ISMAGILOV TYPE THEOREMS
FOR LINEAR, GEL’FAND AND BERNSTEIN n-WIDTHS

K. Yu. OsSIPENKO AND O. G. PARFENOV

ABsTRACT. Using a variational principle for s-numbers, we obtain estimates for the
linear, Gel’fand and Bernstein n-widths. A simple proof of some results concerned
with the exact values of n-widths of diagonal operators is given. We also calculate
the exact values of the Bernstein n-widths for the Hardy—Sobolev classes.

1. INTRODUCTION

Let X, Y be normed linear spaces and T: X — Y be a bounded linear operator.
The linear A,,, Gel’fand d" and Bernstein b,, n-widths of the operator T" are defined
by

A(T) :=inf sup ||Tz — Pyx|y, d"(T) :=inf sup ||Tx|y,
P, zeéBX Xn xeBXn

T
bo(T) := sup inf H :EHY,
Xng1 v€Xnyq1 HJ/’HX
r#0

where P, is any linear operator mapping X into Y of rank at most n, BX is the
closed unit ball of X, X™ runs over all n-codimensional subspaces of X and X,,11
runs over all (n + 1)-dimensional subspaces of X.

In Osipenko and Stessin [1] the exact values of the linear and Gel’fand n-widths
of the Hardy classes Hy were obtained. A method of the proof was very close to the
one from Ismagilov’s Theorem [2] (see also [3, p.93]). After the paper [1] several
results were obtained for A, (T) and d"(T) where T is a map from a Hilbert space H
into C(E) (see [4]-]6]). Parfenov [7] solved an analogous problem for the Bernstein
n-widths b, (T) where T': Loo(E,v) — H and v is a probability measure on E.

In this paper we show that many of these results can be obtained, using a general
principle concerned with extremal properties of s-numbers. Section 2 is devoted
to this principle. In Section 3 we prove the estimates of the linear, Gel’fand and
Bernstein n-widths. In Section 4 we give a simple proof of two results about the
exact values of n-widths for diagonal operators in the discrete case. Finally, in
Section 5 we calculate the Bernstein n-widths of the Hardy—Sobolev classes.
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2. VARIATIONAL PRINCIPLE FOR s-NUMBERS

Let H and H; be Hilbert spaces and T: H — H; a bounded linear operator.
Suppose that
T'Tor = A\per, k=12,...,

where \y > Ay > -+ > 0 and {p;} form a complete orthonormal basis for the
range of T'T (a sufficient condition is that T be a compact operator). The values

sk(T) = /A are called the s-numbers of T.
Set vy := sgl(T)Tcpk. Note that {1} is an orthonormal system in H;. Then
there exists the Schmidt decomposition of T (see, for example, [8]) which is given

by
T=> se(T)( 010

Theorem 1. Let T be as above. Then

7

(1) > si(T) = max Z I Texlz,

k=1 1k1

where the maximum is taken over all orthonormal systems {e;, }7 in H. Furthemore,

(2) Y sHT) = mm ZHTekHHl
k=n+1 e k=1

where the minimum is taken over all orthonormal systems {e;}{° in H such that
codim span{eg }7° < n.

For a compact operator T' this theorem was proved in Parfenov [6]. In our case
the proof is almost the same because it does not so much depend on the compactness
of T as on the fact that the eigenvectors {¢g} of T'T form an orthonormal basis
for the range of T'T.

We remark that both parts in (2) are finite iff

isi(T < o0

k=1

In Parfenov [6] Theorem 1 was the basic tool in calculating the Gel'fand n-widths
of operators T: H — L. (E,v). Similar results were obtained in Osipenko [5],
using Ismagilov’s Theorem and the duality between the Kolmogorov and Gel’fand
n-widths.

In order to estimate the Bernstein n-widths we need the following properties of
s-numbers.

Theorem 2. Let T be as in Theorem 1 and KerT = 0. Then

7

(3) s (1) = min Z 1T~ fill

k=1
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where the minimum is taken over all orthonormal systems { fi }7 in T(H). Furthe-
more, if dim H = N < oo, then

N
(4) Y sAHT) = mc}XﬂZHT el
k=n+1 {11 =

where the maximum is taken over all orthonormal systems {fi}Y " in T(H).
Proof. Let {fir}} be any orthonormal system in T(H). Set L, := span{T ! f;}7,
L, :=span{fi}7, and T, := T‘L . Suppose that the Schmidt decomposition of T},

has the form

7

T =) si(T) (k).

k=1

n 1/2
(Z HTJlkaZ}J>
k=1

is the Hilbert-Schmidt norm of T;! and does not depend on the choice of the

orthonormal basis in Zn Therefore

ZHT lkaH_ZHT lkaH_ZHT I@kaH—Z i (Tn).

k=1

The value

Let P, be an orthoprojector in H onto L,. Using the properties of s-numbers of
bounded linear operators (see [8, p.82]) we have

sk(Tn) = sk(T o Pp) < ||Pp|sk(T) = sk(T).
Thus
ST felld =Y s (D).
k=1 k=1

If fro =¢r, k=1,...,n, then

ZHT WkHH—Z e (1)

k=1

The equality (3) is proved.
To prove (4) note that

si(T™') =sy,(T), k=1,...,N.

Now (4) follows from (1). The theorem is proved.
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3. ESTIMATES OF LINEAR, GEL’FAND AND BERNSTEIN n-WIDTHS

To obtain estimates of n-widths we need the following simple result.

Lemma 1. Let H be a Hilbert space, w := dim H and T: H — C(E) a bounded

linear operator. Then

w 1/2
1T~ c(py = sup (Z I(Tek)(2)|2>
zeFE =1

for any orthonormal basis {e;}{ in H.

Proof. We have

ITlr—sc(p) = sup sup [(Th)(z)] =sup sup |(Th)(z)]
heEBH :zeFE z€FE heBH
w w 1/2
—swp s | S eTen ()| = s [ ST
2€E {cr}yE€BIl> kz::l zeFE ;

The lemma is proved.

Let H be a Hilbert space of functions defined on some set Q. A function K(z,w)
defined on © x 2 is called a reproducing kernel of H if for each w € Q, K(z,w) € H
and for all f € H

Fw) = (f(), K(w))m.

It is a well-known fact that if the {p;}{ form an orthonormal basis in H, then

Kz w) =Y oulz)pn(w).

k=1
Suppose that € is a topological space, E C Q and T'f := f‘E is a bounded linear
operator from H into C(E). Then from Lemma 1 we obtain

1T 5 ocm) = sup(K(z,2))/2.
ze€F

Theorem 3([5], [6]). Let H be a Hilbert space, E a topological space with prob-
ability measure v such that supprv = E, and T: H — C(FE) a bounded linear
operator. Define To: H — Lo(E,v) by the equation Toh := Th. Assume that

(5) TéToc,ok = Sic,ok, k=1,2,...,

where s1 > s9 > -+ > 0 and {¢r} is an orthonormal basis for the range of T{Ty.
Then

o 1/2 o 1/2
( > 8%) < A(T) =d™(T) < Sup< >, I(TW)(Z)Iz) :

k=n+1 SA= A\ S
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Proof. Since suppr = E, Ker Ty = Ker Ty = Ker T and we can assume, without

loss of generality, that {y} is an orthonormal basis in H. From the defenition of
the Gel'fand n-width it follows that

d"(T) = iI_IIlfHTHH"%C(E)

where H™ runs over all n-codimensional subspaces of H. Consider H" = {¢1}55 ;.
We obtain from Lemma 1

o 1/2
d"(T) < sup( 3 I(T¢k)(2)|2> .

€0 \k=n+1

Let H™ be any n-codimensional subspace of H. Suppose that {¢}} is an or-
thonormal basis in H". Using Lemma 1 and (2), we have

T sy = sup SO ITAE = [ ST dol)

=D Tkl = Y. s
=1

k=n+1

Thus

~ 1/2
d"(T) > ( > sz) :
k=n+1
The equality A, (T') = d"(T) is the well-known fact for operators defined on Hilbert
spaces (see, [3, p.33]). The theorem is proved.

Now we will obtain the similar estimates for the Bernstein n-widths.

Theorem 4. Let H, E and v be as above, H, be a subspace of L2(E,v) and X C
H, be a subspace of C(E). Assume that a bounded linear operator Ty: Hy — H
satisfies the conditions (5) where s1 > sy > -+ > 0, {¢r} is an orthonormal basis
for the range of T{Ty and ¢, € Xp, k = 1,2,.... Define T: Xp — H by the
equation Tf := Ty f. Then

n+1 —1/2 n—+1 —1/2
(6) (sggz 8;?2|90k(2)|2) < ba(T) < (23;2) :
FCE k=1

k=1

Proof. Let L,11 C Xgp and dimL,4+1 = n + 1. Consider the operator T, 41 :=
T‘L . If KerT41 # 0, then

n+1

T
i "

= 0.
felny ||fllocr)
F£0
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Suppose that KerT,,+1 = 0. Then we can define the operator Tn__ﬂl: T(Lpy1) —
Ly4+1. Using Lemma 1 and (4), for any orthonormal system {ek}’f"i'l in T(Lp+1)
we have

ot 1T el

n+1 —1/2 n+1 -1/2
= (SUPZ| (Toren)(2)] ) < (Z/ I(Tiﬁlek)(Z)lde(Z)>
z€FR —1’E
n—+1 —1/2 n+1 —1/2
= (Z HU#%H%) < (Z 3;2(Tn+1)> .
k=1

k=1

H n—|—1HT(Ln+1)—>C(E)

Since g (Thy1) < sk(To) = sk, k=1,...,n+ 1, we obtain

Let L,41 = span{py 7t Then ¢y := s, ' Ty, k= 1,...,n+1, form an orthonor-
mal system in T'(L,41). Thus

n+1 —1/2
bo(T) > inf HTfHH ( PZ| n+1¢k )

fEan+1 I llece) S h
n+1 —1/2
= (sup Z e lor(z ) .

S
The theorem is proved.

4. n-WIDTHS OF DIAGONAL OPERATORS

Let T: I3 — o be the diagonal operator

(7) T ({xe}1°) == { A }i”

where Ay > Ay > --- > 0. Smolyak [9] (in the finite-dimensional case) proved that
n —n \'?

. = am ()

In dual terms this result was obtained by Sofman [10] (see also [11]). We will show
that the lower bound in (8) easily follows from Theorem 3.
Denote by {e }7° the standard basis of l. Fix any m > n. Let T,,: [5' — 72 be

the operator defined by
m ({2 31") o= {Akwn }1"
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It is easy to see that d"(T) > d"(T,,). Define the probability measure v, on the

set {1,2,...,m} as follows
vm({7}) : (ZA ) -

Denote by Tino the operator T, regarded as an operator from (7" into (3 (vy, ). Then

-1
moe]:<2/\ ) ej, jJ=1,...,m.

m—n 1/2
d"(Tm) > (ﬁ) :
D k=1 Ak

1/2
m—-n
(1) = "(T) > sup (L) > (s )

Note that the values (8) are also related to linear stochastic n-widths (see [12]).
Consider the operator (7) as an operator from [, into l;. Here we assume that
{Ae}7° € I3, Galeev [13] proved the equality

1/2
al A2
bo(T) = min (—Zk_m+1 k) )

From Theorem 3

Thus

0<m<n+1\ n—m-+1

We will show how the upper bound can be obtained from Theorem 4.
Let 0 < e <1 and 0 < m < n + 1. Define the probability measure v,, on N as
follows

)2
(1 — 5)00—], ] >m
Vm({]}) = . Ek:m—l—l /\i

) ]Sm
m

Denote Ty : l3(vm) — l2 by the equation Tox := Tx. It is easy to obtain that
ToToe; = S?Gj, 1=12, ...

Y

where

$2 { (1- 5)_1 E;o:m—l—l /\iv J>m
I 5_1/\?m, 7 <m.

From Theorem 4

n—m-+1 £ — 9
bo(T) < [ (1 —8) e+ =N T2
D (M-ag 2

Letting ¢ — 0, we obtain
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5. BERNSTEIN n-WIDTHS OF HARDY-SOBOLEV CLASSES

Let A be a closed, convex centrally symmetric subset of a normed linear space

Y. The Bernstein n-width of A is defined by

bn(A,Y) := sup sup{ A\ : A\BY,, 11 C A}

Yn-|—1

where Y, 41 is any (n + 1)-dimensional subspace of Y. If Ker T' = 0, then it is easily
shown that
bo(T) =b,(T(BX),Y).

We need the following simple property of b,,.

Lemma 2. Let H be a Hilbert space, A a closed, convex centrally symmetric
subset of H and H, an r-dimensional subspace of H such that A | H,. Then

(9) bsr(A+ H,, H) = b, (A, H).

Proof. Assume that H,4+1 C H, dim H,,41 =n + 1 and
sup{ A\ : ABH,41 CA} =p>0.

Put Hyyyy1 == Hpy1 + Hy. Since A 1 H, it follows that H,y; | H, and
dmHpyrp1 =n+r+ 1. o € Hyprir, ||2||lg < p, then @ = 21 + 22 where
ry € Hyqq, 9 € H, and

leallFr < el + lle2llzr = Nl < p®
Thus 21 € A. Consequently + € A + H,.. We have
sup{ A\ : A\BHpyr41 CA+H, } > p.
So we proved that
(10) bp+r(A+H.,H) >b,(A H).

If bpyr(A+ Hy H) = 0, then (9) follows from (10). Suppose that b,4.(A +
H.,,H)>0. Let Hyypy1 CH,dim Hyqr41 =n+r+ 1 and

sup{ \: \BH,4,+1 CA+H,} =p>0.

Since Hyqry1 Cspan A + H,, dim(H,4,+1 Nspan A) > n + 1. Hence there exists
a subspace H,41 C Hyypq1 Nspan A with dim H,,41 = n+ 1. Let x € H,41 and
|2||g < p. Then © € A+ H,. In addition « € span A. Thus « € A and

sup{ A\ : A\BH,41 C A} > p.

Therefore
bn(AH) > bysr(A+ H, H).

The lemma is proved.
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Theorem 5. Let H, E, v, Hy and Xg be as in Theorem 4. Suppose that the
Hilbert space Hy has a reproducing kernel. Let {¢r} be an orthonormal basis
in Hy and To: Hi — H a bounded linear operator. Assume that {Topr} is an
orthogonal system in H, o € Xg, k= 1,2,... and s; := ||Tovk||g form a non-
increasing sequence. Define T: Xy — H by the equation Tf := Ty f. Then the
inequalities (6) hold.

Proof. Denote by K (z,w) the reproducing kernel of Hy. Since {¢} is an orthonor-
mal basis in Hy the representation

w) = pr(z)er(w

holds. We have

(ToTof)(w) = (TTof)(). K w) = (Tof)(): (ToK) (- w)) -

1

Thus

(ToTowj)(w) = ((Tow,)( Z@k W Towr)() g = s505(w).

Now it suffices to apply Theorem 4. The theorem is proved.
Let B, be the ball of C" of radius p

7

Bp ;:{Z:: (Zl,...,Zn)E(Cn:|Z|2 :Z|Zk|2<p}7

k=1

S, = 0B,, o, the probability measure on the sphere S, which is invariant with
respect to the orthogonal group O(2n) and v, the normalized Lebesgue measure in
B, (if p =1 we will write B, S, ¢ and v).

The Hardy space H,(B) (H,) is the set of holomorphic functions in B which
satisfy

1/p
1l = sup ( / If(2)|pd0(2)> <o, 1<p<oo
0<p<1 S
1l = sup [£(2)].
z€EB

Let f(z) be a holomorphic function in B and

= Fi(z)

be a homogeneous decomposition of f. The radial derivative of order r is defined

by
>0 k

k=r
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(for r = 1 see [14, Chap.6]). Denote by HRL (B) (HRL,) the class of holomorphic
functions in B for which R"f € BH,
Set

Note that N, = dimP]},_; where P

degree m or less.

is the space of n-variable polynomials of

33

Theorem 6. Forall0 <p<landallm>r+1

(11)

1 —1/2
1 k! n—l—k—l _
N1 (HRL, L2(Sp.0,)) = ((n—l [ Z T)!)z) P 2k> ’

=7

(12)
. —1/2
; o O 1
Vot (HRo LBy o)) = | 05 2 (G e |
Proof. For multiindex o := (a1,...,a,) and z € C" set

o ,__ a1 o R [
2% =2tz la] :=ay + -+ + anp, al == aq!- - ay!,
D: = 9 D% .= D% ... D%
J= ’ = n -
0z;

Denote by Hg the space of all functions f € H, for which (D*f)(0) = 0, |a| =
0,...,r — 1. It is known (see [14]) that functions from H,, 1 < p < oo, have finite
boundary values almost everywhere. Moreover, Hs is a Hilbert space with the inner

= [ #eg) dots),

The space H; has the reproducing kernel

K(z,w) = (1 — Z kak> )

k=1

product

Define To: HY — L2(S,,0,) and T: HY, — Ly(S,,0,) by the equations

(13) Tof Z 7 Tf = T0f7

k=r

where
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It is easy to see that
HR' =T(BH°)+ P,
Since monomials z® are orthogonal in Ly(.S,,0,) we obtain from Lemma 2
(14) N —1 (HR L, L2(Sp,0,)) = by, —1(T).
For every 0 < p <1 (see [14])

- _ (n—=1)la! 2]al
12N 225,00 = ntlal—1"

Thus the functions

(n+lal =1
Palz) = (W % el =,
form a complete orthonormal basis in HY. We have

M)zpzm

!

ITopallis, o) = (

E—1

The number of different monomials z® with |o| = k equals (n—l— 1 ) By
n j—

Theorem 5

—1/2
— |a! ’ 2| o] 2
su — —llpa(z <bn, -N,—1(T
ZeEm':r(uw—m!) pleal2)? ) < b (1)
o —1/2
( 1( ! >2<n—|—k—1> _2k>
< T P :
— (k—r)! n—1
Using the equation

||M

we obtain

m—1 —1/2
k' n—l—k—l _
bNm—N,,—l(T) ( n_l i E ),0 2k> )
k=r

Now (11) follows from (14).
The proof of (12) is almost the same. The difference is that we have to consider

the operators Ty: HY — L2(B,,v,) and T: HS, — Ly(B,,v,) defined by (13).

Then we use )
al —r)! n
HTOQ%HZM(BP,VP) = <(| | ) > P2|a|-

! n+|al

The theorem is proved.

For n =1 the class HR._ coincides with the class BH?_ defined as the set of all
holomorphic functions in B for which f(r)(z) € BH,. From Theorem 6 we obtain
the following result.
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Corollary 1. Forall0 < p<1andallm>r

m 9 —1/2
hioaz oo - (3 (i) o)

m —-1/2
iz o) = (S G

In particular, we have for r =0, m > 0 and 0 < p < 1
1 — p? 1/2
(15) bm <BHOO,L2(Sp,O'p)> = ,Om <7> ’

(16) b (BHoc, Ly(By, 1)) = p™

VoA D= 7)== )
The values (11) for r = 0 and (15) were calculated in [7].

Let us compare (15) and (16) with the exact values of the Kolmogorov, linear,

and Gel'fand n-widths. From [15] and [16] it follows that

P, X = Ly(5,,0))
dop(BHoo, X) = Ap(BHoo, X) = d™(BHo, X) = m
( ) ( ) ( ) \/%7 X = Ly(B,,v,).

Finally, we will determine exact values of the Bernstein n-widths for some classes
of periodic holomorphic functions. Let Dg := {z € C : |Imz| < #}. Denote

by H, s the set of all 2n-periodic holomorphic functions in Dg which satisfy the
conditions

1 27 1/p
1717, = s (; / (If (e +im)[? + |f(e — ik)[?) dx) <00, 1<p< o,
’ 0

g, = Sup |f(2)] < oo
8

Let Bﬁgﬁ be the set of all 2r-periodic holomorphic functions in Dy for which
f) (z) € Bﬁpﬁ. Denote by L3 the periodic complex-valued Lebesgue space on the

real axis with the norm
1 [P )
e = (5 [ 1o ac)
Theorem 7.

(1) Foralln > 1 andr >1

1/2

n —1/2
byn(BHT, 4.Ls) = (22 kzrcosh2k5> .

k=1
(2) Foralln>0

~ sinh 1/2
(17) bZn(BHoo,ﬁaLZ) - <m> .
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Proof. The space I}gﬁ is the Hilbert space with the inner product

Flm, =1 | T (Fa + 9T T + fa — i =) do.

The functions ‘
ezkz

wil2) = Veosh2k3’
form an orthonormal basis in ﬁgﬁ. The space I}gﬁ has the reproducing kernel

cosk(z —w)
=1 2 .
gchk (pk + Z cosh 2k 3

ke,

Let » > 1. Denote by I}gﬁ the space of functions f € ﬁpﬁ for which

/0 " flz)de =

Define Tj: ﬁgﬁ — Lo and T': ﬁgoﬁ — Lo by the equations

(Tof)(2) := Z (;{k)reikz, Tf:=1Tof,

kEZ
k=20
where
f(z) = che’kz.
kEZ
k=20

It is easily seen that

BH!, 5 =T(BHS, 4)+C.

By Lemma 2 we obtain

bon(BHY, 5, L2) = byu_y(T).

13

The functions ¢g(z), k = +1,42,... form a complete orthonormal basis in I}gﬁ

and

1

Tovullly = or—srs-
Ioerli. = o conong

Since for all z € 0Dy
lor(Z)P + lo—r(z)]* =2

we have by Theorem 5

n —1/2
bon_1(T) = (22k2rcosh2kﬁ> :
k=1
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To obtain (2) we use the same scheme and the equality

sinh(2n + 1)8

1—|—22c0sh2k[3: b 3
sin

k=1

The theorem is proved.

Denote by BH]R 5 the set of functions from BH.. g that are real-valued on R.

For even n the exact values of the Kolmogorov, linear, and Gelfand n-widths of

Bﬂiﬁ in L, 1 <q < oo, were determined in [17]. In particular, for ¢ = 2

dzn(BHOO g L2) = Azn(BHOO g L) = d2"(BHOO 5 L2)
1/2

2
t= dt :\/56_6”—|-0(6_56n)7

0 V(1 —12)(1—\2¢2)

where A is the complete elliptic integral of the first kind with modulus

[e%e) 2 [e%e) —2

\ = 46—2ﬁn Ze—4ﬂnk(k+l) 1_|_ 226—4ﬂnk2
k=0

By Theorem 5 it can be shown that (17) also holds in the real case for the class

Bﬁiﬁ. Thus
bzn(BH£7ﬁ,L2) =/1—e28e7P" 4 0(6_56").
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