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ABsTRACT. We study optimal recovery problems for functions and
their derivatives in the L, metric on the line from information
about the Fourier transform of the function in question known
approximately on a finite interval or on the entire line. Exact values
of optimal recovery errors and closed-form expressions for optimal
recovery methods are obtained. We also prove a sharp inequality
for derivatives (closely related to these recovery problems), which
estimates the kth derivative of a function in the Ls-norm on the
line via the Lo-norm of the nth derivative and the L,-norm of the
Fourier transform of the function.

1. STATEMENT OF THE PROBLEM

We start from the general statement of the optimal recovery prob-
lem. Let C be a set (class) in a linear space X. For every element
x € C, we know information [(x), where [ is a mapping (which is
called an information mapping) of C' into another linear space Y. The
information about elements of C' can be inaccurate, and therefore, [
is a multivalued mapping in general. Next, let Z be a normed space
and A: X — Z a linear operator. The problem is to recover A on ' in
the metric of Z in the best possible way from the given information I.
Namely, a mapping ¢: Y — Z will be called a recovery method (of A
on C from [). The number

¢(A,C,1,p) = sup )HACL’—My)Hz

zeC, yel(x

is called the error of the method. The number

(1) EANC T)y= inf e, C, 1),

p: Y27
where the infimum is taken over all mappings ¢: Y — Z, is called
the optimal recovery error, and any method for which the infimum is
attained is called an optimal recovery method.
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The optimal recovery problem was originally stated by S. A. Smolyak
[1] for the case in which Z = R, [ is a linear operator, and dimY" < oc.
More recently, this range of problems has been intensively developed
in various directions (see [2]-[5]). An approach to recovery problems
on the basis of general principles of extremum theory was developed in
[6]-[8]. We use this approach in the present paper.

Let us proceed to the statement of recovery problems considered in
this paper. Let S be the Schwartz space of rapidly decreasing infinitely
differentiable functions on R, S’ the dual space of distributions, and
I': 8" — S’ the Fourier transform. Let 1 < p < oc and n € N. We
take the space

X' ={z €5 :Fa(:) € Ly(R), 2™(-) € Ly(R) }
as the space X in problem (1) and the set
Cp={a() e Xp o |2 ()o@ < 1}

as the class C.

Let us describe information mappings to be studied here. Let 1 <
p<o0,0 <o <00, A, = (—0,0),and § > 0. Suppose that the
information available about the element x(-) € Cy is as follows: we
know a function y(-) € L,(A,) such that ||Fa(-) — y(-)||lr,a.) < 9.
Thus the information mapping [ = [g’g: Cr — L,(A;) has the form
[Z‘j’g:z;(-) = Fa(-) ) + dBL,(A,), where BL,(A,) is the unit ball in
Ly(A,).

If p = oo, then we consider a more general situation. Let §(-) be
a nonnegative function in L. (A,). We assume that the information

about x(-) is a function y(-) € Loo(A,) such that |Fa(t) — y(t)] < (1)
for almost all £t € A,. If we set

B(o(-)) = {y(-) € Loo(As) = [y(1)] < 6(1) a. e,

|a

then the information mapping [ = 150 C% — Loo(A,) has the form
E7a() = Fal)), + BO).

We state the problem on the optimal recovery of the linear operator
A, Ax(-) = 2® (), 0 <k <n—1, on the class C)in the Ly(R)-metric
from the information mappings defined above. (In the following, we
show that A: X7 — Ly(R) for 2 < p < o00.)

Thus in our case problem (1) for p < oo has the form

(2)

E(™(), 0}, 1)7) = inf sup 129C) = o)l ae)s
¢ R0y, YOEL ()
120 2001 (a0) <3
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where the infimum is taken over all ¢: L,(A,) — La(R). If p = o0,
then it has the form

(3)
B(eW(),CL, 1207) = inf sup 1) = e ()l ae),
¥ 2()ECL,, y(-)E€L(A0)
|Fz(t)—y(t)|<5(2) a. e.
where the infimum is taken over all p: Lo (A,) — Lo(R).

In problem (2) with p = 2 and problem (3), we find the exact values
of optimal recovery errors and closed-form expressions for optimal re-
covery methods. In both cases, the following phenomenon occurs: for
a given error in problem (3), there exists a finite & > 0 such that the
knowledge of the Fourier transform on an interval larger than (—&,0)
does not result in a decrease in the optimal recovery error. This con-
clusion is apparently important in practical applications of the results
obtained here.

In problem (2) with p = 2 and o = oo, the information is equivalent
(in view of the Plancherel theorem) to the knowledge of the function
itself with accuracy ¢ in the Ly(R)-metric. In this setting, the problem
was solved in [9]. Periodic analogs of problem (2) whith p = 2 and
problem (3), as well as their extensions to larger function classes, were
studied in the paper [10].

For 2 < p < oo, we obtain a lower bound for the number (2). More-
over, we prove a sharp estimate of the k-th derivative of a function in
the Ly-norm via the Ly-norm of the n-th derivative and the L,-norm
of the Fourier transform.

2. STATEMENT OF THE MAIN RESULTS

Theorem 1. Letn e N, 0 <k <n-1,0<0 <00, A, =(—0,0),
0(-) € Loo(Ay), 6(+) > 0, and

1 a
aozsup{a:0<a<a,2—/ t2”52(t)dt§1}.
™ J_q
If 09 < o0, then
(4)
o(n 1 [ o(n
E(x(k)()70n [5(')70) _ \/O0 2(n—k) N (t2k — o, 2(n k)tzn)52(t) dt

b
o0 o0 27_[_ oo

and the method

®  awn =g [ (i (UL(J)?(”"“))y(T)em "

is optimal.
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If 09 = o0, then

1 o0

(6) B(xW(),cn, 120) = \/z_/ 12582(t) dt
T J_x

and the method

) B =5 [y

— 00

is optimal.
Corollary 1. Let 6(t) =46 > 0 and

5= (r(2n + 1))7r1 8 7,
Then

26%(n — k)
—2(n—k) 2k+1 P~
\/U ekt e’ 0 77

n—~k
9 1 1 L a(nek)
n+ ) 2n+iC \ o> 37
2k +1 \w(2n +1)

and the method (5) with oo = min(o,7) is optimal.

B(«®(), CL, 1) =

oY T 00

It follows from this corollary that for a given §, starting from &,
further extension of the interval on which the Fourier transform of
a function in CZ is given with error ¢ in the uniform metric does not
result in a decrease in the recovery error. In other words, if the relation

(8) 5ot < m(2n 4 1)

between the input data and the size of the interval on which the data
is measured is violated, then the available information turns out to be
redundant.

Theorem 2. Letn e N, 0 <k <n—1,0<0<00,d >0, and

~ <n>m 27 e
o=+ — .
k 6?2
k
—k [(k\"* 1
oty [ — 0+ —, o<o,
2mn \n on

n—Fk

52\
) =
T
and the method

= & [ (12 () (2)7) v

—0

Then

E(z®(),05,17) =
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where oo = min(o,7), is optimal.
If k=0 and 0 < o0 < o0, then
- 62 1
B(a(), 03, 17) =\l -+ —

or | gin

and the method

g = [ (1+(2)) vt

[

is optimal.

It follows from Theorem 2 that the “saturation” effect is also ob-
served in problem (2) with p = 2. Here the analogue of relation (8) is
given by the inequality

st <or (1)
g ~ & L 3

the available information is redundant whenever this inequality is vio-
lated.
Note that the method

B = o= [ nfutne

which takes each function y(-) to the k-th derivative of its inverse
Fourier transform, is also optimal for & = 0 (along with the method (9))
in the recovery problem in Theorem 2. This can readily be verified by
a straightforward estimate. However, it can be shown that this seem-
ingly natural method is not optimal for £ > 0 and, moreover, its error
is equal to oc.

Theorem 3. Letn € N, 0 <k <n—1, and2 < p < co. The following
sharp inequality holds:

k+1/2—1/p

(10) =™ ) llae <1&(knp)HFw()H"+”2 7 | RIO] FF

where

__n—k _
1/2 -1 L+ 1/9 — 1 /pBY/2-1/p\ "ti/2-1/p
I((kvnvp):\/n—l_ / /p ( + / /p 7

kE+1/2—1/p (2m)V/p(n — k)1-1/p
k+1/2-1 1—-1
(n—k)(1=2/p)" 1 =2/p
for2 < p < oo, and B(-,-) is the Eiler beta function; moreover
(12)

n—k n—k
2 1 1 2n+1 1 2n
K(k,n,o00) =4/ nt . K(k,n,2)={— .
2k +1 \w(2n +1) s
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For p = 2, inequality (10) coincides with the well-known Hardy-
Littlewood-Podlya inequality by the Plancherel theorem. Inequalities
of the form (10) with various metrics and with the function itself oc-
curring instead of its Fourier transform are usually called Kolmogorov
type inequalities for derivatives. They play an important role in var-
ious problems of analysis and approximation theory. There is a wide
literature dealing with them (e.g., see [11, 12]).

3. PROOFS

We start from a simple statement concerning a lower bound for the
optimal recovery error.

Lemma 1. Suppose that the set
grl={(zv,y) e X xY:zeC, yel(x)}
is centrally symmetric and the set
I70)={zeC:0€eI(x)}
is nonempty in problem (1). Then
BACHE s Al

zeC, z€I~1(0)
Proof. Let ¢ be an arbitrary method. Then
2||Azflz < J[Az = @(0)]lz + [[A(=2) = p(0)l[z < 2e(A, C, 1, 0)
for all z € C' such that z € I71(0). Consequently,
>

e(N,C, 1, ) sup  [|Az||z

zeC, zel~1(0)

for each method ¢, which readily implies the desired estimate. O

The proofs of Theorems 1 and 2 are carried out by a common scheme.
For this reason, first we prove a general result (containing some reason-
ing based on convex optimization principles) and then use it to obtain
the cited theorems. The optimal recovery problem for which this result
will be stated is a refinement of the general setting mentioned in the
beginning of the paper.

Suppose that 7' is a finite set with the discrete measure or an interval
(finite or infinite) on the line with the Lebesgue measure, X and Y3,
t € T, are linear spaces with semi-inner products (-,-)x and (-, ")y,
and the corresponding seminorms || - ||x and || - ||y;, Z is a normed
space, and d(-) is a nonnegative measurable function on T'. Let ¥ be a
subspace of functions y(-) on T ranging in U;erY;: such that y(t) € Y;
and t — |ly(¢)]ly; is a measurable function on T. We consider the
problem of optimal recovery of an operator A: X — Z on the class
BX =A{x € X :||z]|x < 1} from information about a linear operator
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I: X — Y given with an error §(-). More precisely, for every € BX
we know a function y(-) € Y such that

[1z(t) —y(t)llyv, < 6(1)
for almost all ¢t € T.
In this case, the optimal recovery error has the form

(18) E(ABX.L6()= inf S T
p:Y—=Z zeBX, y(-)€Y
He()—y()lly, <6(¢) a. e.

We wish to compute this number and find an optimal method.
It follows from Lemma 1 that

(14) E(ABX,L6(-)>  sup  [|Az||z
re
112(8)]1v, <5(1) a. e.

Consider the following extremal problem (whose value coincides with
the square of the right-hand side of (14)):

(15)
|Az]|7 — max, |[{z(t)||}, < 8°(t) for almost all t € T',  |Jz||3 < 1.
Set

Lz, M (), A2) = —[[Az]l7 +/TA1(t)H1x(t)H2yt dp+ Azl 2%

where Aq(-) is a measurable nonnegative function, Ay > 0, and dy is
either the Lebesgue measure (if T is an interval of the line) or the
discrete measure (if 7' is a finite set).

Theorem 4. Suppose that there exists a measurable nonnegative func-
tion M\ (+) and a number Ay > 0 such that the function A (-)6*(-) and

all functions t — Xl(t)(yl(t),yz(t))yﬂ v (), y%(-) € Y, are integrable
on T and

(a) L(x,M(),X) >0 Vae X.

Furthermore, suppose that there exists a sequence {x,,} of admissible
elements in (15) such that the following conditions hold:

(b)  Lm Lz, (), A2) =0,

m—00

(¢) lim (/TX1<t) (I1m(DIF, = 6*(1)) duﬁz(!\xm!@—l)) =0.

m—00

If z, is a solution of the extremal problem
16) [ R0 - g0l du+ Salle -+ min, o € X,
T

then the recovery method

(17) ely) = Az,
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is optimal and

(18)

B(ABX,L§()=  sup HAwn=¢/wa%ww+X}
T

reBX
12 (0)l1v; <3(0) a.

Proof. 1. Let us show that the values of problem (15) and the problem
(19) Az — max, /Xl(t)!\fx(t)“% dp+ Xz} < S,
T
where
S = / N (1)82(t) dpt + A,
T

coincide and are equal to S. Indeed, with regard to (a),

— [lAz]l7 = =zl +/T/\1(t) (25, = 8*(1)) dp
+ % (lally — 1) > =5
for each element € X admissible in (15). On the other hand, using
(¢) and (b), we obtain

— lim [[Az,||* = lim (— A2,

+A%@MW%NW%—V®)W+XMWM@—D>:—&

that is, S is the value of problem (15). But the same arguments obvi-
ously prove that S is the value of problem (19).

2. An upper bound. Consider the linear space H = X x Y with the
semi-inner product

(e D = |

T

o~

MO0 520y dyr+ Aol 2%)x
Then the extremal problem (16) can be rewritten in the form

[(z, 12()) = (0,y(-)) ||y — min, 2 € X.
If 2, is a solution of this problem, then it is easily seen that

((zy, T2y (-)) = (0,y(-). (x, 12(-)))g =0

for all z € X. It follows that

G, Ze()) = (0,5 ()l = Ny L) = (g Ly (D
+ (g, Ly () = (0, 5Dl
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If ||[][x <1 and |[Ta(t) — y(t)|ly, < 6(t), t € T, then it follows from
the last inequality that

(e, L)) = (g Loy ()l < (2, L()) = (0, 5()II3
Zéﬁdeﬂﬂ—y®ﬁ¢w+Xﬂwﬁéﬁ

By setting » = @ — x,,, we arrive at the inequality

/XwWAw;w+%wm§s
T
and therefore,

Ao Anls=lAslz < s fAdls=VE
Jr M @OIwel[3, duto|lz|5 <S5
Taking account of (14), we obtain the equality (18) and prove the
optimality of the method (17). O

Proof of Theorem 1. First, let g < oo. Let us rewrite this problem in
terms of Theorem 4. Here T'= A,, X = X is a linear space with the
semi-inner product

ww»mmkézéy@@AWw@

Vi =Cforalt e A, Z=1LyR),Y = Loo(A,), Az(-) = 2F)(.),
BX = CZ, and the operator [: X — L. (A,) is defined by the

(ool

formula fx(-) = Fa(-). With this notation, problem (3) coincides with

problem (13). In this case, the function L£(x(-), A1(+), A2) in Theorem 4
has the form

HM%MOMﬁ=4WWN&®+/‘M®WMm”t

+ Az’\w(n)(')H%Q(R)-

Passing to Fourier transforms and writing (27)7 ' Fa(-)|* = u(-), we
have

,C(:z;(-),)\l(-),)\g):/R<—t2k—|—)\2t2”) u(t)dt—|—27r/ A (t)u(t) dt

o

by the Plancherel theorem. Let X = UO_Z(n_k) and
Xl(t) _ (27’[’)_1 <t2k — X2t2n> 5 |t| < ao,
0, |t| 2 agg.
Then

L(z(), (), Ag) = AD (=% + oot ) u(t) dt >0
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Set
1 [0
=1- — 1252 dt.
. 2/ (t

If ¥ = 0, then, denoting the inverse Fourier transform of the function
coinciding with 4(-) on the interval (—og, 0¢) and vanishing outside it
by Z(-), we can readily verify that conditions (b) and (¢) in Theorem 4
are satisfied for the constant sequence x,,(-) = Z(+).

If ¥ > 0 (in this case, it is obvious that oo = o), then we set

5(1)/ (2r), 1 <.
wnlt) = § o= my — i) /2, o < |1 <o+ 1/m,
0. >0+ 1/m,

for m > v72. (We denote the inverse Fourier transform of \/27u,,(-)
by @, (+).) It is easily seen that

lim £(zm (), A (), ) = 0.

m—00

Moreover,

/ ’ M (1) (2 (1) — 6%(1)) dt = 0

[

and
e 2, gy = / 2 (1) di
1 o _ o+1/m
N 0 dt+M/ 12 dt
o“r -

T or o
(my = v/m) (0 + 1/m)* " = ™) oo

—1_
vt o (2n + 1)

It also follows from the last equations that

1
() (3|12 -
ey < 1= 5=

for sufficiently large m; that is, the functions x,,(-) are admissible in
problem (15).
Problem (16) with y(-) € Loo(A,) has the form

/ MO Fa(t) =y dt + Xo| 2™ ()| py@) — min,  a(-) € X2

o

With regard to the Plancherel theorem, it can be rewritten as

- A
/ Al(t)|F:1;(t)—y(t)|2dt—|—2—2/t2”|F:1;(t)|2dt—>min, x(-) € XI.
T Jr

o
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One can readily verify that its solution is the function ¥,(-) such that
2w\ (1)

FZ,(t) = { 2mhi(t) + Aot

0, |t| > oo,

y(t), [t < oo,

that is,

[:a?\y(t) = {( y( )7 | | o

0, |t| 2 agg.

It follows from Theorem 4 that the optimal recovery method has the
form (5) and its error is given by (4).

If o9 = oo (in this case, obviously, o = o0), then it follows from
Lemma 1 that

E(W (), cn, 50y > sup Hx(k)(')HLz(R)

> 3901 \/ JRERCK

where Z(-) is the inverse Fourier transform of §(-). On the other hand,

(), CL 10, 5) = sup !WW%@@OM@

| 1/2
= sup ( / R Fa(t) — y(t))? dt)
r()CL, v)hn () \ 2T

[Fz(t)—y(1)|<5(2) a
1 o0
< \/—/ 12k82(1) dt
27 f_ o

for the method (7). O

In particular, it follows from Theorem 1 that if §(¢) = § > 0 and

o = oo (see Corollary 1), then
. 2(n—F%
sup Hx(k)()HLz(R) =Kk (kvnv OO)(S ntl o,
z(-)eCT
|F2(t)|<5(4) a. e.

where the constant K (k,n,o0) is defined in (12). Hence we arrive at
the sharp inequality

2(n—k)

e )o@y < K (ks c0) [P 27 2"“ 2l ()HQW
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Proof of Theorem 2. We again rewrite the problem in terms of Theo-
rem 4. Here T' consists of one point, say, t = 1. Further, X = X} is a
linear space with the semi-inner product

(21 )s2( )y = / O (0)28() di,

R

Vi =Y = Ly(A,), Z = Ly(R), Az(-) = 2®)(-), BX = CF, the informa-
tion operator I: X7 — Ly(A,) is given by the formula lx(-) = Fa(-),
and §(1) = 6 > 0. Here the function L£(x(), A1, A2) in Theorem 4 has

the form

L(x(-), A, Ag) = = [le O C)[E e + Al/ [Fa(t)Fdt+ Aolle™ (17,0,

o

Passing to Fourier transforms, we have

L(z(+), A1, \2) = / (=% 4 2w\ X (1) + Aot®) u(t) dt,
R

where (27)7Fz(+)|? = u(-) and x,(-) is the characteristic function of

the interval A,.

Set
L (kN n—-Fk ,,
5, - %(ﬁ) , oo k>0, 5, = o H k>0,
1 0'_2717 k = 0,
o0 k= )
2m
k 2(nl—k
~ <_> 0o, k> 0,
t= n
0, k=0

One can readily verify that
L(2(-), M, A2) >0

for all z(-) € X7.
First, suppose that & > 0 and o < & (in this case, 0p = o). For
sufficiently large m, consider the sequence of functions

5? ~ ~
AT
= —/ 52
tm (1) MoV 2 fon , o <|t|<o+1/m,
207" 2
0, in all other cases.

Then
27T/ U, (1) dt = 82,
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52 %\ 1 241 %\Qn-l—l
R 2 2n+1
pmoym (] B (o YT = 0P ey
2020 2 n+1
Moreover,

§? 1
ru, () dt <1 — 1 — —2" ) ——
/R () dt < ( 2m >2x/m

for sufficiently large m. It follows that condition (¢) in Theorem 4 is sat-
isfied for the inverse Fourier transform a,,(-) of the functions /27w, (-).
A straightforward verification readily shows that condition (b) in the
same theorem is also satisfied.

If k> 0and o > 7 or k =0, then one should consider the functions

(m — /)3 (4m), T< il < T+ 1/m,
Um(t) = j
0, otherwise.
Problem (16) with y(-) € L2(R) has the form
M Fa(-) = y( )Ty, + Aelle™O)llra@) = min,  2(-) € X5

It can be rewritten in the form

< )
A / |Fa(t) — y(t)|* dt + 2—2 / | Fat)?dt — min,  z(-) € X}
- T JRr

with regard to the Plancherel theorem. The solution of this problem is
the function 7,(-) such that

Fa ) (1+nﬁk(g)ﬁ(§o)%)_ y(t), [t <o,

07 |t| 2 0-7
for £ > 0 and
1 2n -1
I+ (—) t), |t <o,
o ( : ) yio). 1
07 |t| 2 0-7
for k£ = 0. Now the desired assertion follows from Theorem 4. O

It follows from Theorem 2 that

k 52\ T
ap e = (5)

z(-)eCT
[1F2() Lo m <6

whence we obtain the sharp inequality

n—Fk
1\ 2n n—k " k
e Ollzage) < (2—) 1E Ozl Ol ey
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Proof of Theorem 3. The cases p = 00,2 follow from Theorems 1 and
2. Suppose that 2 < p < oo. Consider the extremal problem

e Oy = max,  [1Fa()IIZ, @) < 6% e O, <1

This problem can be rewritten in terms of the Fourier transforms as
P

5
(20) / t* u(t) dt — max, / up/Q(t) dt < —,
R R 2

s

Fru(t)dt <1, u(t) >0,
R
where u(-) = (27)7'|Fx(-)]*. To problem (20) we assign the Lagrange
function

L(u(-), A\, A9) = /t?k (1) + MuP 2 (t) + Mot * u(t)) dt.
R

If we find a function u(-) admissible in (20) and Lagrange multipliers
)\1, )\2 > 0 such that

(a)  min L(u(-), A, A2) = L), A1, A),

u(t)>0

(b) A (/Ru(t)m dt — S_D — 0,
(0) A (/th”u(t) dt — 1) —0,

then @(-) will be a solution of the problem (20). Indeed,

~ P
—/t%u(t) dt > —/t%u(t) dt + X (/ w(t)P!? dt — 5—)
R R R 2m
~ ~ P
+ X (/ mu(t) dt — 1) > —/tzkﬁ(t) dt + X (/ a(t)yP’* dt — 5—)
R R R 2m
+ (/ 2ra(t) dt — 1) = —/t%a(t) dt
R R

for any admissible function w(-).

Set /)\\2 = o=2"=%) where the parameter ¢ > 0 will be defined later.
Then

t?n

=1 u(t) + A1) + —eu(t) = =) + W) + ()

for all u(t) > 0 and any > 0, where

2 2" T
(T (t%— 2 )) <o,
at) = A o2(n—k)

0, lt] > o.
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Thus condition («a) is satisfied. We take o and /)\\1 such that conditions
(b) and (¢) are satisfied:

p/2 p/2
9 /=1 o ok t2n p/2—1 5p
]97)\1 /_g o em dt = o
1 1
2 p/2=T 7 2n 2k t2n =t
G)" Lo ()
A1 -0

Making the change of variable ¢ = oy and expressing the resulting
integrals via the value of beta function B defined in (11), we obtain

p/2
A e [

p/)\\l n—k N %7
2k tont ( 2 )”21‘1 (k+1/2—1/p)B _
agr — 2 =1.

2 p/21—1 (n — k)2 __2k 9. 4
21 — = o p/2—1
2! (m) (65 12— 1/p)B

(22) _ (2m) /P (n — k)11 /e AT
i S(k+1/2 —1/p)'/2B1/2=1/p .

Taking account of (21), we have

1/2 -1
/t%ﬁ(t) dt = MU—Q(H—’?)'
. Pz 1

Substituting there the value o given by (22), we obtain

su (k) (. — K §FFRST
P lE )@ = &

x(~)€F;
Fz()l] Lpm <8

for all 2 < p < co. It readily follows that the desired sharp inequality
for derivatives is valid. O
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