
OPTIMAL RECOVERY OF FUNCTIONS AND THEIRDERIVATIVES FROM INACCURATE INFORMATIONABOUT THE SPECTRUM AND INEQUALITIES FORDERIVATIVESG. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOAbstract. We study optimal recovery problems for functions andtheir derivatives in the L2 metric on the line from informationabout the Fourier transform of the function in question knownapproximately on a �nite interval or on the entire line. Exact valuesof optimal recovery errors and closed-form expressions for optimalrecovery methods are obtained. We also prove a sharp inequalityfor derivatives (closely related to these recovery problems), whichestimates the kth derivative of a function in the L2-norm on theline via the L2-norm of the nth derivative and the Lp-norm of theFourier transform of the function.1. Statement of the problemWe start from the general statement of the optimal recovery prob-lem. Let C be a set (class) in a linear space X. For every elementx 2 C, we know information I(x), where I is a mapping (which iscalled an information mapping) of C into another linear space Y . Theinformation about elements of C can be inaccurate, and therefore, Iis a multivalued mapping in general. Next, let Z be a normed spaceand �: X ! Z a linear operator. The problem is to recover � on C inthe metric of Z in the best possible way from the given information I.Namely, a mapping ' : Y ! Z will be called a recovery method (of �on C from I). The numbere(�; C; I; ') = supx2C; y2I(x) k�x� '(y)kZis called the error of the method. The numberE(�; C; I) = inf' : Y!Z e(�; C; I; ');(1)where the in�mum is taken over all mappings ' : Y ! Z, is calledthe optimal recovery error, and any method for which the in�mum isattained is called an optimal recovery method.This research was �nancially supported by the Russian Foundation for BasicResearch (grants Nos. 00-15-96109 and 02-01-00386) and the Program \Universitiesof Russia" (grant No. UR.04.03.013) as well as by US CRDF{R.F. Ministry ofEducation Award VZ-0100-0. 1



2 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOThe optimal recovery problem was originally stated by S. A. Smolyak[1] for the case in which Z = R, I is a linear operator, and dimY <1.More recently, this range of problems has been intensively developedin various directions (see [2]{[5]). An approach to recovery problemson the basis of general principles of extremum theory was developed in[6]{[8]. We use this approach in the present paper.Let us proceed to the statement of recovery problems considered inthis paper. Let S be the Schwartz space of rapidly decreasing in�nitelydi�erentiable functions on R, S0 the dual space of distributions, andF : S0 ! S0 the Fourier transform. Let 1 � p � 1 and n 2 N. Wetake the spaceXnp = fx 2 S0 : Fx(�) 2 Lp(R); x(n)(�) 2 L2(R) gas the space X in problem (1) and the setCnp = fx(�) 2 Xnp : kx(n)(�)kL2(R) � 1 gas the class C.Let us describe information mappings to be studied here. Let 1 �p < 1, 0 < � � 1, �� = (��; �), and � > 0. Suppose that theinformation available about the element x(�) 2 Cnp is as follows: weknow a function y(�) 2 Lp(��) such that kFx(�) � y(�)kLp(��) � �.Thus the information mapping I = I�;�p : Cnp ! Lp(��) has the formI�;�p x(�) = Fx(�)���� + �BLp(��), where BLp(��) is the unit ball inLp(��).If p = 1, then we consider a more general situation. Let �(�) bea nonnegative function in L1(��). We assume that the informationabout x(�) is a function y(�) 2 L1(��) such that jFx(t)� y(t)j � �(t)for almost all t 2 ��. If we setB(�(�)) = f y(�) 2 L1(��) : jy(t)j � �(t) a. e. g;then the information mapping I = I�(�);�1 : Cn1 ! L1(��) has the formI�(�);�1 x(�) = Fx(�)���� +B(�(�)).We state the problem on the optimal recovery of the linear operator�, �x(�) = x(k)(�), 0 � k � n� 1, on the class Cnp in the L2(R)-metricfrom the information mappings de�ned above. (In the following, weshow that �: Xnp ! L2(R) for 2 � p � 1.)Thus in our case problem (1) for p <1 has the formE(x(k)(�); Cnp ; I�;�p ) = inf' supx(�)2Cnp ; y(�)2Lp(��)kFx(�)�y(�)kLp(��)�� kx(k)(�)� '(y)(�)kL2(R);(2)



OPTIMAL RECOVERY 3where the in�mum is taken over all ' : Lp(��) ! L2(R). If p = 1,then it has the formE(x(k)(�); Cn1; I�(�);�1 ) = inf' supx(�)2Cn1; y(�)2L1(��)jFx(t)�y(t)j��(t) a. e. kx(k)(�)� '(y)(�)kL2(R);(3)where the in�mum is taken over all ' : L1(��)! L2(R).In problem (2) with p = 2 and problem (3), we �nd the exact valuesof optimal recovery errors and closed-form expressions for optimal re-covery methods. In both cases, the following phenomenon occurs: fora given error in problem (3), there exists a �nite b� > 0 such that theknowledge of the Fourier transform on an interval larger than (�b�; b�)does not result in a decrease in the optimal recovery error. This con-clusion is apparently important in practical applications of the resultsobtained here.In problem (2) with p = 2 and � =1, the information is equivalent(in view of the Plancherel theorem) to the knowledge of the functionitself with accuracy � in the L2(R)-metric. In this setting, the problemwas solved in [9]. Periodic analogs of problem (2) whith p = 2 andproblem (3), as well as their extensions to larger function classes, werestudied in the paper [10].For 2 < p <1, we obtain a lower bound for the number (2). More-over, we prove a sharp estimate of the k-th derivative of a function inthe L2-norm via the L2-norm of the n-th derivative and the Lp-normof the Fourier transform.2. Statement of the main resultsTheorem 1. Let n 2 N, 0 � k � n � 1, 0 < � � 1, �� = (��; �),�(�) 2 L1(��), �(�) � 0, and�0 = sup� a : 0 < a < �; 12� Z a�a t2n�2(t) dt � 1� :If �0 <1, thenE(x(k)(�); Cn1; I�(�);�1 ) =s��2(n�k)0 + 12� Z �0��0(t2k � ��2(n�k)0 t2n)�2(t) dt(4)and the methodb'(y)(t) = 12� Z �0��0(i� )k�1�� ��0�2(n�k)�y(� )ei�t d�(5)is optimal.



4 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOIf �0 =1, thenE(x(k)(�); Cn1; I�(�);�1 ) =s 12� Z 1�1 t2k�2(t) dt(6)and the method b'(y)(t) = 12� Z 1�1(i� )ky(� )ei�t d�(7)is optimal.Corollary 1. Let �(t) � � > 0 andb� = (�(2n+ 1)) 12n+1 �� 22n+1 :ThenE(x(k)(�); Cn1; I�;�1 ) =8>>>><>>>>:s��2(n�k) + 2�2(n� k)�(2k + 1)(2n + 1)�2k+1; � < b�;r2n + 12k + 1 � 1�(2n+ 1)� n�k2n+1 � 2(n�k)2n+1 ; � � b�;and the method (5) with �0 = min(�;b�) is optimal.It follows from this corollary that for a given �, starting from b�,further extension of the interval on which the Fourier transform ofa function in Cn1 is given with error � in the uniform metric does notresult in a decrease in the recovery error. In other words, if the relation�2�2n+1 � �(2n+ 1)(8)between the input data and the size of the interval on which the datais measured is violated, then the available information turns out to beredundant.Theorem 2. Let n 2 N, 0 < k � n � 1, 0 < � � 1, � > 0, andb� = �nk� 12(n�k) �2��2 � 12n :ThenE(x(k)(�); Cn2 ; I�;�2 ) =8>>>>><>>>>>:�ksn � k2�n �kn� kn�k �2 + 1�2n ; � < b�;� �22��n�k2n ; � � b�and the methodb'(y)(t) = 12� Z ���(i� )k 1 + nn � k �nk � kn�k � ��0�2n!�1 y(� )ei�t d�;



OPTIMAL RECOVERY 5where �0 = min(�;b�), is optimal.If k = 0 and 0 < � <1, thenE(x(�); Cn2 ; I�;�2 ) =r �22� + 1�2nand the methodb'(y)(t) = 12� Z ��� �1 + ����2n��1 y(� )ei�t d�(9)is optimal.It follows from Theorem 2 that the \saturation" e�ect is also ob-served in problem (2) with p = 2. Here the analogue of relation (8) isgiven by the inequality �2�2n � 2� �nk� nn�k ;the available information is redundant whenever this inequality is vio-lated.Note that the methode'(y)(t) = 12� Z ���(i� )ky(� )ei�t d�;which takes each function y(�) to the k-th derivative of its inverseFourier transform, is also optimal for k = 0 (along with the method (9))in the recovery problem in Theorem 2. This can readily be veri�ed bya straightforward estimate. However, it can be shown that this seem-ingly natural method is not optimal for k > 0 and, moreover, its erroris equal to 1.Theorem 3. Let n 2 N, 0 � k � n�1, and 2 � p � 1. The followingsharp inequality holds:kx(k)(�)kL2(R) � K(k; n; p)kFx(�)k n�kn+1=2�1=pLp(R) kx(n)(�)k k+1=2�1=pn+1=2�1=pL2(R) ;(10)whereK(k; n; p) =sn+ 1=2 � 1=pk + 1=2 � 1=p  pk + 1=2 � 1=pB1=2�1=p(2�)1=p(n� k)1�1=p ! n�kn+1=2�1=p ;B = B� k + 1=2 � 1=p(n � k)(1 � 2=p) ; 21 � 1=p1 � 2=p�(11)for 2 < p <1, and B(�; �) is the Eiler beta function; moreoverK(k; n;1) =r2n + 12k + 1 � 1�(2n+ 1)� n�k2n+1 ; K(k; n; 2) = � 12��n�k2n :(12)



6 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOFor p = 2, inequality (10) coincides with the well-known Hardy{Littlewood{P�olya inequality by the Plancherel theorem. Inequalitiesof the form (10) with various metrics and with the function itself oc-curring instead of its Fourier transform are usually called Kolmogorovtype inequalities for derivatives. They play an important role in var-ious problems of analysis and approximation theory. There is a wideliterature dealing with them (e.g., see [11, 12]).3. ProofsWe start from a simple statement concerning a lower bound for theoptimal recovery error.Lemma 1. Suppose that the setgr I = f (x; y) 2 X � Y : x 2 C; y 2 I(x) gis centrally symmetric and the setI�1(0) = fx 2 C : 0 2 I(x)gis nonempty in problem (1). ThenE(�; C; I) � supx2C; x2I�1(0) k�xkZ:Proof. Let ' be an arbitrary method. Then2k�xkZ � k�x� '(0)kZ + k�(�x)� '(0)kZ � 2e(�; C; I; ')for all x 2 C such that x 2 I�1(0). Consequently,e(�; C; I; ') � supx2C; x2I�1(0) k�xkZfor each method ', which readily implies the desired estimate.The proofs of Theorems 1 and 2 are carried out by a common scheme.For this reason, �rst we prove a general result (containing some reason-ing based on convex optimization principles) and then use it to obtainthe cited theorems. The optimal recovery problem for which this resultwill be stated is a re�nement of the general setting mentioned in thebeginning of the paper.Suppose that T is a �nite set with the discrete measure or an interval(�nite or in�nite) on the line with the Lebesgue measure, X and Yt,t 2 T , are linear spaces with semi-inner products (�; �)X and (�; �)Ytand the corresponding seminorms k � kX and k � kYt, Z is a normedspace, and �(�) is a nonnegative measurable function on T . Let Y be asubspace of functions y(�) on T ranging in [t2TYt such that y(t) 2 Ytand t ! ky(t)kYt is a measurable function on T . We consider theproblem of optimal recovery of an operator �: X ! Z on the classBX = fx 2 X : kxkX � 1g from information about a linear operator



OPTIMAL RECOVERY 7I : X ! Y given with an error �(�). More precisely, for every x 2 BXwe know a function y(�) 2 Y such thatkIx(t)� y(t)kYt � �(t)for almost all t 2 T .In this case, the optimal recovery error has the formE(�; BX; I; �(�)) = inf' : Y!Z supx2BX; y(�)2YkIx(t)�y(t)kYt��(t) a. e. k�x� '(y)kZ:(13)We wish to compute this number and �nd an optimal method.It follows from Lemma 1 thatE(�; BX; I; �(�)) � supx2BXkIx(t)kYt��(t) a. e. k�xkZ:(14)Consider the following extremal problem (whose value coincides withthe square of the right-hand side of (14)):k�xk2Z ! max; kIx(t)k2Yt � �2(t) for almost all t 2 T; kxk2X � 1:(15)Set L(x; �1(�); �2) = �k�xk2Z + ZT �1(t)kIx(t)k2Yt d�+ �2kxk2X ;where �1(�) is a measurable nonnegative function, �2 � 0, and d� iseither the Lebesgue measure (if T is an interval of the line) or thediscrete measure (if T is a �nite set).Theorem 4. Suppose that there exists a measurable nonnegative func-tion b�1(�) and a number b�2 � 0 such that the function b�1(�)�2(�) andall functions t ! b�1(t)(y1(t); y2(t))Yt, y1(�); y2(�) 2 Y , are integrableon T and(a) L(x;b�1(�);b�2) � 0 8x 2 X:Furthermore, suppose that there exists a sequence fxmg of admissibleelements in (15) such that the following conditions hold:(b) limm!1L(xm;b�1(�);b�2) = 0;(c) limm!1�ZT b�1(t) �kIxm(t)k2Yt � �2(t)� d� + b�2 �kxmk2X � 1�� = 0:If xy is a solution of the extremal problemZT b�1(t)kIx(t)� y(t)k2Yt d� + b�2kxk2X ! min; x 2 X;(16)then the recovery method '(y) = �xy(17)



8 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOis optimal andE(�; BX; I; �(�)) = supx2BXkIx(t)kYt��(t) a. e.k�xkZ =sZT b�1(t)�2(t) d�+ b�2:(18)Proof. 1. Let us show that the values of problem (15) and the problemk�xk2Z ! max; ZT b�1(t)kIx(t)k2Yt d� + b�2kxk2X � S;(19)where S = ZT b�1(t)�2(t) d� + b�2;coincide and are equal to S. Indeed, with regard to (a),� k�xk2Z � �k�xk2Z + ZT b�1(t) �kIx(t)k2Yt � �2(t)� d�+ b�2 �kxk2X � 1� � �Sfor each element x 2 X admissible in (15). On the other hand, using(c) and (b), we obtain� limm!1 k�xmk2 = limm!1�� k�xmk2Z+ZT b�1(t) �kIxm(t)k2Yt � �2(t)� d� + b�2 �kxmk2X � 1�� = �S;that is, S is the value of problem (15). But the same arguments obvi-ously prove that S is the value of problem (19).2. An upper bound. Consider the linear space H = X � Y with thesemi-inner product((x1; y1(�)); (x2; y2(�)))H = ZT b�1(t)(y1(t); y2(t))Yt d� + b�2(x1; x2)X :Then the extremal problem (16) can be rewritten in the formk(x; Ix(�))� (0; y(�))k2H ! min; x 2 X:If xy is a solution of this problem, then it is easily seen that((xy; Ixy(�))� (0; y(�)); (x; Ix(�)))H = 0for all x 2 X. It follows thatk(x; Ix(�))� (0; y(�))k2H = k(x; Ix(�))� (xy; Ixy(�))k2H+ k(xy; Ixy(�))� (0; y(�))k2H:



OPTIMAL RECOVERY 9If kxkX � 1 and kIx(t) � y(t)kYt � �(t), t 2 T , then it follows fromthe last inequality thatk(x; Ix(�))� (xy; Ixy(�))k2H � k(x; Ix(�))� (0; y(�))k2H= ZT b�1(t)kIx(t)� y(t)k2Yt d�+ b�2kxk2X � S:By setting z = x� xy, we arrive at the inequalityZT b�1(t)kIz(t)k2Yt d�+ b�2kzk2X � Sand therefore,k�x� �xykZ = k�zkZ � supRT b�1(t)kIxtk2Yt d�+b�2kxk2X�S k�xkZ = pS:Taking account of (14), we obtain the equality (18) and prove theoptimality of the method (17).Proof of Theorem 1. First, let �0 <1. Let us rewrite this problem interms of Theorem 4. Here T = ��, X = Xn1 is a linear space with thesemi-inner product(x1(�); x2(�))Xn1 = ZRx(n)1 (t)x(n)2 (t) dt;Yt = C for all t 2 ��, Z = L2(R), Y = L1(��), �x(�) = x(k)(�),BX = Cn1, and the operator I : Xn1 ! L1(��) is de�ned by theformula Ix(�) = Fx(�). With this notation, problem (3) coincides withproblem (13). In this case, the function L(x(�); �1(�); �2) in Theorem 4has the formL(x(�); �1(�); �2) = �kx(k)(�)k2L2(R)+ Z�� �1(t)jFx(t)j2 dt+ �2kx(n)(�)k2L2(R):Passing to Fourier transforms and writing (2�)�1jFx(�)j2 = u(�), wehaveL(x(�); �1(�); �2) = ZR��t2k + �2t2n�u(t) dt+ 2� Z�� �1(t)u(t) dtby the Plancherel theorem. Let b�2 = ��2(n�k)0 andb�1(t) = ((2�)�1 �t2k � b�2t2n� ; jtj < �0;0; jtj � �0:Then L(x(�);b�1(�);b�2) = Zjtj��0 ��t2k + �0t2n� u(t) dt � 0for all x(�) 2 Xn1.



10 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOSet  = 1� 12� Z �0��0 t2n�2(t) dt:If  = 0, then, denoting the inverse Fourier transform of the functioncoinciding with �(�) on the interval (��0; �0) and vanishing outside itby bx(�), we can readily verify that conditions (b) and (c) in Theorem 4are satis�ed for the constant sequence xm(�) = bx(�).If  > 0 (in this case, it is obvious that �0 = �), then we setum(t) = 8><>:�2(t)=(2�); jtj < �;��2n(m �pm)=2; � � jtj � � + 1=m;0; jtj > � + 1=m;for m > �2. (We denote the inverse Fourier transform of p2�um(�)by xm(�).) It is easily seen thatlimm!1L(xm(�);b�1(�);b�2) = 0:Moreover, Z ��� b�1(t)(2�um(t)� �2(t)) dt = 0andkx(n)m (�)k2L2(R) = ZRt2num(t) dt= 12� Z ��� t2n�2(t) dt+ m �pm�2n Z �+1=m� t2n dt= 1 �  + (m �pm) ((� + 1=m)2n+1 � �2n+1)�2n(2n + 1) m!1! 1:It also follows from the last equations thatkx(n)m (�)k2L2(R) < 1� 12pmfor su�ciently large m; that is, the functions xm(�) are admissible inproblem (15).Problem (16) with y(�) 2 L1(��) has the formZ�� b�1(t)jFx(t)� y(t)j2 dt+ b�2kx(n)(�)kL2(R)! min; x(�) 2 Xn1:With regard to the Plancherel theorem, it can be rewritten asZ�� b�1(t)jFx(t)� y(t)j2 dt+ b�22� ZRt2njFx(t)j2 dt! min; x(�) 2 Xn1:



OPTIMAL RECOVERY 11One can readily verify that its solution is the function bxy(�) such thatFbxy(t) = 8>><>>: 2�b�1(t)2�b�1(t) + b�2t2ny(t); jtj < �0;0; jtj � �0;that is, Fbxy(t) = (�1 � ��2(n�k)0 t2(n�k)� y(t); jtj < �0;0; jtj � �0:It follows from Theorem 4 that the optimal recovery method has theform (5) and its error is given by (4).If �0 = 1 (in this case, obviously, � = 1), then it follows fromLemma 1 thatE(x(k)(�); Cn1; I�(�);1) � supx(�)2Cn1jFx(t)j��(t) ¯. ¢. kx(k)(�)kL2(R)� kbx(k)(�)kL2(R) =s 12� Z 1�1 t2k�2(t) dt;where bx(�) is the inverse Fourier transform of �(�). On the other hand,e(x(k)(�); Cn1; I�(�);1; b') = supx(�)2Cn1; y(�)2L1(R)jFx(t)�y(t)j��(t) a. e. kx(k)(�)� b'(y)(�)kL2(R)= supx(�)2Cn1; y(�)2L1(R)jFx(t)�y(t)j��(t) a. e.� 12� Z 1�1 t2kjFx(t)� y(t)j2 dt�1=2�s 12� Z 1�1 t2k�2(t) dtfor the method (7).In particular, it follows from Theorem 1 that if �(t) � � > 0 and� =1 (see Corollary 1), thensupx(�)2Cn1jFx(t)j��(t) a. e. kx(k)(�)kL2(R) = K(k; n;1)� 2(n�k)2n+1 ;where the constant K(k; n;1) is de�ned in (12). Hence we arrive atthe sharp inequalitykx(k)(�)kL2(R) � K(k; n;1)kFx(�)k 2(n�k)2n+1L1(R)kx(n)(�)k 2k+12n+1L2(R):



12 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOProof of Theorem 2. We again rewrite the problem in terms of Theo-rem 4. Here T consists of one point, say, t = 1. Further, X = Xn2 is alinear space with the semi-inner product(x1(�); x2(�))Xn2 = ZRx(n)1 (t)x(n)2 (t) dt;Y1 = Y = L2(��), Z = L2(R), �x(�) = x(k)(�), BX = Cn2 , the informa-tion operator I : Xn2 ! L2(��) is given by the formula Ix(�) = Fx(�),and �(1) = � > 0. Here the function L(x(�); �1; �2) in Theorem 4 hasthe formL(x(�); �1; �2) = �kx(k)(�)k2L2(R)+ �1 Z�� jFx(t)j2 dt+ �2kx(n)(�)k2L2(R):Passing to Fourier transforms, we haveL(x(�); �1; �2) = ZR��t2k + 2��1��(t) + �2t2n�u(t) dt;where (2�)�1jFx(�)j2 = u(�) and ��(�) is the characteristic function ofthe interval ��.Setb�1 = 8>>><>>>: 12� �kn� kn�k n� kn �2k0 ; k > 0;12� ; k = 0; b�2 = (��2(n�k)0 ; k > 0;��2n; k = 0;bt = 8>><>>:�kn� 12(n�k) �0; k > 0;0; k = 0:One can readily verify thatL(x(�);b�1;b�2) � 0for all x(�) 2 Xn2 .First, suppose that k > 0 and � < b� (in this case, �0 = �). Forsu�ciently large m, consider the sequence of functionsum(t) = 8>>>>>>><>>>>>>>:m �24�; bt � jtj � bt+ 1=m;m�pm2�2n �1� �22�bt2n� ; � � jtj � � + 1=m;0; in all other cases:Then 2� Z�� um(t) dt = �2;



OPTIMAL RECOVERY 13ZRt2num(t) dt = m�22� (bt+ 1=m)2n+1 � bt2n+12n+ 1+ m�pm2�2n �1� �22�bt2n� (� + 1=m)2n+1 � �2n+12n+ 1 m!1! 1:Moreover, ZRt2num(t) dt < 1��1� �22�bt2n� 12pmfor su�ciently largem. It follows that condition (c) in Theorem 4 is sat-is�ed for the inverse Fourier transform xm(�) of the functionsp2�um(�).A straightforward veri�cation readily shows that condition (b) in thesame theorem is also satis�ed.If k > 0 and � � b� or k = 0, then one should consider the functionsum(t) = ((m�pm)�2=(4�); bt � jtj � bt+ 1=m;0; otherwise:Problem (16) with y(�) 2 L2(R) has the formb�1kFx(�)� y(�)k2L2(��) + b�2kx(n)(�)kL2(R) ! min; x(�) 2 Xn2 :It can be rewritten in the formb�1 Z�� jFx(t)� y(t)j2 dt+ b�22� ZRt2njFx(t)j2 dt! min; x(�) 2 Xn2with regard to the Plancherel theorem. The solution of this problem isthe function bxy(�) such thatFbxy(t) = 8>><>>: 1 + nn � k �nk� kn�k � t�0�2n!�1 y(t); jtj < �;0; jtj � �;for k > 0 andFbxy(t) =8>><>>: 1 +� t��2n!�1 y(t); jtj < �;0; jtj � �;for k = 0. Now the desired assertion follows from Theorem 4.It follows from Theorem 2 thatsupx(�)2Cn2kFx(�)kL2(R)�� kx(k)(�)kL2(R) = � �22��n�k2n ;whence we obtain the sharp inequalitykx(k)(�)kL2(R) � � 12��n�k2n kFx(�)kn�knL2(R)kx(n)(�)k knL2(R):



14 G. G. MAGARIL-IL'YAEV AND K. YU. OSIPENKOProof of Theorem 3. The cases p = 1; 2 follow from Theorems 1 and2. Suppose that 2 < p <1. Consider the extremal problemkx(k)(�)k2L2(R) ! max; kFx(�)k2Lp(R) � �2; kx(n)(�)k2L2(R) � 1:This problem can be rewritten in terms of the Fourier transforms as(20) ZRt2ku(t) dt! max; ZRup=2(t) dt � �p2� ;ZRt2nu(t) dt � 1; u(t) � 0;where u(�) = (2�)�1jFx(�)j2. To problem (20) we assign the LagrangefunctionL(u(�); �1; �2) = ZR(�t2ku(t) + �1up=2(t) + �2t2nu(t)) dt:If we �nd a function bu(�) admissible in (20) and Lagrange multipliersb�1;b�2 � 0 such that(a) minu(t)�0L(u(�);b�1;b�2) = L(bu(�);b�1;b�2);(b) b�1�ZRu(t)p=2 dt� �p2�� = 0;(c) b�2�ZRt2nu(t) dt� 1� = 0;then bu(�) will be a solution of the problem (20). Indeed,� ZRt2ku(t) dt � �ZRt2ku(t) dt+ b�1�ZRu(t)p=2 dt� �p2��+ b�2�ZRt2nu(t) dt� 1� � �ZRt2kbu(t) dt+ b�1�ZRbu(t)p=2 dt� �p2��+ b�2�ZRt2nbu(t) dt� 1� = �ZRt2kbu(t) dtfor any admissible function u(�).Set b�2 = ��2(n�k), where the parameter � > 0 will be de�ned later.Then�t2ku(t)+ �1up=2(t)+ t2n�2(n�k)u(t) � �t2kbu(t) +�1bup=2(t) + t2n�2(n�k)bu(t)for all u(t) � 0 and any b�1 > 0, wherebu(t) = 8>><>>:� 2pb�1 �t2k � t2n�2(n�k)�� 1p=2�1 ; jtj � �;0; jtj > �:



OPTIMAL RECOVERY 15Thus condition (a) is satis�ed. We take � and b�1 such that conditions(b) and (c) are satis�ed:� 2pb�1� p=2p=2�1 Z ��� �t2k � t2n�2(n�k)� p=2p=2�1 dt = �p2� ;� 2pb�1� 1p=2�1 Z ��� t2n�t2k � t2n�2(n�k)� 1p=2�1 dt = 1:Making the change of variable t = �y and expressing the resultingintegrals via the value of beta function B de�ned in (11), we obtain� pkp=2�1+1� 2pb�1� p=2p=2�1 Bn� k = �p2� ;� 2kp=2�1+2n+1� 2pb�1� 1p=2�1 (k + 1=2 � 1=p)B(n � k)2 = 1:Hence � 2pb�1� 1p=2�1 = (n� k)2(k + 1=2 � 1=p)B�� 2kp=2�1�2n�1(21)and � = � (2�)1=p(n� k)1�1=p�(k + 1=2 � 1=p)1=2B1=2�1=p� 1n+1=2�1=p :(22)Taking account of (21), we haveZRt2kbu(t) dt = n + 1=2 � 1=pk + 1=2 � 1=p��2(n�k):Substituting there the value � given by (22), we obtainsupx(�)2FnpkFx(�)kLp(R)�� kx(k)(�)kL2(R) = K� n�kn+1=2�1=pfor all 2 < p <1. It readily follows that the desired sharp inequalityfor derivatives is valid. References[1] S. A. Smolyak, On Optimal Recovery of Functions and Functionals of Them[Russian], Ph.D. thesis, Moscow State University, Moscow, 1965. (Russian)[2] C. A. Micchelli and T. J. Rivlin, A survey of optimal recovery. In: OptimalEstimation in Approximation Theory (C. A. Micchelli and T. J. Rivlin, eds.),Plenum Press, New York, 1977, pp. 1{54.[3] J. F. Traub and H. Wo�zniakowski, A General Theory of Optimal Algorithms,Academic Press, New York, 1980.[4] C. A. Micchelli and T. J. Rivlin, Lectures on Optimal Recovery, Lect. Notesin Math., Vol. 1129, Springer{Verlag, Berlin, 1985, pp. 21{93.
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