)(1)) d.

is a continuous map of S?” into IR*". By Borsuk’s Theorem there exists an
a* € S?" for which A(z*) = 0. As the function ¢g(z) = tan Zz maps the strip

|Rez| < 1 conformally onto the open unit disk, for all z € S** f, € f]go g
Thus,

(2.5)  supinf [[f —gllg > sup inf [|fz —gllg > [[for —ar(27)]lq
FEHT, , gEXan TES gEXan
> inf {|la+ Dy % po(Kp * he)llg - a €R, £ € AT}
If 1 ¢ X, then the left-hand side of (2.5) is equal to +o00. Hence,
don (112, 50 L) > inf {la + Dy + go(Ky + he)lly a € R, € € A2}
By passing to the limit ¢ — oo we obtain
Ao (7 5, Loo) > 1951
Let us now prove the lower bound for the Gel’fand widths. Suppose that
X = {f€Lo:{l;, =0, j=1,....2n, ;€ L'}
If({;,1)=0,j=1,...,2n, then

_sup [|f]]eo = 0.
feH;)ﬂnX%

Assume that (/1,1) # 0. Set

<lj’1>
L, =10 — {
J J <11,1> 1

For each x € S?" denote by A; the mapping
A1($) = (b(l‘), <L2a fx>a B <L2na fx>)

Since A1:5%" — IR?" is an odd and continuous map, by Borsuk’s Theorem there
exists an «* for which A;(2*) = 0. Then

<lla fx*>
<ll’1>

i=2...,2n.

f* = for — EX2”~
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Consequently,

sup [ fllos > (157 leo
feHT, ,nxzn
>inf{||la+ D, % ¢o(Kp * he)l|oo :a EIR, £ € AS" }
> |95 oo

Thus,
A" (HL, 5, Leo) > |97 ,|oo-

Now let us prove the upper bound for the linear widths. We shall use a mod-
ification of the proof for the nonperiodic case from [4]. Denote by E, the set of
functions 27-periodic and analytic on Sg which satisfy

1 1/p
I, = s (5 [ 1fear1ael) " <o 1<,
0<p<l TJr
1l = sup [£()] < o0, p= oo,

ZESﬂ

where I' := [2r 413, i5|U[—i3, 2 —if]. If the 27-periodic functions w(z), w1 (z) €
C(I') then, using the mapping z = Zl,log w, it can be proved (see [5]) that for all
l<p<oo

20 s { |5 [ sl <1 [ feae =0}

:inf{ (i/pku(z)—cwl(z)—X(z)|q|dz|)1/q:cE@, XEEq}

= lwllz, /By

where 1/p+1/¢g=1,E41 := E‘Ilp +span{w; }, and E‘Ilp is the space of boundary
values on I' of functions from F,.
By the same mapping z = Zl,log w and the Residue Theorem we obtain

1 iz
2m Jp et? — et

(2.7) @ , 1€ S,

for all f € Fo. For x,t; € [0,27) we define

1 [ Dy(z —t)e'*
K(z,2) = — Mdt

T Jo eiz _ eit

, Viz,z) := K(z,2) — K(z,t1).

From (2.7) it follows that all functions 27-periodic and analytic on S whose rth
derivative lies in E, satisfy the following equation

(2.8) o) = 1it2) = 5= [ Vo)) de
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Set

_ )1, ze2r+iB,ip],
wi(z) = {0, 2 € [—iB,2m — if].

Then the condition f11 can be written in the form

/Ff(z)wl(z) dz = 0.

For distinct points ¢1,%2,...,t2, € [0, 27) put

2n
Dyw) = inf V)= eVen)|,

Since L4(I')/Eq 1 is uniformly convex for 1 < ¢ < oo there are continuous

functions on [0, 27], ca(2), . .., can(x), such that
2n
Dyf@) = Vi)=Y eV,
j=2 q( )/ g1
It follows from (2.6) and (2.8) that
sup Dg(z)
z€[0,27]
1 2n
= sup H4—/(V(z,~)— GOV t)) FE dz| Iflle, <1, f11
TJr =2 00
1 2n
> s [ [ (Ve = Y G0V ) 196 ds
£ moe <11 2T S j=2 e

> sup Hf«)—f(tl)—icj«)(f(tj)—f(u))\\wzAzn@fgo,@,Loo).

FEHZ 5

The function Dy is continuous on [0,27], 1 < ¢ < oo, and Dy N\, D uniformly
as ¢ \y 1. Letting ¢ decrease to 1, we obtain

Aon(HY, 5, Loo) < xes[glgﬂ Dy (x)

H inf sup ‘i /F (V(z, )= icj‘/(z,tj))f(r)(z) dz
j=2

cayCan ||F || o <1

oQ

= sup o(z),
z€[0,27]
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where

(2.9) o(x) ;= sup { ‘i /F Vi(z, a:)f(r)(z) dz

/ V(2 t) f(z)dz =0, j:2,...,2n}.
r

Using the same methods as in [5], it can be shown that the solution of (2.9) is
unique up to a factor ¢’*, a € IR. By (2.8) we have

2) = sup { 1) = FE)] 1O Nee <1, Flt5) = F(0) =0, j=2,....2n }.

Therefore, if f*(z) is a solution of (2.9), then f*(z) is also a solution of (2.9).
Consequently, there exists an extremal function which is real on IR. Thus,

o(x) = inf sup ‘ J(t1) i_: 1))‘

C2,..,C2n fEHr

00,8
Put
2n
o1(x) := inf sup ‘f(x)—Zc]f(t])‘
C1y.-C2n fEH;ﬂ j=1

Obviously, o1(z) < o(x). On the other hand, if ijl ¢; # 1, then

sup ‘f(a:) ic]f( )‘_ c(l—icj)‘:oo.

fefr, , j=1

celR

Hence, o1(x) = o(x). Now we have

Nan (% 3, L) < sUp_4(3)
z€[0,27]

= sup supq |f(z fEHOO@, f(tj)zo,jzl,...,Qn}.
z€[0,27]

For t; = t%‘{z«, j=1,...,2n, it follows from Proposition 5 that
Ao (2, 5 Loo) < 119 lloo-
Since s, > da, and s, > d*” we obtain
dan (M5 5y Loo) = Aon(HZ, 5, Loo) = A (L, 5, Loo) = |9 ,|co-
The theorem is proved. a
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