
ISMAGILOV TYPE THEOREMSFOR LINEAR, GEL'FAND AND BERNSTEIN n-WIDTHSK. Yu. Osipenko and O. G. ParfenovAbstract. Using a variational principle for s-numbers, we obtain estimates for thelinear, Gel'fand and Bernstein n-widths. A simple proof of some results concernedwith the exact values of n-widths of diagonal operators is given. We also calculatethe exact values of the Bernstein n-widths for the Hardy{Sobolev classes.1. IntroductionLet X, Y be normed linear spaces and T : X ! Y be a bounded linear operator.The linear �n, Gel'fand dn and Bernstein bn n-widths of the operator T are de�nedby �n(T ) := infPn supx2BX kTx � PnxkY ; dn(T ) := infXn supx2BXn kTxkY ;bn(T ) := supXn+1 infx2Xn+1x6=0 kTxkYkxkX ;where Pn is any linear operator mapping X into Y of rank at most n, BX is theclosed unit ball of X, Xn runs over all n-codimensional subspaces of X and Xn+1runs over all (n+ 1)-dimensional subspaces of X.In Osipenko and Stessin [1] the exact values of the linear and Gel'fand n-widthsof the Hardy classesH2 were obtained. A method of the proof was very close to theone from Ismagilov's Theorem [2] (see also [3, p.93]). After the paper [1] severalresults were obtained for �n(T ) and dn(T ) where T is a map from a Hilbert space Hinto C(E) (see [4]{[6]). Parfenov [7] solved an analogous problem for the Bernsteinn-widths bn(T ) where T : L1(E; �)! H and � is a probability measure on E.In this paper we show that many of these results can be obtained, using a generalprinciple concerned with extremal properties of s-numbers. Section 2 is devotedto this principle. In Section 3 we prove the estimates of the linear, Gel'fand andBernstein n-widths. In Section 4 we give a simple proof of two results about theexact values of n-widths for diagonal operators in the discrete case. Finally, inSection 5 we calculate the Bernstein n-widths of the Hardy{Sobolev classes.The research of the �rst author was supported in part by Russian Foundation of FundamentalResearch and by the International Scienti�c FundThe research of the second author was supported in part by the International Scienti�c Fundand by the Natural Sciences Academy of Russian Federation Typeset by AMS-TEX1



2 K. YU. OSIPENKO AND O. G. PARFENOV2. Variational Principle for s-NumbersLet H and H1 be Hilbert spaces and T : H ! H1 a bounded linear operator.Suppose that T 0T'k = �k'k; k = 1; 2; : : : ;where �1 � �2 � � � � > 0 and f'kg form a complete orthonormal basis for therange of T 0T (a su�cient condition is that T be a compact operator). The valuessk(T ) = p�k are called the s-numbers of T .Set  k := s�1k (T )T'k. Note that f kg is an orthonormal system in H1. Thenthere exists the Schmidt decomposition of T (see, for example, [8]) which is givenby T = 1Xk=1 sk(T )(�; 'k) k:Theorem 1. Let T be as above. Then(1) nXk=1 s2k(T ) = maxfekgn1 nXk=1 kTekk2H1where the maximum is taken over all orthonormal systems fekgn1 inH. Furthemore,(2) 1Xk=n+1 s2k(T ) = minfekg11 1Xk=1 kTekk2H1where the minimum is taken over all orthonormal systems fekg11 in H such thatcodim spanfekg11 � n.For a compact operator T this theorem was proved in Parfenov [6]. In our casethe proof is almost the same because it does not so much depend on the compactnessof T as on the fact that the eigenvectors f'kg of T 0T form an orthonormal basisfor the range of T 0T .We remark that both parts in (2) are �nite i�1Xk=1 s2k(T ) <1:In Parfenov [6] Theorem 1 was the basic tool in calculating the Gel'fand n-widthsof operators T : H ! L1(E; �). Similar results were obtained in Osipenko [5],using Ismagilov's Theorem and the duality between the Kolmogorov and Gel'fandn-widths.In order to estimate the Bernstein n-widths we need the following properties ofs-numbers.Theorem 2. Let T be as in Theorem 1 and KerT = 0. Then(3) nXk=1 s�2k (T ) = minffkgn1 nXk=1 kT�1fkk2H



ISMAGILOV TYPE THEOREMS 3where the minimum is taken over all orthonormal systems ffkgn1 in T (H). Furthe-more, if dimH = N <1, then(4) NXk=n+1 s�2k (T ) = maxffkgN�n1 N�nXk=1 kT�1fkk2Hwhere the maximum is taken over all orthonormal systems ffkgN�n1 in T (H).Proof. Let ffkgn1 be any orthonormal system in T (H). Set Ln := spanfT�1fkgn1 ,eLn := spanffkgn1 , and Tn := T��Ln . Suppose that the Schmidt decomposition of Tnhas the form Tn = nXk=1 sk(Tn)(�; '0k) 0k:The value  nXk=1 kT�1n fkk2H!1=2is the Hilbert{Schmidt norm of T�1n and does not depend on the choice of theorthonormal basis in eLn. ThereforenXk=1kT�1fkk2H = nXk=1 kT�1n fkk2H = nXk=1 kT�1n  0kk2H = nXk=1 s�2k (Tn):Let Pn be an orthoprojector in H onto Ln. Using the properties of s-numbers ofbounded linear operators (see [8, p.82]) we havesk(Tn) = sk(T � Pn) � kPnksk(T ) = sk(T ):Thus nXk=1 kT�1fkk2H � nXk=1 s�2k (T ):If fk =  k, k = 1; : : : ; n, thennXk=1 kT�1 kk2H = nXk=1 s�2k (T ):The equality (3) is proved.To prove (4) note thatsk(T�1) = s�1N�k+1(T ); k = 1; : : : ;N:Now (4) follows from (1). The theorem is proved.



4 K. YU. OSIPENKO AND O. G. PARFENOV3. Estimates of Linear, Gel'fand and Bernstein n-WidthsTo obtain estimates of n-widths we need the following simple result.Lemma 1. Let H be a Hilbert space, ! := dimH and T : H ! C(E) a boundedlinear operator. ThenkTkH!C(E) = supz2E !Xk=1 j(Tek)(z)j2!1=2for any orthonormal basis fekg!1 in H.Proof. We havekTkH!C(E) = suph2BH supz2E j(Th)(z)j = supz2E suph2BH j(Th)(z)j= supz2E supfckg!12Bl2 ��� !Xk=1 ck(Tek)(z)��� = supz2E !Xk=1 j(Tek)(z)j2!1=2 :The lemma is proved.Let H be a Hilbert space of functions de�ned on some set 
. A function K(z;w)de�ned on 
�
 is called a reproducing kernel of H if for each w 2 
, K(z;w) 2 Hand for all f 2 H f(w) = (f(�);K(�; w))H :It is a well-known fact that if the f'kg!1 form an orthonormal basis in H, thenK(z;w) = !Xk=1'k(z)'k(w):Suppose that 
 is a topological space, E � 
 and Tf := f��E is a bounded linearoperator from H into C(E). Then from Lemma 1 we obtainkTkH!C(E) = supz2E(K(z; z))1=2 :Theorem 3([5], [6]). Let H be a Hilbert space, E a topological space with prob-ability measure � such that supp� = E, and T : H ! C(E) a bounded linearoperator. De�ne T0 : H ! L2(E; �) by the equation T0h := Th. Assume that(5) T 00T0'k = s2k'k; k = 1; 2; : : : ;where s1 � s2 � � � � > 0 and f'kg is an orthonormal basis for the range of T 00T0.Then  1Xk=n+1 s2k!1=2 � �n(T ) = dn(T ) � supz2E 1Xk=n+1 j(T'k)(z)j2!1=2 :



ISMAGILOV TYPE THEOREMS 5Proof. Since supp� = E, KerT 00T0 = KerT0 = KerT and we can assume, withoutloss of generality, that f'kg is an orthonormal basis in H. From the defenition ofthe Gel'fand n-width it follows thatdn(T ) = infHn kTkHn!C(E)where Hn runs over all n-codimensional subspaces of H. Consider Hn = f'kg1n+1.We obtain from Lemma 1dn(T ) � supz2E 1Xk=n+1 j(T'k)(z)j2!1=2 :Let Hn be any n-codimensional subspace of H. Suppose that f'0kg is an or-thonormal basis in Hn. Using Lemma 1 and (2), we havekTk2Hn!C(E) = supz2E 1Xk=1 j(T'0k)(z)j2 � ZE 1Xk=1 j(T'0k)(z)j2 d�(z)= 1Xk=1kT0'0kk2L2(E;�) � 1Xk=n+1 s2k:Thus dn(T ) �  1Xk=n+1 s2k!1=2 :The equality �n(T ) = dn(T ) is the well-known fact for operators de�ned on Hilbertspaces (see, [3, p.33]). The theorem is proved.Now we will obtain the similar estimates for the Bernstein n-widths.Theorem 4. Let H, E and � be as above, H1 be a subspace of L2(E; �) and XE �H1 be a subspace of C(E). Assume that a bounded linear operator T0 : H1 ! Hsatis�es the conditions (5) where s1 � s2 � � � � > 0, f'kg is an orthonormal basisfor the range of T 00T0 and 'k 2 XE , k = 1; 2; : : : . De�ne T : XE ! H by theequation Tf := T0f . Then(6)  supz2E n+1Xk=1 s�2k j'k(z)j2!�1=2 � bn(T ) �  n+1Xk=1 s�2k !�1=2 :Proof. Let Ln+1 � XE and dimLn+1 = n + 1. Consider the operator Tn+1 :=T��Ln+1 . If KerTn+1 6= 0, then inff2Ln+1f 6=0 kTfkHkfkC(E) = 0:



6 K. YU. OSIPENKO AND O. G. PARFENOVSuppose that KerTn+1 = 0. Then we can de�ne the operator T�1n+1 : T (Ln+1) !Ln+1. Using Lemma 1 and (4), for any orthonormal system fekgn+11 in T (Ln+1)we haveinff2Ln+1f 6=0 kTfkHkfkC(E) = infg2T (Ln+1)g 6=0 kgkHkT�1n+1gkC(E) = kT�1n+1k�1T (Ln+1)!C(E)=  supz2E n+1Xk=1 j(T�1n+1ek)(z)j2!�1=2 �  n+1Xk=1 ZE j(T�1n+1ek)(z)j2 d�(z)!�1=2=  n+1Xk=1 kT�1n+1ekk2H1!�1=2 �  n+1Xk=1 s�2k (Tn+1)!�1=2 :Since sk(Tn+1) � sk(T0) = sk, k = 1; : : : ; n+ 1, we obtainbn(T ) �  n+1Xk=1 s�2k !�1=2 :Let Ln+1 = spanf'kgn+11 . Then  k := s�1k T'k, k = 1; : : : ; n+1, form an orthonor-mal system in T (Ln+1). Thusbn(T ) � inff2Ln+1f 6=0 kTfkHkfkC(E) =  supz2E n+1Xk=1 j(T�1n+1 k)(z)j2!�1=2=  supz2E n+1Xk=1 s�2k j'k(z)j2!�1=2 :The theorem is proved.4. n-Widths of Diagonal OperatorsLet T : l2 ! l1 be the diagonal operator(7) T (fxkg11 ) := f�kxkg11where �1 � �2 � � � � > 0. Smolyak [9] (in the �nite-dimensional case) proved that(8) dn(T ) = supm>n� m� nPmk=1 ��2k �1=2 :In dual terms this result was obtained by Sofman [10] (see also [11]). We will showthat the lower bound in (8) easily follows from Theorem 3.Denote by fekg11 the standard basis of l2. Fix any m > n. Let Tm : lm2 ! lm1 bethe operator de�ned by Tm (fxkgm1 ) := f�kxkgm1 :



ISMAGILOV TYPE THEOREMS 7It is easy to see that dn(T ) � dn(Tm). De�ne the probability measure �m on theset f1; 2; : : : ;mg as follows�m(fjg) := ��2j  mXk=1��2k !�1 :Denote by Tm0 the operator Tm regarded as an operator from lm2 into lm2 (�m). ThenT 0m0Tm0ej =  mXk=1��2k !�1 ej ; j = 1; : : : ;m:From Theorem 3 dn(Tm) � � m� nPmk=1 ��2k �1=2 :Thus �n(T ) = dn(T ) � supm>n dn(Tm) � � m� nPmk=1 ��2k �1=2 :Note that the values (8) are also related to linear stochastic n-widths (see [12]).Consider the operator (7) as an operator from l1 into l2. Here we assume thatf�kg11 2 l2. Galeev [13] proved the equalitybn(T ) = min0�m<n+1 P1k=m+1 �2kn�m+ 1 !1=2 :We will show how the upper bound can be obtained from Theorem 4.Let 0 < " < 1 and 0 � m < n + 1. De�ne the probability measure �m on N asfollows �m(fjg) :=8>><>>: (1 � ") �2jP1k=m+1 �2k ; j > m"m; j � m:Denote T0 : l2(�m)! l2 by the equation T0x := Tx. It is easy to obtain thatT 00T0ej = s2j ej ; j = 1; 2; : : : ;where s2j = � (1� ")�1P1k=m+1 �2k; j > m"�1�2jm; j � m:From Theorem 4bn(T ) � 0@(1 � ") n�m+ 1P1k=m+1 �2k + "m mXj=1 ��2j 1A�1=2 :Letting "! 0, we obtainbn(T ) � min0�m<n+1 P1k=m+1 �2kn�m+ 1 !1=2 :



8 K. YU. OSIPENKO AND O. G. PARFENOV5. Bernstein n-Widths of Hardy{Sobolev ClassesLet A be a closed, convex centrally symmetric subset of a normed linear spaceY . The Bernstein n-width of A is de�ned bybn(A;Y ) := supYn+1 supf� : �BYn+1 � A gwhere Yn+1 is any (n+1)-dimensional subspace of Y . If KerT = 0, then it is easilyshown that bn(T ) = bn(T (BX); Y ):We need the following simple property of bn.Lemma 2. Let H be a Hilbert space, A a closed, convex centrally symmetricsubset of H and Hr an r-dimensional subspace of H such that A {j Hr. Then(9) bn+r(A +Hr ;H) = bn(A;H):Proof. Assume that Hn+1 � H, dimHn+1 = n+ 1 andsupf� : �BHn+1 � A g = � > 0:Put Hn+r+1 := Hn+1 + Hr. Since A {j Hr it follows that Hn+1 {j Hr anddimHn+r+1 = n + r + 1. If x 2 Hn+r+1, kxkH � �, then x = x1 + x2 wherex1 2 Hn+1, x2 2 Hr andkx1k2H � kx1k2H + kx2k2H = kxk2H � �2:Thus x1 2 A. Consequently x 2 A +Hr. We havesupf� : �BHn+r+1 � A+Hr g � �:So we proved that(10) bn+r(A +Hr ;H) � bn(A;H):If bn+r(A + Hr ;H) = 0, then (9) follows from (10). Suppose that bn+r(A +Hr;H) > 0. Let Hn+r+1 � H, dimHn+r+1 = n+ r + 1 andsupf� : �BHn+r+1 � A +Hr g = � > 0:Since Hn+r+1 � spanA+Hr , dim(Hn+r+1 \ spanA) � n+ 1. Hence there existsa subspace Hn+1 � Hn+r+1 \ spanA with dimHn+1 = n + 1. Let x 2 Hn+1 andkxkH � �. Then x 2 A+Hr . In addition x 2 spanA. Thus x 2 A andsupf� : �BHn+1 � A g � �:Therefore bn(A;H) � bn+r(A +Hr;H):The lemma is proved.



ISMAGILOV TYPE THEOREMS 9Theorem 5. Let H, E, �, H1 and XE be as in Theorem 4. Suppose that theHilbert space H1 has a reproducing kernel. Let f'kg be an orthonormal basisin H1 and T0 : H1 ! H a bounded linear operator. Assume that fT0'kg is anorthogonal system in H, 'k 2 XE , k = 1; 2; : : : and sk := kT0'kkH form a non-increasing sequence. De�ne T : XE ! H by the equation Tf := T0f . Then theinequalities (6) hold.Proof. Denote by K(z;w) the reproducing kernel of H1. Since f'kg is an orthonor-mal basis in H1 the representationK(z;w) = 1Xk=1'k(z)'k(w)holds. We have(T 00T0f)(w) = �(T 00T0f)(�);K(�; w)�H1 = �(T0f)(�); (T0K)(�; w)�H :Thus (T 00T0'j)(w) = �(T0'j)(�); 1Xk=1'k(w)(T0'k)(�)�H = s2j'j(w):Now it su�ces to apply Theorem 4. The theorem is proved.Let B� be the ball of C n of radius �B� := f z := (z1; : : : ; zn) 2 C n : jzj2 := nXk=1 jzkj2 < � g;S� := @B�, �� the probability measure on the sphere S� which is invariant withrespect to the orthogonal group O(2n) and �� the normalized Lebesgue measure inB� (if � = 1 we will write B, S, � and �).The Hardy space Hp(B) (Hp) is the set of holomorphic functions in B whichsatisfy kfkHp := sup0<�<1�ZS jf(z)jp d�(z)�1=p <1; 1 � p <1;kfkH1 := supz2B jf(z)j:Let f(z) be a holomorphic function in B andf(z) = 1Xk=0Fk(z)be a homogeneous decomposition of f . The radial derivative of order r is de�nedby Rrf(z) := 1Xk=r k!(k � r)!Fk(z)



10 K. YU. OSIPENKO AND O. G. PARFENOV(for r = 1 see [14, Chap.6]). Denote by HRr1(B) (HRr1) the class of holomorphicfunctions in B for which Rrf 2 BH1.Set Nm := m�1Xk=0 �n+ k � 1n� 1 �:Note that Nm = dimPnm�1 where Pnm is the space of n-variable polynomials ofdegree m or less.Theorem 6. For all 0 < � � 1 and all m � r + 1bNm�1�HRr1; L2(S�; ��)� =  1(n � 1)! m�1Xk=r k!(n+ k � 1)!((k � r)!)2 ��2k!�1=2 ;(11) bNm�1�HRr1; L2(B�; ��)� =  1n! m�1Xk=r k!(n+ k)!((k � r)!)2 ��2k!�1=2 :(12)Proof. For multiindex � := (�1; : : : ; �n) and z 2 C n setz� := z�11 � � � z�nn ; j�j := �1 + � � � + �n; �! := �1! � � ��n!;Dj := @@zj ; D� := D�11 � � �D�nn :Denote by H0p the space of all functions f 2 Hp for which (D�f)(0) = 0, j�j =0; : : : ; r � 1. It is known (see [14]) that functions from Hp, 1 � p � 1, have �niteboundary values almost everywhere. Moreover,H2 is a Hilbert space with the innerproduct (f; g)H2 := ZS f(z)g(z) d�(z):The space H2 has the reproducing kernelK(z;w) =  1� nXk=1 zkwk!�n :De�ne T0 : H02 ! L2(S�; ��) and T : H01 ! L2(S�; ��) by the equations(13) (T0f)(z) := 1Xk=r (k � r)!k! Fk(z); T f := T0f;where f(z) = 1Xk=r Fk(z):



ISMAGILOV TYPE THEOREMS 11It is easy to see that HRr1 = T (BH01) + Pnr�1:Since monomials z� are orthogonal in L2(S�; ��) we obtain from Lemma 2(14) bNm�1�HRr1; L2(S�; ��)� = bNm�Nr�1(T ):For every 0 < � � 1 (see [14])kz�k2L2(S�;��) = (n � 1)!�!(n+ j�j � 1)!�2j�j:Thus the functions '�(z) := � (n+ j�j � 1)!(n � 1)!�! �1=2 z�; j�j � r;form a complete orthonormal basis in H02 . We havekT0'�k2L2(S�;��) = � (j�j � r)!j�j! �2 �2j�j:The number of di�erent monomials z� with j�j = k equals �n+ k � 1n� 1 �. ByTheorem 50@supz2S m�1Xj�j=r� j�j!(j�j � r)!�2 ��2j�jj'�(z)j21A�1=2 � bNm�Nr�1(T )�  m�1Xk=r � k!(k � r)!�2�n+ k � 1n� 1 ���2k!�1=2 :Using the equation Xj�j=k jz2�j�! = jzj2kk! ;we obtain bNm�Nr�1(T ) =  1(n � 1)! m�1Xk=r k!(n+ k � 1)!((k � r)!)2 ��2k!�1=2 :Now (11) follows from (14).The proof of (12) is almost the same. The di�erence is that we have to considerthe operators T0 : H02 ! L2(B�; ��) and T : H01 ! L2(B�; ��) de�ned by (13).Then we use kT0'�k2L2(B�;��) = � (j�j � r)!j�j! �2 nn+ j�j�2j�j:The theorem is proved.For n = 1 the class HRr1 coincides with the class BHr1 de�ned as the set of allholomorphic functions in B for which f (r)(z) 2 BH1. From Theorem 6 we obtainthe following result.



12 K. YU. OSIPENKO AND O. G. PARFENOVCorollary 1. For all 0 < � � 1 and all m � rbm�BHr1; L2(S�; ��)� =  mXk=r� k!(k � r)!�2 ��2k!�1=2 ;bm�BHr1; L2(B�; ��)� =  mXk=r k!(k + 1)!((k � r)!)2 ��2k!�1=2 :In particular, we have for r = 0, m � 0 and 0 < � < 1bm�BH1; L2(S�; ��)� = �m� 1� �21� �2m+2�1=2 ;(15) bm�BH1; L2(B�; ��)� = �m 1� �2p(m+ 1)(1� �2) � �2(1� �2m+2) :(16)The values (11) for r = 0 and (15) were calculated in [7].Let us compare (15) and (16) with the exact values of the Kolmogorov, linear,and Gel'fand n-widths. From [15] and [16] it follows thatdm(BH1;X) = �m(BH1;X) = dm(BH1;X) = 8<: �m; X = L2(S�; ��)�mpm+ 1 ; X = L2(B�; ��):Finally, we will determine exact values of the Bernstein n-widths for some classesof periodic holomorphic functions. Let D� := f z 2 C : j Im zj < � g. Denoteby eHp;� the set of all 2�-periodic holomorphic functions in D� which satisfy theconditionskfk eHp;� := sup0<h<�� 14� Z 2�0 (jf(x + ih)jp + jf(x � ih)jp) dx�1=p <1; 1 � p <1;kfk eH1;� := supz2D� jf(z)j <1:Let B eHrp;� be the set of all 2�-periodic holomorphic functions in D� for whichf (r)(z) 2 B eHp;�. Denote by L2 the periodic complex-valued Lebesgue space on thereal axis with the normkfkL2 := � 12� Z 2�0 jf(x)j2 dx�1=2 :Theorem 7.(1) For all n � 1 and r � 1b2n(B eHr1;�; L2) =  2 nXk=1 k2r cosh2k�!�1=2 :(2) For all n � 0(17) b2n(B eH1;� ; L2) = � sinh�sinh(2n+ 1)��1=2 :



ISMAGILOV TYPE THEOREMS 13Proof. The space eH2;� is the Hilbert space with the inner product(f; g) eH2;� := 14� Z 2�0 �f(x + i�)g(x + i�) + f(x � i�)g(x� i�)� dx:The functions 'k(z) := eikzpcosh 2k� ; k 2Z;form an orthonormal basis in eH2;�. The space eH2;� has the reproducing kernelK(z;w) =Xk2Z 'k(z)'k(w) = 1 + 2 1Xk=1 cos k(z � w)cosh 2k� :Let r � 1. Denote by eH0p;� the space of functions f 2 eHp;� for whichZ 2�0 f(x) dx = 0:De�ne T0 : eH02;� ! L2 and T : eH01;� ! L2 by the equations(T0f)(z) :=Xk2Zk 6=0 ck(ik)r eikz; T f := T0f;where f(z) =Xk2Zk 6=0 ckeikz:It is easily seen that B eHr1;� = T (B eH01;�) + C :By Lemma 2 we obtain b2n(B eHr1;�; L2) = b2n�1(T ):The functions 'k(z), k = �1;�2; : : : form a complete orthonormal basis in eH02;�and kT0'kk2L2 = 1k2r cosh2k� :Since for all z 2 @D� j'k(z)j2 + j'�k(z)j2 = 2we have by Theorem 5b2n�1(T ) =  2 nXk=1 k2r cosh 2k�!�1=2 :
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