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Введение

Актуальность темы исследования и степень ее разработанности

В середине XX столетия начала активно развиваться математическая тео­

рия управления. Ее возникновение связано с необходимостью решать новые на

то время задачи, прежде всего, задачи управления механическими объектами,

движение которых описывается дифференциальными уравнениями. Значитель­

ный вклад в создание математической теории оптимального управления и ее

развитие внесли Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф.

Мищенко, Р. Калман, Р. Беллман, Н.Н. Красовский, А.М. Летов, В.М. Тихо­

миров, Ф.П. Васильев, А.Я. Дубовицкий, А.А. Милютин, А.Д. Иоффе, А.Б.

Куржанский, В.И. Благодатских, А.В. Дмитрук, М.Н. Зеликин, В.И. Коробов,

А.В.Арутюнов и многие другие...

Принцип максимума Понтрягина послужил основой математической тео­

рии управляемых процессов. Дальнейшее развитие теории управления связано

как с прикладными задачами (управление летательными объектами, космиче­

скими аппаратами, управление технологическими и экономическими процес­

сами), так и с исследованием задач управления как чисто математических.

Так возникли и сформировались такие направления в математической теории

управления как управляемость, наблюдаемость, идентификация систем, теория

оптимального управления, синтез управления для различных систем и другие.

Именно исследованию управляемости различных дифференциальных си­

стем и посвящена часть настоящей работы.

Известный американский ученый Л.Янг (1937г.) в работе [1] пишет, что

нет смысла говорить о необходимых условиях оптимальности без ответа на во­

просы о существовании решения. Теория необходимых условий, по его словам,

без теорем существования наивна [2]. В этом смысле и теорию существования оп­

тимальных управлений можно назвать наивной без теории управляемости, т.к.

в типичных теоремах существования оптимального управления предполагается

существование хотя бы одного допустимого управления, порождающего траек­

торию, удовлетворяющую заданным краевым условиям, например, управления,

переводящего траекторию из одного заданного положения в другое. Последняя

задача и составляет сущность проблемы управляемости.
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Впервые четкую постановку проблемы управляемости и ее решение для

линейных стационарных систем (непрерывных и дискретных) дал Р. Калман

в своем докладе на I конгрессе ИФАК (Москва, 1960) [3]. С тех пор критерий

полной управляемости

𝑟𝑎𝑛𝑔{𝐵,𝐴𝐵,...,𝐴𝑛−1𝐵} = 𝑛

стал одним из наиболее известных результатов теории управляемости для ли­

нейных систем с постоянными матрицами 𝐴,𝐵:

𝑥̇ = 𝐴𝑥+𝐵𝑢, 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅𝑚.

Система называется полностью управляемой на некоторм отрезке време­

ни, если найдутся допустимые управления, порождающие траектории, соеди­

няющие две любые точки пространства. (переводящие траекторию из любого

положения в пространстве в любое другое положение)

Для линейных нестационарных систем известен достаточный признак

Н.Н. Красовского [4] при условии непрерывной дифференцируемости матриц

коэффициентов вплоть до (𝑛− 1)−го порядка, где 𝑛− порядок системы.

C.Ю. Култышев, Е.А. Тонков в работе [5] получили критерии вполне

управляемости линейных нестационарных систем. Один из них связывает свой­

ство полной управляемости исходной системы со свойством невырожденности

двухточечной краевой задачи для гамильтоновой системы. Второй критерий вы­

ражен в терминах существования матрицы 𝑉 (𝑡), удовлетворяющей некоторому

дифференциальному неравенству.

Н.Н. Петров в работе [6] для систем вида 𝑥̇ = 𝑓(𝑥,𝑢) получил достаточные

условия управляемости для множества 𝑈 произвольной природы, охватываю­

щие случаи, когда 𝑓(0,0) ̸= 0, а так же (в случае, когда начало координат

пространсва 𝑅𝑟 является внутренней точкой 𝑈 и 𝑓(0,0) = 0) достаточные усло­

вия локальной управляемости для данных систем с "неуправляемым линейным

приближением".

Ю.М. Семенов в работе [7] получил критерий полной управляемости ли­

нейных неавтономных систем по производным в нуле целых матриц 𝐴(𝑡) и 𝐵(𝑡).

В случае когда матрицы 𝐴(𝑡) и 𝐵(𝑡) целые, из полученной теоремы вытекает

критерий Красовского и ранговый критерий Калмана для случая, когда мат­

рицы 𝐴 и 𝐵 - постоянные.



6

В статье [8] Ю.М. Семеновым рассмотрен геометрический подход к ана­

лизу управляемости линейных неавтономных систем 𝑥̇ = 𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢 с

коническими множествами ограничений управлений 𝑈 и непрерывными мат­

рицами 𝐴(𝑡) и 𝐵(𝑡). Получены критерии полной управляемости, первый из

которых сводится к анализу расположения конусов Φ−1(𝑡)𝐵(𝑡)𝑈 в фазовом

пространстве систем (Φ̇(𝑡) = 𝐴(𝑡)Φ(𝑡), Φ(0) = 𝐸), а второй основан на суще­

ствовании подходящих управлений, переводящих точку нуль обратно в точку

нуль. Причем, первый критерий констуктивен, но проверка его условий доста­

точно трудоемка.

Управляемый объект, описываемый дифференциальной системой, называ­

ется локально управляемым на множество, если для любой точки из некоторой

окрестности этого множества существует допустимое управление, что соответ­

свующее ему решение системы перейдет из этой точки в некоторую точку

самого множества.

Исследованием локальной управляемости нелинейных систем занимались

Л. Маркус, Э. В. Ли, Н.Н. Красовский [9], [4]. Наиболее сильный результат

в этой области принадлежит Калману [10] и состоит в том, что если линейное

приближение системы полностью управляемо, то система локально управляема

с помощью непрерывного управления.

В работе [11] А.В. Болтянский рассматривает два вида локальной управ­

ляемости, а именно, нормально локально управляемую систему и линейно

локально управляемую систему. В работе рассмотрены достаточные условия

локальной управляемости дифференциальных систем на основе понятия поло­

жительного базиса в пространстве R𝑛.

Е.Р. Аваков, Г.Г. Магарил - Ильяев и В.М. Тихомиров в работе [12]

рассматривают задачу локальной управляемости динамической системы с фазо­

выми ограничениями. Для поставленной задачи получены достаточные условия

локальной управляемости с применением принципа Лагранжа.

Ю.В. Мастерков в работах [13] и [14] изучал условия локальной нуль­

управляемости нелинейных дифференциальных систем в критическом случае,

т.е. в случае, когда система линейного приближения не является вполне управ­

ляемой. В рассмотренных работах получены достаточные условия локальной

управляемости систем в критическом случае.

Проблемами локальной управляемости занимался также А.В. Арутюнов

в своих работах [15], [16].
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Задачами с переменной структурой в разное время занимались В.Г. Бол­

тянский, В.Н. Розова, А.В. Дмитрук, Ю.М. Свирижев, В.Р. Барсегян и др.

Ю.М. Свирежев в своей работе [17] указывал о возможности исполь­

зования систем с переменной размерностью при моделировании динамики

биологических сообществ.

В работе А.Н.Кириллова [18] рассматривается метод посторения матема­

тической модели сложных систем с изменяющейся в процессе функциониро­

вания структурой.

Исследованию дифференциальных систем со сменой фазового простран­

ста посвящена работа В.Г. Болтянского [19], в ней рассмотрена задача оптималь­

ного управления ступенчатыми системами с терминальным функционалом.

Различные задачи оптимального управления разрывными системами рассмот­

рены Л. Т. Ащепковым в [20].

Задачи оптимального управления с ограничениями в промежуточных точ­

ках траектории рассмотрены в работах А.В. Дмитрука и А.М. Кагановича [21]

и [22]. С помощью некоторого приема (размножения фазовых и управляющих

переменных) эти задачи сводятся к стандартным задачам оптимального управ­

ления понтрягинского типа с ограничениями равенства и неравенства на концы

траекторий. Этот прием помогает получать для данных задач необходимые

условия оптимальности, обобщающие классический принцип максимума Понт­

рягина.

В работах В.Н. Розовой [23], [24] рассматривается задача оптимального

управления ступенчатыми системами, в работах [15], [25], [26] исследуется ло­

кальная управляемость дифференциальных систем.

Качественно исследован вопрос управляемости и оптимизации линейных

составных систем в работах В.Р. Барсегяна. В работе [27] В.Р. Барсегян привел

конструктивный подход к исследованию задач управления линейными состав­

ными системами. Монография [28] посвящена проблемам управления составных

линейных динамических систем и систем с многоточечными промежуточными

условиями. Получены необходимые и достаточные условия вполне управляе­

мости и наблюдаемости составных линейных систем, которые в стационарном

случае по завершенности сравнимы с условиями Калмана. Выявлены качествен­

ные свойства управляемости и наблюдаемости составных систем. Предложены

конструктивные методы решения задач управления составных систем и систем

с неразделенными многоточечными промежуточными условиями, с ограничени­
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ями на значения разных частей координат фазового вектора в промежуточные

моменты времени. В работе [29] рассмотрена задача управляемости и оптималь­

ного управления одной системой линейных нагруженных дифференциальных

уравнений, для которой, наряду с классическими краевыми условиями, заданы

неразделенные многоточечные промежуточные условия. Возникновение таких

задач связано с измерением фазовых состояний в некоторые моменты времени

и непрерывной передачей информации с помощью обратной связи при наблю­

дении за динамическим процессом. В работе сформулировано необходимое и

достаточное условие вполне управляемости для рассмотренной системы линей­

ных дифференциальных уравнений с последействием и условия существования

программного управления и движения. Работа [30] также посвящена задачам

управления поэтапно меняющимися линейными системами нагруженных диф­

ференциальных уравнений и задаче оптимального управления с критерием

качества, заданным на весь промежуток времени. Сформулировано необходи­

мое и достаточное условие вполне управляемости. Построены аналитические

виды движения и управляющего воздействия для поставленной задачи управ­

ления, а также предложен способ решения задачи оптимального управления.

В [31], [32] сформулировано понятие управляемости линейных систем пере­

менной структуры с помощью динамического регулятора. Показано, что при

управлении системами переменной структуры с помощью динамического регу­

лятора достаточно задать только начальное состояние регулятора, а не строить

управление на всем интервале. Получены условия вполне управляемости со­

ставной и поэтапно меняющейся линейных нестационарных систем с помощью

динамического регулятора. Показано, что поэтапно меняющаяся линейная ста­

ционарная система с помощью динамического регулятора вполне управляема

тогда и только тогда, когда система вполне управляема и вполне наблюдаема.

Таким образом, проблема управляемости динамических систем является

одной из наиболее важной в теории управления и далека от своего решения.

Для нелинейных систем известны результаты по локальной управляемости. Об­

щих результатов, разрешающих проблему как в линейном случае, нет и, скорее

всего, их невозможно получить. Надо учитывать качественные свойства дина­

мических систем, классификация которых невозможна.

Для задач со сменой фазового пространства, которые являются подклас­

сом гибридных систем, даже в линейном стационарном случае результатов,
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сравнимых по завершенности с критерием Калмана, нет. Это связано со слож­

ность исследуемого объекта [18].

В настоящей работе рассматривается задача управляемости для динами­

ческих систем со сменой фазового пространства, т.е. исследуется возможность

перевода объекта из заданного множества одного фазового пространства в за­

данное множество другого фазового пространства через некоторую заданную

"гиперповерхность перехода". При этом данные фазовые пространства могут

иметь разные размерности. Возможен переход как из пространства большей

размерности в пространство меньшей размерности, так и наоборот. Размерно­

сти пространств зависят от практического смысла исследуемой задачи.

Первоначальным источником моделей гибридных систем с переключением

на многообразиях послужили многостадийные процессы космического полета

[33]. Такие модели отличались фиксированными последовательностями пере­

ключений. При этом при достижении траекторией некоторого многообразия

происходит изменение размерности пространства, вектора управления или из­

менение уравнений движения.

Уменьшение или увеличение размерности фазовых пространств в зада­

чах с переменной размерностью тесно связано с понятиями агрегирования и

декомпозиции.

Одной из особенностью агрегирования является уменьшение размерности

- объединение части в нечто целое. Наиболее часто встречающаяся ситуация,

приводящая к необходимости использования агрегирования, является работа с

многочисленной совокупностью данных, которые плохо обозримы и с которыми

трудно "работать". Так, например, в работе [34] применяется способ последо­

вательного агрегирования переменных для приведения нелинейной системы к

специальному виду, с уменьшением размерности.

Методы декомпозиции же, наоборот, приводят к увеличению размерности.

Декомпозиция позволяет осуществить последовательное разбиение системы на

подсистемы, которые в свою очередь, могут быть разбиты на составляющие их

части. Разбиение системы на подсистемы в общем случае может быть выполне­

но неоднозначно. Состав используемых признаков декомпозиции и порядок их

применения зависят от особенностей конкретной задачи. В результате декомпо­

зиция позволяет структурировать крупные и сложные объекты на подсистемы,

обладающие требуемыми свойствами. Методы декомпозиции часто используют

в линейном программировании.
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В последнее время растет интерес к задачам моделирования и управления

с несколькими динамическими системами с последовательными во времени ре­

жимами работы. Это одно из активно развивающихся направлений современной

математической теории управления. Такое бурное развитие данного типа задач

связано с расширением области их примения.

К задачам с переменной размерностью сводятся, например:

– процессы инвестирования динамических экономических систем [35],

– описание крупных промышленных и производственных комплексов [36],

– управление сложными техническими системами, в частности, электро­

энергетическими системами [37], [38],

– управление коммуникационными и информационными системами,

транспортными и производственными потоками [39], [40],

– моделирование многостадийных технологических процессов [36], [41],

[42],

– задачи оптимизации траекторий выведения космического аппарата с до­

полнительным топливным баком и ступенчатых космических аппаратов

с низкой круговой орбиты искусственного спутника Земли на геостаци­

онарную орбиту [43].

Примерами экономических систем, которые состоят из изменяющегося

количества подсистем, являются, например, крупные производственные корпо­

рации, фирмы, в состав которых входят предприятия, выпускающие некоторую

продукцию [18]. Также подобные задачи могут использоваться для обоснования

различных схем взаимодействия между уровнями в экономических системах

при решении задач планирования и оперативного управления [35].

Задачи со сменой фазового пространства имеют также и физический

смысл и возникают, например, когда управляемый аппарат запускается с дру­

гого управляемого аппарата, космического, наземного, подводного, надводного

[44].

И это далеко не полный список областей применимости подобных задач

управляемости. При таком довольно широком практическом примении задач

со сменой фазовых пространств, остается актуальным исследование теоретиче­

ских основ подобного рода задач.

С понятием управляемости дифференциальных систем тесно связано по­

нятие наблюдаемости, которое также является одним из фундаментальных

понятий теории управления и наблюдения. Задачи наблюдения динамических
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систем имеют важные теоретическое и практическое значения. Например, для

реализации управления по принципу обратной связи необходимо знать фазо­

вое состояние системы в каждый момент времени. Поскольку не все фазовые

координаты системы доступны измерению, необходимо рассмотреть вопрос о

возможности полного восстановления фазовых координат системы по резуль­

татам неполного наблюдения (измерения). Наблюдаемость является свойством

системы, показывающим, можно ли по выходу полностью восстановить инфор­

мацию о состояниях системы.

В настоящей работе также рассматривается задача восстановления ре­

шения линейной системы обыкновенных дифференциальных уравнений по

информации, заданной со случайной ошибкой.

Общая постановка задачи восстановления заключается в определении зна­

чений заданного функционала или оператора на некоторых классах функций

по неполной информации о них. О функциях, по которым мы восстанавлива­

ем значения оператора, нам известна информация двух типов. Первый тип

”глобальный”, характеризует класс функций, которые только и могут встре­

титься; другой – ”локальный” (индивидуальный), связанный с характеризацией

отдельной функции. Классы обычно связывают со свойствами гладкости или

аналитичности входящих в них функций. Локальная или индивидуальная ин­

формация обычно состоит в том, что нам оказываются доступными некоторые

характеристики функции (например, ее значения в отдельных точках, моменты,

коэффициенты Фурье или Тейлора, преобразование Фурье и т.п.). Эта инфор­

мация может задаваться с детерминированной ошибкой или со случайной [45].

К настоящему времени имеется значительное число работ, в которых для

различных задач восстановления найдены оптимальные методы. Задачи с детер­

минированнными ошибками рассматривались, например, в работах [46] - [55].

Задачи со случайными ошибками изучались в работах [56] - [62]. В ра­

боте [57] оценка методов восстановления берется по линейным функционалам,

в работе [58] получена оценка для нелинейного метода восстановления через

оценки линейных методов.

Задача оценивания погрешности метода восстановления по случайной ве­

личине, имеющей нормальное распределение рассмотрена в работе [59]. В ней

получено неравентсво для оценки минимаксного нелинейного риска.

Задача восстановления решения системы линейных однородных уравне­

ний рассматривалась в [63], но в случае детерминированной ошибки.
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Цели и задачи работы

В диссертационной работе ставились следующие цели:

– проведение анализа задач управляемости для дифференциальных си­

стем со сменой фазового пространства при различных вариантах

правых частей систем дифференциальных уравнений;

– получение условий управляемости для задач со сменой фазовых про­

странств как в нелинейном, так и в линейном случае;

– поиск новых подходов к исследованию управляемости для задач с пере­

менной структурой;

– решение задачи оптимального восстановления решения системы ли­

нейных дифференциальных уравнений по исходной информации со

случайной ошибкой.

Научная новизна

Научная новизна работы обусловлена следующими основными результа­

тами диссертационного исследования:

– получен ряд условий управляемости для систем с переменной струк­

турой, рассмотрены различные классы дифференциальных систем в

различной комбинации;

– получены достаточные условия управляемости для нелинейных диффе­

ренциальных систем со сменой фазовых пространств в случае, когда

правые части дифференциальных систем являются вогнутыми отобра­

жениями;

– рассмотрен вопрос применимости локальной управляемости нелиней­

ных дифференциальных систем для задач с переменной структурой;

– получены оптимальный метод восстановления линейного оператора по

исходной информации, заданной со случайной ошибкой, и оптималь­

ный метод восстановления решения линейной системы обыкновенных

дифференциальных уравнений по начальным данным, известным со

случайной ошибкой.

Теоретическая и практическая значимость работы

Полученные в диссертации результаты могут быть использованы в тео­

рии управляемости при исследовании различных динамических систем. Также

полученные результаты имеют довольно широкое практическое применение в

различных задачах экономики, эконометрики и в задачах с физическим при­
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ложением. Задачи восстановления данных по неточной начальной информации

применяются, например, в геофизике и астрономии.

Методология и методы исследования

В работе используются методы теории обыкновенных дифференциальных

уравнений, линейной алгебры, управляемости, оптимального управления, вы­

пуклого анализа, многозначного анализа, функционального анализа и теории

приближения функций.

Положения, выносимые на защиту:

1. Доказано условие управляемости нелинейных дифференциальных си­

стем треугольного вида в задаче со сменой фазового пространства. В

явном виде получены уравнения, описывающие траектории, с помощью

которых осуществляется переход из заданного множества одного про­

странства в заданное множество другого пространства.

2. Доказано достаточное условие управляемости системы со сменой фа­

зового пространства в случае, когда правые части дифференциальных

включений являются вогнутыми отображениями.

3. Доказано достаточное условие управляемости задачи со сменой фа­

зового пространства в случае, когда нелинейная система в первом

пространстве линеаризуется при некоторой замене переменных, а

нелинейная система во втором пространстве является локально нуль­

управляемой.

4. Доказаны теоремы об оптимальном восстановлении линейного опера­

тора и решения линейной системы дифференциальных уравнений по

исходной информации со случайной ошибкой. Решение системы обык­

новенных дифференциальных уравнений восстановлено при различных

вариантах задания исходной информации: задача решается в предполо­

жении, что начальная точка принадлежит некоторому эллипсоиду и ее

координаты в начальный момент времени известны со случайной ошиб­

кой. Требуется восстановить решение в момент времени τ > 0. Также

рассматривается задача, в которой решение известно с некоторой слу­

чайной ошибкой в момент времени 𝑡 = 𝑇1. Требуется восстановить

решение в некоторый момент времени 0 < τ < 𝑇1. В каждой задаче

рассматривается случай различных собственных значений матрицы 𝐴

и случай кратных собственных значений.



14

Общий результат применяется также к задаче о восстановлении 𝑘-ой

производной тригонометрического полинома по его коэффициентам, из­

вестным со случайной ошибкой.

Содержание работы

Диссертация состоит из введения, 4 глав, заключения и списка литерату­

ры. Полный объём диссертации составляет 103 страницы, включая 0 рисунков.

Список литературы содержит 83 наименования.

Во введении приводится краткий обзор исследований по теории управ­

ляемости и теории восстановления, дано обоснование теоретической и прак­

тической ценности полученных результатов. Описаны цели диссертационного

исследования, общая методика исследования и новизна полученных результа­

тов.

В первой главе рассматривается задача о переводе управляемого объ­

екта, описываемого двумя нелинейными дифференциальными системами в

разных фазовых пространствах и на последовательных промежутках времени,

из заданного множества одного пространства на заданное множество другого

пространства через заданную "гиперплоскость перехода". Исследуется управля­

емость объекта для нелинейных дифференциальных систем треугольного вида,

которые с помощью некоторой замены переменных сводятся к линейным си­

стемам. Рассмотрен пример, иллюстрирующий данный подход к исследованию

управляемости в поставленной задаче.

В двух фазовых пространствах 𝑋 = R𝑛 и 𝑌 = R𝑚 переменных 𝑥 =

(𝑥1,...,𝑥𝑛) и 𝑦 = (𝑦1,...,𝑦𝑚) движение управляемого объекта описывается сле­

дующими нелинейными системами дифференциальных уравнений:⎧⎨⎩𝑑𝑥𝑖
𝑑𝑡 = 𝑓𝑖(𝑥1,...,𝑥𝑖+1), 𝑖 = 1,...,𝑛− 1,

𝑑𝑥𝑛
𝑑𝑡 = 𝑓𝑛(𝑥1,...,𝑥𝑛;𝑢).

(1)

𝑥 ∈ 𝑋, 𝑡 ∈ [0,τ].⎧⎨⎩
𝑑𝑦𝑘
𝑑𝑡 = 𝑔𝑘(𝑦1,...,𝑦𝑘+1), 𝑘 = 1,...,𝑚− 1,

𝑑𝑦𝑚
𝑑𝑡 = 𝑔𝑚(𝑦1,...,𝑦𝑚; 𝑣).

(2)

𝑦 ∈ 𝑌, 𝑡 ∈ [τ, 𝑇 ].

Моменты времени τ и 𝑇 заданы. В пространстве 𝑋 задано начальное

множество 𝑀0 и гиперплоскость перехода Γ = (𝑥,𝑐). Стыковка траекторий осу­

ществляется с помощью заданного отображения 𝑞 : 𝑋 → 𝑌 , 𝑦(τ) = 𝑞(𝑥(τ)). Так
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же посредством этого отображения реализуется переход из одного пространства

в другое. В пространстве 𝑌 задано конечное множество 𝑀1.

Управляемый объект движется по следующей схеме: на отрезке времени

[0,τ] объект движется из начального множества 𝑀0 по решениям системы (1),

в момент времени τ объект попадает на Γ и происходит переход в простран­

ство 𝑌 под действием отображения 𝑞 : 𝑋 → 𝑌 , 𝑞(𝑥(τ)) = 𝑦(τ). Полученная

точка 𝑦(τ) является начальной для движения объекта в пространстве 𝑌 . Даль­

нейшее движение на отрезке времени [τ, 𝑇 ] объект осуществляет из точки 𝑦(τ)

на множество 𝑀1 по решениям системы (2). Причем 𝑦(τ) /∈ 𝑀1(в противном

случае задача решена).

Задача: заключается в том, чтобы найти условия, при которых объект,

описываемый системами(1) и (2), является управляемым на [0, 𝑇 ] из множества

𝑀0 пространства 𝑋 на множество 𝑀1 пространства 𝑌 .

Определение 0.0.1. [64] Объект, описываемый системами (1) и (2), назы­

вается управляемым из 𝑀0 в 𝑀1, если на отрезках [0,τ] и [τ, 𝑇 ] существуют

допустимые управления 𝑢 и 𝑣, что соответствующие им решения систем удовле­

творяют граничным условиям 𝑥(0) ∈𝑀0, 𝑥(τ) ∈ Γ и 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈𝑀1.

Условия управляемости объкта, описанного системами (1) и (2) можно

сформулировать в виде следующей теоремы.

Теорема 0.0.1. Пусть в системах (1) и (2) функции 𝑓𝑖(𝑥1, · · · ,𝑥𝑖+1), 𝑖 = 1,...,𝑛

и 𝑔𝑘(𝑦1, · · · ,𝑦𝑘+1), 𝑘 = 1,...,𝑚, имеют непрерывные частные производные до

(𝑛 − 𝑖 + 1)-го и (𝑚 − 𝑘 + 1)-го порядков включительно и пусть при всех

𝑥1, · · · , 𝑥𝑛+1 и при всех 𝑦1, · · · , 𝑦𝑚+1 выполнены неравенства⃒⃒⃒⃒
𝜕𝑓𝑖
𝜕𝑥𝑖+1

⃒⃒⃒⃒
⩾ 𝑎 > 0,

⃒⃒⃒⃒
𝜕𝑔𝑘
𝜕𝑦𝑘+1

⃒⃒⃒⃒
⩾ 𝑏 > 0,

где 𝑎 и 𝑏 - постоянные, не зависящие от 𝑥1, · · · , 𝑥𝑛+1 и 𝑦1, · · · , 𝑦𝑚+1 соответ­

ственно. И пусть выполнены условия стыковки траекторий 𝑦(τ) = 𝑞(𝑥(τ)).

Тогда объект, описанный системами (1) и (2) является управляемым из

начального множества 𝑀0 пространства 𝑋 на конечное множество 𝑀1 про­

странства 𝑌 .
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Во второй главе управляемость дифференциальных систем в задаче со

сменой фазового пространства исследуется с помощью аппарата теории выпук­

лого анализа и многозначных отображений. Получены достаточные условия

управляемости поставленной задачи для нелинейных дифференциальных си­

стем, когда правые части дифференциальных включений являются вогнутыми

отображениями. В случае, когда правые части дифференциальных систем ли­

нейны, с помощью аппарата опорных функций получено достаточное условие

управляемости в поставленной задаче, позволяющее оценить время перехода

из заданного множества одного пространства на заданное множество другого

пространства через некоторую гиперповерхность перехода. Приведен пример,

иллюстрирующий данный подход к исследованию.

Имеются два фазовых пространства 𝑋 = R𝑛, 𝑌 = R𝑚 переменных

𝑥 = (𝑥1,...,𝑥𝑛), 𝑦 = (𝑦1,...,𝑦𝑚). Обозначим Ω(R𝑛), Ω(R𝑚) - совокупности всех

непустых выпуклых компактных подмножеств пространств R𝑛 и R𝑚, соответ­

ственно. Пусть заданы множества 𝑈 ∈ Ω(R𝑛), 𝑉 ∈ Ω(R𝑚). Движение объекта

описывается следующими нелинейными системами дифференциальных урав­

нений:

𝑥̇(𝑡) = 𝑓(𝑡,𝑥(𝑡),𝑢(𝑡)), 𝑢(𝑡) ∈ 𝑈, 𝑥(𝑡) ∈ 𝑋, 𝑡 ∈ [0,τ]; (3)

𝑦̇(𝑡) = 𝑔(𝑡,𝑦(𝑡),𝑣(𝑡)), 𝑣(𝑡) ∈ 𝑉, 𝑦(𝑡) ∈ 𝑌, 𝑡 ∈ [τ, 𝑇 ]. (4)

Допустимыми управлениями являются всевозможные функции 𝑢(·) ∈
𝐿∞([0,τ], 𝑅𝑛), 𝑣(·) ∈ 𝐿∞([τ, 𝑇 ], 𝑅𝑚), для которых 𝑢(𝑡) ∈ 𝑈 при п.в. 𝑡 ∈ [0,τ]

и 𝑣(𝑡) ∈ 𝑉 при п.в. 𝑡 ∈ [τ, 𝑇 ]. Решениями систем (3) и (4) при 𝑡 ∈ [0,τ] и

𝑡 ∈ [τ, 𝑇 ] называются абсолютно непрерывные функции, удовлетворяющие

почти всюду на [0,τ] и [τ, 𝑇 ] системам (3) и (4) соответственно. Пусть функ­

ции 𝑓(𝑡,𝑥,𝑢), 𝑔(𝑡,𝑦,𝑣) таковы, решение задачи Коши для систем (3) и (4)

существует и единственно.

В 𝑋 заданы начальное множество 𝑀0 ∈ Ω(R𝑛) и не пересекающаяся с

ним выпуклая "гиперповерхность перехода" Γ. Пусть τ - наименьший момент

времени, при котором объект достигает гиперповерхности Γ. Когда объект, дви­

жущийся по закону (3), достигает гиперповерхности Γ, происходит переход в

пространство 𝑌 , заданный линейным отображением 𝑞 : 𝑋 → 𝑌 , и дальнейшее

движение осуществляется в пространстве 𝑌 по закону (4). Наконец, в 𝑌 зада­

но конечное множество 𝑀1 ∈ Ω(R𝑚) (не пересекающееся с множеством 𝑞(Γ)).

Подобная схема движения объекта изучена например в [19].
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Задача: заключается в том, чтобы найти условия, при которых объект,

описываемый системами (3) и (4), будет управляемым из 𝑀0 в 𝑀1.

Определение 0.0.2. Объект, описываемый системами (3) и (4), называется

управляемым из 𝑀0 в 𝑀1, если существуют такие допустимые управления 𝑢(·)
и 𝑣(·), что соответствующие им решения систем удовлетворяют граничным усло­

виям 𝑥(0) ∈𝑀0, 𝑥(τ) ∈ Γ и 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈𝑀1.

Для системы (3) в фазовом пространстве 𝑋 = R𝑛 в точке 𝑥 рассмотрим

множество 𝑓(𝑡,𝑥,𝑈), состоящее из всех векторов 𝑓(𝑡,𝑥,𝑢), где 𝑢 принадлежит

множеству 𝑈. Если 𝑥(𝑡) - некоторая траектория системы (3), соответствую­

щая допустимому управлению 𝑢(𝑡), то при почти всех 𝑡 ∈ [0,τ] выполняется

включение

𝑥̇(𝑡) ∈ 𝑓(𝑡,𝑥(𝑡),𝑈). (5)

Это приводит нас к дифференциальному включению

𝑥̇ ∈ 𝑓(𝑡,𝑥,𝑈). (6)

Теперь, при сделанных замечаниях, вместо нелинейной системы (3) будем

рассматривать дифференциальное включение (6). Обозначим 𝑓(𝑡,𝑥,𝑈) через

𝐹 (𝑡,𝑥), тогда в пространстве 𝑋 = R𝑛 движение управляемого объекта описы­

вается дифференциальным включением

𝑥̇ ∈ 𝐹 (𝑡,𝑥), 𝑡 ∈ [0,τ], (7)

где 𝐹 (𝑡,𝑥) - многозначное отображение. Аналогично в пространстве 𝑌 = R𝑚

движение управляемого объекта описывается дифференциальным включением

𝑦̇ ∈ 𝐺(𝑡,𝑦), 𝑡 ∈ [τ,𝑇 ]. (8)

Движение объекта из пространства 𝑋 в пространство 𝑌 осуществляется по

схеме, описанной выше.

Определение 0.0.3. [79] Многозначное отображение 𝐹 (𝑡,𝑥) называется во­

гнутым по 𝑥 на множестве 𝑀 , если для любых точек 𝑥1,𝑥2 ∈ 𝑀 и любого

числа 𝜆 ∈ [0,1] выполняется условие

𝜆𝐹 (𝑡,𝑥1) + (1− 𝜆)𝐹 (𝑡,𝑥2) ⊂ 𝐹 (𝑡,𝜆𝑥1 + (1− 𝜆)𝑥2).
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Заметим, что из этого условия следует (см., например, [79]) выпуклость множе­

ства 𝐹 (𝑡,𝑥) при каждом 𝑥 ∈ 𝑀 . Множество достижимости 𝐾(𝑡) для каждого

𝑡 ∈ [0,τ] состоит из всех точек 𝑥(𝑡) ∈ R𝑛, где 𝑥(𝑡) - решение включения (7) с

начальным условием 𝑥(0) ∈𝑀0.

Теорема 0.0.2. Пусть 𝐹 (𝑡,𝑥) вогнуто по 𝑥 на множестве достижимости

𝐾(τ) при всех 𝑡 ∈ [0,τ] и пусть отображение 𝐺(𝑡,𝑦) вогнуто по 𝑦 на множе­

стве достижимости 𝐾3(𝑇 ) при всех 𝑡 ∈ [τ, 𝑇 ] и 𝐾3(𝑇 ) компактно. 𝐾3(𝑇 ) –

множество достижимости системы (8) из 𝐾2(τ) в момент времени 𝑇 , где

𝐾2(τ) = 𝑞(𝐾(τ) ∩ Γ). Тогда для управляемости объекта, описываемого систе­

мами (3) и (4), на отрезке времени [0,𝑇 ] достаточно, чтобы было выполнено

следующее соотношение 𝑐(𝐾3(𝑇 ),𝜓) + 𝑐(𝑀1,− 𝜓) ⩾ 0, для любого 𝜓 ∈ R𝑚.

Рассмотрим задачу для случая линейных систем. Имеются два фазовых

пространства 𝑋 = R𝑛, 𝑌 = R𝑚 переменных 𝑥 = (𝑥1,...,𝑥𝑛), 𝑦 = (𝑦1,...,𝑦𝑚).

Заданы множества 𝑈 ∈ Ω(R𝑛), 𝑉 ∈ Ω(R𝑚). Движение объекта описывается

следующими системами дифференциальных уравнений

𝑥̇ = 𝐴𝑥+ 𝑢, 𝑢(𝑡) ∈ 𝑈, 𝑥(𝑡) ∈ 𝑋, 𝑡 ∈ [0,τ]; (9)

𝑦̇ = 𝐵𝑦 + 𝑣, 𝑣(𝑡) ∈ 𝑉, 𝑦(𝑡) ∈ 𝑌, 𝑡 ∈ [τ,𝑇 ]. (10)

Класс допустимых управлений — это множества функций

{𝑢(·) ∈ 𝐿∞([0,τ],R𝑛) | 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [0,τ]},

{𝑣(·) ∈ 𝐿∞([τ, 𝑇 ],R𝑚) | 𝑣(𝑡) ∈ 𝑉, 𝑡 ∈ [τ,𝑇 ]}.

В 𝑋 заданы начальное множество 𝑀0 ∈ Ω(R𝑛) и не пересекающаяся с ним

выпуклая "гиперповерхность перехода" Γ. Число τ — наименьший момент вре­

мени, при котором объект достигает гиперповерхности Γ. В пространстве 𝑋

также задано отображение 𝑞 : 𝑋 → 𝑌 , с помощью которого осуществляется пе­

реход из одного фазового пространства в другое. Движение объекта из одного

пространства в другое происходит также как и в случае нелинейных систем.

Наконец, в 𝑌 задано конечное множество 𝑀1 ∈ Ω(𝑅𝑚) (не пересекающееся

с множеством 𝑞(Γ)).

Задача: заключается в том, чтобы найти условия, при которых объект,

описываемый системами (9) и (10), будет управляемым из 𝑀0 в 𝑀1.
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Множество достижимости 𝐾(τ) для системы (9) — это множество концов

траекторий системы (9) с начальным множеством 𝑀0, соответсвующих всевоз­

можным допустимым управлениям 𝑢(·), и рассматриваемое в момент времени τ.
Определим функцию управляемости [82] 𝜙 : R𝑚 → R1 соотношением

𝜙(𝜓) = 𝑐(𝐾2(τ),𝑒
(𝑇−τ)𝐵*

𝜓) + 𝑐(𝑀1,− 𝜓) +

𝑇−τ�

0

𝑐(𝑉,𝑒𝑠𝐵
*
𝜓)𝑑𝑠. (11)

Здесь 𝐾2(τ) = 𝑞(𝐾(τ) ∩ Γ).

Теорема 0.0.3. Пусть заданы начальное множество 𝑀0 ∈ Ω(R𝑛) и не

пересекающаяся с ним выпуклая "гиперповерхность перехода" Γ, линейное

отображение 𝑞 : 𝑋 → 𝑌 , конечное множество 𝑀1 ∈ Ω(R𝑚). Для управ­

ляемости объекта, описываемого системами (9) и (10) на отрезке [0, 𝑇 ]

достаточно, чтобы функция управляемости

𝜙(𝜓) = 𝑐(𝐾2(τ),𝑒
(𝑇−τ)𝐵*

𝜓) + 𝑐(𝑀1,− 𝜓) +

𝑇−τ�

0

𝑐(𝑉,𝑒𝑠𝐵
*
𝜓)𝑑𝑠

была неотрицательна для любых 𝜓 ∈ 𝑆, здесь 𝐾2(τ) = 𝑞(𝐾1(τ)), а 𝑆 – единич­

ная сфера в R𝑚 с центром в 0.

В третьей главе исследуется возможность примения локальной управля­

емости в задачах со сменой фазового пространства. Для задачи, в которой

нелинейная система в первом пространстве линеаризуется при некоторой за­

мене переменных, а нелинейная система во втором пространстве является

локально нуль - управляемой, получены достаточные условия управляемости

из начального множества одного пространства в конечное множество другого

пространства.

В фазовых пространствах 𝑋 = R𝑛, 𝑌 = R𝑚 переменных 𝑥 = (𝑥1, . . . ,𝑥𝑛),

𝑦 = (𝑦1, . . . ,𝑦𝑚) движение объекта описывается нелинейными управляемыми

системами дифференциальных уравнений:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥̇1 = 𝑔1(𝑥1,𝑥2),

𝑥̇2 = 𝑔2(𝑥1,𝑥2,𝑥3),

· · ·

𝑥̇𝑛−1 = 𝑔𝑛−1(𝑥1, . . . ,𝑥𝑛−1,𝑥𝑛),

𝑥̇𝑛 = 𝑔𝑛(𝑥1, . . . ,𝑥𝑛−1,𝑥𝑛; 𝑣),

(12)
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где 𝑣 ∈ R, 𝑡 ∈ [0,τ], 𝑥(𝑡) ∈ 𝑋.

𝑦̇ = 𝑓(𝑦) +𝐵(𝑡)𝑢, (13)

где 𝑓(𝑦) ∈ 𝐶1(R𝑚), 𝑓(0) = 0, 𝜕𝑓
𝜕𝑦 (0) ̸= 0, 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [τ, 𝑇 ], 𝑦(𝑡) ∈ 𝑌, 𝐵(𝑡) -

матрица размера 𝑚 × 𝑟 специального вида:

𝐵(𝑡) = 𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡).

Функции 𝜙1(𝑡) и 𝜙2(𝑡) имеют непрерывные производные вплоть до (𝑚−1)

- го порядка включительно по крайней мере в окрестности некоторой точки

𝑡 = 𝑡* ∈ [τ,𝑇 ], также 𝜙1(𝑡) и 𝜙2(𝑡) допускают четное продолжение.

Моменты времени τ и 𝑇 заданы. Допустимыми управлениями являются

всевозможные функции 𝑢(·) ∈ 𝑈 = {𝑢(𝑡) ∈ R𝑟|𝑢(·) ∈ 𝐿∞[τ, 𝑇 ];𝑢(𝑡) ∈ Ω ⊂ R𝑟},
0 ∈ 𝑖𝑛𝑡Ω. Здесь 𝑖𝑛𝑡Ω− внутренность множества Ω.

Функции 𝑓(𝑦), 𝑔𝑖(𝑥1, . . . , 𝑥𝑖), 𝑖 = 1,𝑛 таковы, что решение задачи Коши

для систем (12) и (13) существует и единственно.

Будем использовать схему движения управляемого объекта с переходом

системы через ноль. Опишем эту схему подробно.

В пространстве 𝑋 задано некоторое начальное множество 𝑀0, в про­

странстве 𝑌 задано конечное множество 𝑀1. На отрезке времени [0,τ] объект

движется по закону (12) из начального множества 𝑀0, в момент времени τ он

попадает в точку ноль. Далее происходит переход в пространство 𝑌 , заданный

некоторым отображением 𝑞 : 𝑋 → 𝑌 , и дальнейшее движение осуществляется

в пространстве 𝑌 по закону (13). Причем 𝑞(𝑥(τ)) /∈ 𝑀1 (если 𝑞(𝑥(τ)) ∈ 𝑀1,

то задача решена).

Задача: найти условия, при которых объект, описываемый системами

(12) и (13), будет управляемым из множества 𝑀0 пространства 𝑋 в множе­

ство 𝑀1 пространства 𝑌 .

Условия управляемости данного объекта можно сформулировать в виде

следующей теоремы:

Теорема 0.0.4. Пусть функции 𝑔𝑖(𝑥1, . . . ,𝑥𝑖+1), 𝑖 = 1, . . . ,𝑛, имеют непре­

рывные частные производные до (𝑛− 𝑖 + 1) - го порядка включительно и при

всех 𝑥1, . . . , 𝑥𝑛+1 выполнено неравенство

| 𝜕𝑔𝑖
𝜕𝑥𝑖+1

| ⩾ 𝑏 > 0, 𝑖 = 1, . . . ,𝑛 𝑥1, . . . , 𝑥𝑛+1,
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где 𝑏 - постоянная, не зависящая от 𝑥1, . . . ,𝑥𝑛+1. Пусть выполнены все

предположения на 𝑓(𝑦), 𝐵(𝑡) и 𝑢(𝑡). Также на отрезке [τ,𝑇 ] существует точ­

ка 𝑡*, в которой ранг матрицы 𝐿(𝑡) равен 𝑚, где

𝐿(𝑡) = (𝐵(𝑡), 𝐴𝐵(𝑡)−𝐵′(𝑡), 𝐴2𝐵(𝑡)− 2𝐴𝐵′(𝑡) +𝐵′′(𝑡),...,

𝐶0
𝑚−1𝐴

𝑚−1𝐵(𝑡)− 𝐶1
𝑚−1𝐴

𝑚−2𝐵′(𝑡) + ...+ (−1)𝑚+1𝐶𝑚−1
𝑚−1𝐴

0𝐵(𝑚−1)(𝑡)).

Тогда объект, описываемый системами (12) и (13), является управляемым

из множества 𝑀0 пространства 𝑋 в множество 𝑀1 пространства 𝑌 на

отрезке времени [0,𝑇 ].

Четвертая глава посвящена задачам восстановления значений линейного

оператора на некотором классе по исходной информации, заданной со случай­

ной ошибкой. Полученная общая теорема о восстановлении применена к случаю

восстановления решения линейной системы обыкновенных дифференциальных

уравнений по исходной информации со случайной ошибкой.

Пусть 𝑋 — линейное пространство, 𝑍 — линейное нормированное про­

странство и 𝑇 : 𝑋 → 𝑍 — линейный оператор. Требуется восстановить значения

оператора 𝑇 на некотором множестве (классе) 𝑊 ⊂ 𝑋 по значениям линей­

ного оператора 𝐼 : 𝑋 → R𝑛, заданным со случайной ошибкой. Более точно,

зафиксируем 𝛿 > 0 и для каждого 𝑥 ∈ 𝑊 будем рассматривать множество

случайных векторов

𝑌𝛿(𝑥) = { 𝑦 = (𝑦1, . . . ,𝑦𝑛) : M(𝑦) = 𝐼𝑥, D(𝑦𝑗) ⩽ 𝛿2, 𝑗 = 1, . . . ,𝑛 }.

Всякий метод восстановления сопоставляет случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥)

элемент из пространства 𝑍, принимаемый за приближение к значению 𝑇𝑥. По­

грешностью метода восстановления 𝜙 : R𝑛 → 𝑍 называется величина

𝑒(𝑇,𝑊,𝐼,𝛿,𝜙) =

(︂
sup

𝑥∈𝑊, 𝑦∈𝑌𝛿(𝑥)
M
(︀
‖𝑇𝑥− 𝜙(𝑦)‖2𝑍

)︀)︂1/2

(рассматриваются только те методы, для которых эта величина определена).

Задача состоит в нахождении погрешности оптимального восстановления

𝐸(𝑇,𝑊,𝐼,𝛿) = inf
𝜙 : R𝑛→𝑍

𝑒(𝑇,𝑊,𝐼,𝛿,𝜙) (14)

и метода, на котором достигается нижняя грань, называемым оптимальным.
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Положим

𝑊 =

{︂
𝑥 ∈ R𝑛 :

𝑛∑︁
𝑗=1

ν𝑗|𝑥𝑗|2 ⩽ 1

}︂
,

где ν𝑗 > 0, 𝑗 = 1, . . . ,𝑛. Определим линейные операторы 𝑇 : R𝑛 → R𝑛 и 𝐼 : R𝑛 →
R𝑛 следующим образом

𝑇𝑥 = (𝜇1𝑥1, . . . ,𝜇𝑛𝑥𝑛), 𝐼𝑥 = (𝑥1, . . . ,𝑥𝑛),

|𝜇𝑗| > 0, 𝑗 = 1, . . . ,𝑛.

Введем обозначения

𝛾𝑗 =

√
ν𝑗

|𝜇𝑗|
, 𝑗 = 1, . . . ,𝑛, 𝜉𝑗 =

(︂ 𝑗∑︁
𝑘=1

ν𝑘

(︂
𝛾𝑗
𝛾𝑘

− 1

)︂)︂1/2

, 𝑗 = 1, . . . 𝑛.

Будем считать, что 𝛾1 ⩽ . . . ⩽ 𝛾𝑛. Нетрудно убедиться, что 0 = 𝜉1 ⩽ . . . ⩽ 𝜉𝑛.

Теорема 0.0.5. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некотором 1 ⩽ 𝑠 ⩽ 𝑛 − 1 или

1/𝛿 ∈ (𝜉𝑛,+∞) (в этом случае считаем 𝑠 = 𝑛). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

|𝜇𝑘|2
(︂
1− 𝛾𝑘(1− 𝑐1)

𝛾1

)︂)︂1/2

,

где

𝑐1 = 1−
𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

, (15)

а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︂
1− 𝛾𝑘(1− 𝑐1)

𝛾1

)︂
𝜇𝑘𝑦𝑘𝑒𝑘,

где {𝑒𝑘} — стандартный базис в R𝑛, является оптимальным.

Рассмотрим задачу Коши для системы линейных однородных дифферен­

циальных уравнений ⎧⎨⎩
𝑑𝑥

𝑑𝑡
= 𝐴𝑥,

𝑥(0) = 𝑥0,
(16)

где 𝑥(𝑡) ∈ R𝑛, 𝑡 ⩾ 0 и 𝐴 = (𝑎𝑖𝑗), 𝑎𝑖𝑗 ∈ R.
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Предположим, что матрица 𝐴 является самосопряженной,

𝜇1 > 𝜇2 > . . . > 𝜇𝑛

— собственные числа матрицы 𝐴. Обозначим через {𝑒𝑗}𝑛𝑗=1 ортонормирован­

ный базис из собственных векторов, соответствующих собственным значениям

𝜇𝑗, 𝑗 = 1,...,𝑛.

Пусть

𝑥0 =
𝑛∑︁
𝑗=1

𝑥𝑗𝑒𝑗.

Тогда решение задачи (4.9) записывается в виде

𝑥(𝑡) =
𝑛∑︁
𝑗=1

𝑒𝜇𝑗𝑡𝑥𝑗𝑒𝑗.

Предположим, что координаты начальной точки 𝑥0 известны со случайной

ошибкой. Пусть, кроме того, известен некоторый эллипсоид, в котором находит­

ся точка 𝑥0. Требуется восстановить решение в момент τ, τ > 0.

Положим для 𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ R𝑛

𝑊 =

{︂
𝑥 ∈ R𝑛 :

𝑛∑︁
𝑗=1

ν𝑗𝑥
2
𝑗 ⩽ 1

}︂
, 𝑇𝑥 = (𝑒𝜇1τ𝑥1, . . . ,𝑒

𝜇𝑛τ𝑥𝑛), 𝐼𝑥 = (𝑥1, . . . ,𝑥𝑛).

Как и в общей постановке, всякий метод восстановления сопоставляет

случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥) элемент из пространства R𝑛, принимаемый за

приближение к значению 𝑇𝑥. Для решения поставленной задачи восстановле­

ния применим теорему 0.0.5.

Обозначим

𝛾𝑗 =

√
ν𝑗

𝑒−𝜆𝑗(𝑇1−τ)
, 𝜉𝑗 =

(︂ 𝑗∑︁
𝑘=1

ν𝑘

(︂
𝛾𝑗
𝛾𝑘

− 1

)︂)︂1/2

, 𝑗 = 1, . . . ,𝑛.

Будем считать, что 𝛾1 ⩽ . . . ⩽ 𝛾𝑛.

Теорема 0.0.6. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некоторых 1 ⩽ 𝑠 ⩽ 𝑛 − 1 или

1/𝛿 ∈ (𝜉𝑛,+∞) (в этом случае считаем 𝑠 = 𝑛). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

𝑒−2𝜆𝑘(𝑇1−τ)

(︂
1− 𝛾𝑘

𝛾1
(1− 𝑐1)

)︂)︂1/2

,
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где

𝑐1 = 1−
𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

, (17)

а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︂
(1− 𝛾𝑘

𝛾1
(1− 𝑐1)

)︂
𝑒−𝜆𝑘(𝑇1−τ)𝑦𝑘𝑒𝑘,

является оптимальным.

В четвертой главе рассмотрены различные варианты задания исходной

информации: задача решается в предположении, что начальная точка принад­

лежит некоторому эллипсоиду и ее координаты в начальный момент времени

известны со случайной ошибкой. Требуется восстановить решение в момент

времени τ > 0. Также рассматривается задача, в которой решение известно

с некоторой случайной ошибкой в момент времени 𝑡 = 𝑇1. Требуется восста­

новить решение в некоторый момент времени 0 < τ < 𝑇1. В каждой задаче

рассматривается случай различных собственных значений матрицы 𝐴 и случай

кратных собственных значений.

Общий результат применяется также к задаче о восстановлении 𝑘-ой про­

изводной тригонометрического полинома по его коэффициентам, известным со

случайной ошибкой.

В поставленных задачах рассматриваются произвольные распределения

случайного вектора с фиксированным математическим ожиданием и фиксиро­

ванной оценкой для дисперсии. Как и в задачах с детерминированной ошибкой

здесь обнаруживаются такие эффекты, как линейность оптимального метода и

возможность использовать не всю доступную для измерений информацию.

В заключении перечислены основные оригинальные результаты диссерта­

ционного исследования.

Степень достоверности полученных в диссертации результатов обес­

печивается строгостью доказательств, имеющимися публикациями в рецензи­

руемых изданиях, которые индексируются в международных базах данных, а

также выступлениями на семинарах, конференциях и школах.

Апробация результатов
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Глава 1. Управляемость дифференциальных систем в задаче со

сменой фазовых пространств

Глава посвящена исследованию условий управляемости задачи со сме­

ной фазового пространства в случае, когда правые части дифференциальных

систем представляют собой так называемые системы треугольного вида. Ре­

зультаты, полученные в данной главе, опубликованы соискателем в следующих

научных публикациях:

– I.S. Maximova, Controllability of Triangular Systems with Phase Space

Change. Data Analysis and Optimization. In Honor of Boris Mirkin’s 80th

Birthday, Springer Cham, 2023,—1,— XXXV,—P. 225–236.

https://doi.org/10.1007/978-3-031-31654-8

– Максимова И.С. Задача управляемости треугольными системами со

сменой фазового пространства, Управление развитием крупномасштаб­

ных систем. MLSD’2023 Труды шестнадцатой международной конфе­

ренции, ИПУ РАН,2023,—С. 618-622.

1.1 Постановка задачи

Имеются два фазовых пространства 𝑋 = R𝑛, 𝑌 = R𝑚 переменных

𝑥 = (𝑥1,...,𝑥𝑛), 𝑦 = (𝑦1,...,𝑦𝑚). Движение объекта описывается следующими

нелинейными системами дифференциальных уравнений:

𝑥̇ = 𝑓(𝑥(𝑡),𝑢(𝑡)), 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [0,τ], 𝑥 ∈ 𝑋. (1.1)

𝑦̇ = 𝑔(𝑦(𝑡),𝑣(𝑡)), 𝑣(𝑡) ∈ 𝑉, 𝑡 ∈ [τ, 𝑇 ], 𝑦 ∈ 𝑌. (1.2)

Класс допустимых управлений состоит из всех функций

𝑢(·) ∈ 𝑈 = {𝑢(𝑡) ∈ R𝑟 | 𝑢(·) ∈ 𝐿∞[0,τ];𝑢(𝑡) ∈ 𝑈1 ⊂ R𝑟, 𝑡 ∈ [0,τ]}, 𝑟 ⩽ 𝑛,

𝑣(·) ∈ 𝑉 = {𝑣(𝑡) ∈ R𝑞 | 𝑣(·) ∈ 𝐿∞[τ, 𝑇 ]; 𝑣(𝑡) ∈ 𝑉1 ⊂ R𝑞, 𝑡 ∈ [τ, 𝑇 ]}, 𝑞 ⩽ 𝑚.

Функции 𝑓(𝑥(𝑡),𝑢(𝑡)), 𝑔(𝑦(𝑡),𝑣(𝑡)) таковы, что для систем (1.1) и (1.2) вы­

полнена теорема существования и единственности решения задачи Коши при

заданных допустимых функциях 𝑢(𝑡) и 𝑣(𝑡) соответственно. Решениями систем

(1.1) и (1.2) при 𝑡 ∈ [0,τ] и 𝑡 ∈ [τ, 𝑇 ] являются абсолютно непрерывные функции,
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удовлетворяющие почти всюду на [0,τ] и [τ, 𝑇 ] системам (1.1) и (1.2) соответ­

ственно. В 𝑋 заданы начальное множество 𝑀0 ⊂ 𝑅𝑛 и не пересекающаяся с

ним "гиперплоскость перехода" Γ, с нормалью 𝛾.

Когда объект, движущийся по закону (1.1), достигает гиперплоскости Γ,

происходит переход в пространство 𝑌 , заданный некоторым линейным отобра­

жением 𝑞 : 𝑋 → 𝑌 , и дальнейшее движение осуществляется в пространстве

𝑌 по закону (1.2). Наконец, в 𝑌 задано конечное множество 𝑀1 (не пересека­

ющееся с множеством 𝑞(Γ)).

Пусть τ - момент попадания траектории системы (1.1) на гиперплоскость

перехода Γ. Момент времени τ может быть как задан заранее, так и не задан.

Задача заключается в том, чтобы перевести объект, описываемый систе­

мами (1.1) и (1.2), из начального множества 𝑀0 пространства 𝑋 на конечное

множество 𝑀1 пространства 𝑌 через гиперплоскость Γ. Данную задачу назо­

вем (см. [65]) задачей управляемости со сменой фазового пространства

или задачей с переменной структурой.

Для осуществления данного перехода, в случае заданного момента време­

ни τ, на отрезках [0,τ] и [τ, 𝑇 ] должны найтись такие допустимые управления

𝑢(𝑡) и 𝑣(𝑡), чтобы соответсвующие им решения систем (1.1) и (1.2) удовлетво­

ряли граничным условиям:

𝑥(0) ∈𝑀0, 𝑥(τ) ∈ Γ, 𝑦(τ) = 𝑞(𝑥(τ)) ∈ Γ, 𝑦(𝑇 ) ∈𝑀1.

В случае, если момент времени τ не задан, для осуществления данного перехода

должны найтись момент времени τ ∈ [0,𝑇 ] и такие допустимые управления 𝑢(𝑡)

и 𝑣(𝑡) на отрезках [0,τ] и [τ, 𝑇 ] , чтобы соответсвующие им решения систем (1.1)

и (1.2) удовлетворяли граничным условиям:

𝑥(0) ∈𝑀0, 𝑥(τ) ∈ Γ, 𝑦(τ) = 𝑞(𝑥(τ)) ∈ Γ, 𝑦(𝑇 ) ∈𝑀1.

Итак, данная задача распадается на две подзадачи:

задачу I : переход из множества 𝑀0 на гиперплоскость Γ в пространстве 𝑋 и

задачу II: переход из 𝑦(τ) на множество 𝑀1 в пространстве 𝑌 .

Рассмотрим отдельно каждую из получившихся задач.
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1.2 Задача I: попадание из начального множества 𝑀0 на

гиперплоскость Γ в пространстве 𝑋

Рассмотрим условия перехода из множества 𝑀0 на гиперплоскость Γ в

пространстве 𝑋.

Решение системы (1.1) с начальным условием 𝑥(0) = 𝑥0 ∈ 𝑀0 имеет вид

𝑥(𝑡) = 𝑥0 +

τ�

0

𝑓(𝑥(𝑡),𝑢(𝑡)𝑑𝑡. (1.3)

Пусть гиперплоскость перехода Γ задается уравнением (𝑎,𝑥) = 𝑐. Тогда для

того, чтобы в момент времени τ траектория 𝑥(𝑡) попала на заданную гипер­

плоскость необходимо и достаточно выполнение следующего условия:

(𝑎,𝑥(τ)) = 𝑐,

(𝑎,𝑥0) +

τ�

0

(𝑎,𝑓(𝑥(𝑡),𝑢(𝑡))𝑑𝑡 = 𝑐,

τ�

0

(𝑎,𝑓(𝑥(𝑡),𝑢(𝑡)))𝑑𝑡 = 𝑐− (𝑎,𝑥0) (1.4)

Итак, если существуют такое 𝑢(𝑡) и момент времени τ и выполнено усло­

вия (1.4), то траектория 𝑥(𝑡) попадет на гиперплоскость Γ в момент времени τ.

Рассмотрим поведение траектории в момент времени τ. Траектория 𝑥(𝑡)

может иметь общие точки с гиперплоскость Γ в двух случаях: в случае, когда

траектория пересекает гиперплоскость и в случае, когда траектория касается

гиперплоскости.

При этом в задаче I следует избежать касания траектории и гиперплос­

кости Γ (более подробно эту ситуацию рассмотрим ниже). Множество задач,

в которых при попадании на гиперплоскость траектория ее не касается, до­

статочно широко. Рассмотрим далее в качестве задачи I задачу некоторого

оптимального перехода из точки 𝑥0 на гиперплоскость Γ. С этой целью вве­

дем в рассмотрение функционал

𝐽 =

τ�

0

𝑓0(𝑥(𝑡),𝑢(𝑡))𝑑𝑡. (1.5)
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Функция 𝑓0(𝑥(𝑡),𝑢(𝑡)) удовлетворяет тем же условиям, что и функции

𝑓(𝑥(𝑡),𝑢(𝑡)), 𝑔(𝑦(𝑡),𝑣(𝑡)).

Рассмотрим задачу оптимального управления со следующими краевыми

условиями в пространстве 𝑋:

𝑥̇ = 𝑓(𝑥(𝑡),𝑢(𝑡)), 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [0,τ], 𝑥 ∈ 𝑋. (1.6)

𝐽 =

τ�

0

𝑓0(𝑥(𝑡),𝑢(𝑡))𝑑𝑡. (1.7)

Заданы начальная точка 𝑥0 ∈ R𝑛 и гиперплоскость Γ с нормалью 𝛾: 𝑥0 /∈ Γ.

Требуется среди всех допустимых управлений 𝑢(𝑡), 𝑡 ∈ [0, τ], переводя­

щих объект, описываемый системой (1.6) из начальной точки 𝑥0 ∈ R𝑛 на

гиперплоскость Γ, найти такое, которое придает функционалу (1.7) наимень­

шее возможное значение.

Необходимое условие решения поставленной задачи дает принцип макси­

мума Понтрягина [66]:

Пусть 𝑢(𝑡), 𝑡 ∈ [0, τ] - допустимое управление, переводящее объект из по­

ложения 𝑥0 в положение 𝑥1 ∈ Γ, а 𝑥(𝑡) - соответствующая ему траектория.

Для оптимальности (в смысле минимума функционала (1.7)) управления 𝑢(𝑡) и

траектории 𝑥(𝑡), 𝑡 ∈ [0, τ] необходимо существование такой ненулевой непрерыв­

ной вектор-функции 𝜓(𝑡) = (𝜓0(𝑡), 𝜓1(𝑡), . . . , 𝜓𝑛(𝑡)), соответсвующей функциям

𝑢(𝑡) и 𝑥(𝑡) и являющейся решением системы:

𝑑𝜓𝑖
𝑑𝑡

= −𝜕𝐻(𝜓, 𝑥(𝑡),𝑢(𝑡))

𝜕𝑥𝑖
, 𝑖 = 0,1, . . . ,𝑛, (1.8)

(здесь 𝐻(𝜓(𝑡), 𝑥(𝑡),𝑢(𝑡) = 𝜓0(𝑡)𝑓0(𝑥(𝑡),𝑢(𝑡)) + (𝜓(𝑡),𝑓(𝑥(𝑡),𝑢(𝑡)), что

1) при любом 𝑡 ∈ [0, τ] функция 𝐻(𝜓(𝑡), 𝑥(𝑡),𝑢(𝑡)) переменного 𝑢 ∈ 𝑈

достигает в точке 𝑢 = 𝑢(𝑡) максимума

𝐻(𝜓(𝑡), 𝑥(𝑡),𝑢(𝑡)) =𝑀(𝜓(𝑡),𝑥(𝑡)),

2)в конечный момент времени τ выполнены соотношения

𝜓0(τ) ⩽ 0, 𝑀(𝜓(τ),𝑥(τ)) = 𝐻(𝜓(τ), 𝑥(τ),𝑢(τ)) = 0,

3) выполнено условие трансверсальности в правом конце

𝜓(τ) = 𝛾
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(вектор 𝜓(τ) ортогонален гиперплоскости Γ).

Рассмотрим более подробно поведение оптимальной траектории задачи I

в правом конце в момент времени τ, где τ - момент попадания на гиперплос­

кость Γ. Наша задача - исключить касание в этой точке, траектория должна

"протыкать"данную гиперплоскость.

Функция 𝐻 в момент времени τ имеет вид

𝐻(𝜓(τ), 𝑥(τ),𝑢(τ)) = 𝜓0(τ)𝑓0(𝑥(τ),𝑢(τ)) + (𝜓(τ),𝑓(𝑥(τ),𝑢(τ)) = 0.

В силу системы (1.1) и условия трансверсальности в правом конце, имеем

𝑥̇(τ) = 𝑓(𝑥(τ),𝑢(τ)), 𝜓(τ) = 𝛾.

Тогда

𝐻(𝜓(τ), 𝑥(τ),𝑢(τ)) = 𝜓0(τ)𝑓0(𝑥(τ),𝑢(τ)) + (𝛾,𝑥̇(τ)) = 0.

Если в момент времени τ трактория касается гиперплоскости Γ, то

(𝛾,𝑥̇(τ)) = 0, тогда получим

𝜓0(τ)𝑓0(𝑥(τ),𝑢(τ)) = 0.

Откуда, если 𝑓0(𝑥(τ),𝑢(τ)) ̸= 0, 𝜓0(τ) = 0, и задача оказывается анор­

мальной [67].

Итак, если задача не является анормальной, то в момент попадания на

гиперплоскоть, траектория 𝑥(𝑡) не касается гиперплоскости Γ. Таким образом,

в дальнейшем будем предполагать, что траектория при попадании на гипер­

плоскость перехода ее не касается.

1.3 Задача II: управляемость в пространстве 𝑌

Пусть, решая задачу I, мы нашли момент времени τ (если он не задан)

и единственное управление 𝑢*(τ), соответствующую ему траекторию 𝑥*(𝑡), ко­

торые переводят систему (1.1) из положения 𝑥0 ∈ 𝑀0 ⊂ R𝑛 на гиперплоскость

Γ без касания в момент времени τ.

Используя отображение 𝑞(𝑥) : R𝑛 → R𝑚 осуществляем переход в про­

странство 𝑌 и получаем точку

𝑞(𝑥*(𝑢*(τ)) = 𝑦*(τ),



33

которая является начальной при движении объекта в пространсве 𝑌 по реше­

ниям системы (1.2).

Замечание 1.3.1. Если управление 𝑢*(τ) не является единственным, то полу­

чаем множество концов траекторий, действуя на которое отображением 𝑞(𝑥) :

R𝑛 → R𝑚, мы получаем начальное множество в пространсве 𝑌 .

В пространстве 𝑌 имеем следующую задачу управляемости: найти усло­

вия, при которых объект, описываемый системой (1.2) является управляемым

из точки 𝑦*(τ) на множество 𝑀1.

Определение 1.3.1. Объект, описываемый системой (1.2), называется управ­

ляемым из 𝑞(𝑥*(𝑢*(τ))) = 𝑦*(τ) в 𝑀1, если на отрезке [τ, 𝑇 ] существует

допустимое управление 𝑣(𝑡) ∈ 𝑉 , что соответствующее ему решение системы

(1.2) удовлетворяет граничным условиям 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈𝑀1.

Рассмотрим решение системы (1.2):

𝑦(𝑡) = 𝑦*(τ) +

𝑡�

τ

𝑔(𝑦,𝑣)𝑑𝑡.

Чтобы перевести систему из положения 𝑦*(τ) на множество 𝑀1, необходимо

существование момента времени 𝑇 и управления 𝑣 ∈ 𝑉 таких, что выполнено

𝑦(𝑇 ) ∈𝑀1, что условиями задачи не гарантируется.

Тогда наряду с системой (1.2) рассмотрим эту систему в обратном времени

𝑦̇ = −𝑔(𝑦(𝑡),𝑣(𝑡)), 𝑣(𝑡) ∈ 𝑉, 𝑡 ∈ [τ, 𝑇 ], 𝑦 ∈ 𝑌. (1.9)

с начальным условием

𝑦1 ∈𝑀1.

Решение системы (1.9) имеет вид

𝑦(𝑡) = 𝑦1(𝑇 )−
𝑡�

𝑇

𝑔(𝑦,𝑣)𝑑𝑡.



34

Тогда для перехода системы из точки 𝑦*(τ) на множество 𝑀1 требуется

существование такого момента времени 𝑡1 ∈ [τ, 𝑇 ] и допустимых управлений

𝑣1, 𝑣2, что

𝑦*(τ) +

𝑡1�

τ

𝑔(𝑦,𝑣1)𝑑𝑡 = 𝑦1(𝑇 )−
𝑡1�

𝑇

𝑔(𝑦,𝑣2)𝑑𝑡.

Т.о., получаем следующее условие управляемости из точки 𝑦*(τ) на множество

𝑀1:
𝑡1�

τ

𝑔(𝑦,𝑣1)𝑑𝑡+

𝑡1�

𝑇

𝑔(𝑦,𝑣2)𝑑𝑡 = 𝑦1(𝑇 )− 𝑦*(τ). (1.10)

Итак, при выполнении условия (1.4) и условия управляемости (1.10), осу­

ществляется искомый переход из множества 𝑀0 пространства 𝑋 на множество

𝑀1 в пространсве 𝑌 .

Полученные условия управляемости являются достаточно общими и нуж­

даются в расшифровке в зависимости от конкретного вида правых частей

уравнений в системах, описывающих движение объекта. Далее рассмотрим по­

ставленную задачу для конкретного класса нелинейных систем.

1.4 Случай нелинейных систем треугольного вида

В данной главе исследуется управляемость составной системой следующей

структуры: на двух последовательных отрезках времени движение объекта опи­

сывается двумя нелинейными треугольными системами, которые путем замены

пременных сводятся к линейным системам. Смена фазовых пространств осу­

ществляется с помощью некоторого заданного отображения, с ним же связана и

стыковка траекторий. Получены достаточные условия управляемости объекта,

описанного нелинейными системами треугольного вида, из заданного начально­

го множества одного пространства в заданное множество другого пространства.

Предложен подход к нахождению траекторий, реализующих данное движение.

В настоящей главе рассмотрены нелинейные системы так называемого

треугольного вида. Важной особенностью данного класса систем является то,

что при определенной замене переменных они отображаются на линейные.

Управляемость линейных систем хорошо изучена, что позволяет использовать
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различные критерии для их исследования. Треугольные системы описывают

ряд физических процессов, таких как ориентация спутника на орбите, управ­

ление роботом - манипулятором и др. Впервые класс треугольных систем был

введен и рассмотрен В.И. Коробовым [69]. Дальнейшее развитие предложен­

ный Коробовым подход получил в работах [70], [72], [71], [73]. В работе [72]

приводятся примеры построения отображения нелинейных управляемых систем

специального вида на каноническую систему. В [73] на правую часть системы

наложены более жесткие требования, чем в [71], и тем не менее, применяемую

в работе [71] технику построения управлений удалось модифицировать для по­

строения управлений, переводящих заданную точку в заданную.

В теории управления важную роль играют следующие две задачи: при

каких условиях существует управление, переводящее систему из одного положе­

ние в другое на некотором отрезке времени и если такое управление существует,

требуется найти его аналитичесоке представление.

Первая задача для линейных систем к настоящему моменту решена полно­

стью. Получены многочисленные формы необходимых и достаточных условий

существования управлений. Для нелинейных же систем задача управляемости

далека от своего решения ввиду многообразия классов нелинейных систем и

сложностей их описания.

Задача построения аналитического представления управления, переводя­

щего систему из одной точки в другую, впервые была решена Калманом в [3],

[10]. Широкие классы управлений в явной форме, переводящих объект из одно­

го положения в другое, были получены В.И. Коробовым, Г.М.Скляром в [74].

1.4.1 Основной результат

В двух фазовых пространствах 𝑋 = R𝑛 и 𝑌 = R𝑚 переменных 𝑥 =

(𝑥1,...,𝑥𝑛) и 𝑦 = (𝑦1,...,𝑦𝑚) движение управляемого объекта описывается сле­

дующими нелинейными системами дифференциальных уравнений:⎧⎨⎩𝑑𝑥𝑖
𝑑𝑡 = 𝑓𝑖(𝑥1,...,𝑥𝑖+1), 𝑖 = 1,...,𝑛− 1,

𝑑𝑥𝑛
𝑑𝑡 = 𝑓𝑛(𝑥1,...,𝑥𝑛;𝑢).

(1.11)

𝑥 ∈ 𝑋, 𝑡 ∈ [0,τ].
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⎧⎨⎩
𝑑𝑦𝑘
𝑑𝑡 = 𝑔𝑘(𝑦1,...,𝑦𝑘+1), 𝑘 = 1,...,𝑚− 1,

𝑑𝑦𝑚
𝑑𝑡 = 𝑔𝑚(𝑦1,...,𝑦𝑚; 𝑣).

(1.12)

𝑦 ∈ 𝑌, 𝑡 ∈ [τ, 𝑇 ].

Моменты времени τ и 𝑇 заданы. В пространстве 𝑋 задано начальное

множество 𝑀0 и гиперплоскость перехода Γ = (𝑥,𝑐). Стыковка траекторий осу­

ществляется с помощью заданного отображения 𝑞 : 𝑋 → 𝑌 , 𝑦(τ) = 𝑞(𝑥(τ)). Так

же посредством этого отображения реализуется переход из одного пространства

в другое. В пространстве 𝑌 задано конечное множество 𝑀1.

Управляемый объект движется по следующей схеме: на отрезке времени

[0,τ] объект движется из начального множества𝑀0 по решениям системы (1.11),

в момент времени τ объект попадает на Γ и происходит переход в пространство

𝑌 под действием отображения 𝑞 : 𝑋 → 𝑌 , 𝑞(𝑥(τ)) = 𝑦(τ). Полученная точка

𝑦(τ) является начальной для движения объекта в пространстве 𝑌 . Дальней­

шее движение на отрезке времени [τ, 𝑇 ] объект осуществляет из точки 𝑦(τ) на

множество 𝑀1 по решениям системы (1.12). Причем 𝑦(τ) /∈ 𝑀1(в противном

случае задача решена).

Задача заключается в том, чтобы найти условия, при которых объект,

описываемый системами(1.11) и (1.12), является управляемым на [0, 𝑇 ] из

множества 𝑀0 пространства 𝑋 на множество 𝑀1 пространства 𝑌 . Объект, опи­

сываемый системами (1.11) и (1.12), называется управляемым из 𝑀0 в 𝑀1, [64]

если на отрезках [0,τ] и [τ, 𝑇 ] существуют допустимые управления 𝑢(𝑡) и 𝑣(𝑡),

что соответствующие им решения систем удовлетворяют граничным условиям

𝑥(0) ∈𝑀0, 𝑥(τ) ∈ Γ и 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈𝑀1.

Условия управляемости объкта, описанного системами (1.11) и (1.12) мож­

но сформулировать в виде следующей теоремы.

Теорема 1.4.1. Пусть в системах (1.11) и (1.12) функции 𝑓𝑖(𝑥1, · · · ,𝑥𝑖+1), 𝑖 =

1,...,𝑛 и 𝑔𝑘(𝑦1, · · · ,𝑦𝑘+1), 𝑘 = 1,...,𝑚, имеют непрерывные частные производные

до (𝑛− 𝑖+1) – го и (𝑚− 𝑘+1) – го порядков включительно и пусть при всех

𝑥1, · · · , 𝑥𝑛+1 и 𝑦1, · · · , 𝑦𝑚+1 ⃒⃒⃒⃒
𝜕𝑓𝑖
𝜕𝑥𝑖+1

⃒⃒⃒⃒
⩾ 𝑎 > 0,⃒⃒⃒⃒

𝜕𝑔𝑘
𝜕𝑦𝑘+1

⃒⃒⃒⃒
⩾ 𝑏 > 0,
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где 𝑎 и 𝑏 – постоянные, не зависящие от 𝑥1, · · · , 𝑥𝑛+1 и 𝑦1, · · · , 𝑦𝑚+1 соответ­

ственно. И пусть выполнены условия стыковки траекторий 𝑦(τ) = 𝑞(𝑥(τ)).

Тогда объект, описанный системами (1.11) и (1.12) является управляемым

из начального множества 𝑀0 пространства 𝑋 на конечное множество 𝑀1

пространства 𝑌 .

Доказательство. Исследуем движение объекта в пространстве 𝑋 из началь­

ного множества 𝑀0 на гиперплоскость перехода Γ на отрезке времени [0,τ].

Рассмотрим следующую задачу управляемости - выбрать управление 𝑢 таким

образом, чтобы попасть из точки 𝑥0 ∈ 𝑀0 в точку 𝑥1 ∈ Γ по решениям систе­

мы (1.11). Приведем способ построения управления, решающего поставленную

задачу.

Рассмотрим систему (1.11):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥̇1 = 𝑓1(𝑥1,𝑥2),

𝑥̇2 = 𝑓2(𝑥1,𝑥2,𝑥3),

· · ·

𝑥̇𝑛−1 = 𝑓𝑛−1(𝑥1,...,𝑥𝑛),

𝑥̇𝑛 = 𝑓𝑛(𝑥1, . . . ,𝑥𝑛;𝑢).

Введем замену переменных следующим образом:

𝑧1 = 𝑥1 ≡ 𝐹1(𝑥1),

𝑧𝑖 =
𝜕𝐹𝑖−1

𝜕𝑥1
𝑓1(𝑥1,𝑥2) + ...+

𝜕𝐹𝑖−1

𝜕𝑥𝑖−1
𝑓𝑖−1(𝑥1,...,𝑥𝑖) ≡

≡ 𝐹𝑖(𝑥1,...,𝑥𝑖), 𝑖 = 2, . . . ,𝑛.

(1.13)

Введенная замена переменных может быть записана в виде 𝑧 = 𝐹 (𝑥), где

𝐹 (𝑥) =

⎛⎜⎜⎜⎜⎝
𝐹1(𝑥1)

𝐹2(𝑥1,𝑥2)

· · ·
𝐹𝑛(𝑥1, . . . ,𝑥𝑛)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑃0𝑥1

𝑃1𝑃0𝑥1

· · ·
𝑃𝑛−1𝑃𝑛−2 · . . . · 𝑃0𝑥1

⎞⎟⎟⎟⎟⎠ (1.14)

где 𝑃0,𝑃1, . . . , 𝑃𝑛−1 - дифференциальные операторы вида

𝑃0 ≡ 𝐼, 𝑃𝑖 = 𝑓1
𝜕

𝜕𝑥1
+ . . .+ 𝑓𝑖

𝜕

𝜕𝑥𝑖
, 𝑖 = 1, . . . ,𝑛− 1, (1.15)
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𝐼- тождественный оператор. Через 𝑧𝑛+1 обозначим новое управление

𝑧𝑛+1 =
𝜕𝐹𝑛
𝜕𝑥1

𝑓1(𝑥1,𝑥2) + . . .+
𝜕𝐹𝑛
𝜕𝑥𝑛

𝑓𝑛(𝑥1, . . .+ 𝑥𝑛,𝑥𝑛+1) ≡

≡ 𝐹𝑛+1(𝑥1, . . .+ 𝑥𝑛,𝑥𝑛+1) = 𝑃𝑛𝑃𝑛−1𝑃𝑛−2 · . . . · 𝑃0𝑥1,

(1.16)

где 𝑃𝑛 = 𝑓1
𝜕
𝜕𝑥1

+ . . .+ 𝑓𝑛
𝜕
𝜕𝑥𝑛
.

После такой замены переменных система (1.11) приводится к виду

𝑧̇𝑖 = 𝑧𝑖+1, 𝑖 = 1, . . . , 𝑛. (1.17)

Полученная линейная система (1.17) является полностью управляемой за

время τ. Это следует из рангового критерия Калмана [3]. Известно, что если

система

𝑥̇ = 𝐴𝑥+𝐵𝑢

линейна по 𝑥 и 𝑢, и если ранг матрицы (𝐵,𝐴𝐵,...,𝐴𝑛−1𝐵) равен 𝑛, то система

полностью управляема за время τ.

Система уравнений называется полностью управляемой за время τ, если

существует допустимое управление 𝑢(𝑡) такое,что соответствующая траектория

системы соединяет любые заданные точки за время τ.

Поскольку 𝑥0 ∈𝑀0 - произвольная точка начального множества, а 𝑥1 ∈ Γ

- произвольная точка на гиперплоскости перехода, в силу полной управляемо­

сти системы (1.17) существует допустимое управление, переводящее объект из

точки 𝑥0 в точку 𝑥1 за время τ.

В системе (1.17) это новое управление 𝑧𝑛+1 выберем в виде функции от

времени 𝑡 таким, чтобы за время τ попасть из точки

𝑧(0) = (𝐹1(𝑥10), . . . ,𝐹𝑛(𝑥10, . . . , 𝑥𝑛0))
𝑇 (1.18)

в точку

𝑧(τ) = (𝐹1(𝑥11), . . . ,𝐹𝑛(𝑥11, . . . , 𝑥𝑛1))
𝑇 . (1.19)

Управление 𝑧𝑛+1, например [70], можно выбрать в виде

𝑧𝑛+1(𝑡) = −𝑏𝑇0 𝑒−𝐴
𝑇
0 𝑡𝑁−1(𝑧0 − 𝑒−𝐴0τ𝑧τ),

где

𝑁 =

τ�

0

𝑒−𝐴0𝑡𝑏0𝑏
𝑇
0 𝑒

−𝐴𝑇
0 𝑡𝑑𝑡.
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Подставив в левые части соотношений (1.13) и (1.16) вместо 𝑧𝑖 функции

𝑧𝑖(𝑡), 𝑖 = 1, . . . , 𝑛 + 1, из полученных равенств последовательно находим функ­

ции 𝑥1(𝑡), . . . , 𝑥𝑛+1(𝑡). Действительно, первое равенство из формул (1.13) и

(1.16) дает 𝑥1 ≡ 𝐹 (𝑥1) = 𝑧1(𝑡). Если найдены функции 𝑥1(𝑡), . . . , 𝑥𝑖−1(𝑡) через

𝑧1(𝑡), . . . , 𝑧𝑖−1(𝑡) (пусть 𝑥𝑗(𝑡) = 𝐻𝑗(𝑧1(𝑡), . . . , 𝑧𝑗(𝑡)),𝑗 = 1, . . . , 𝑖− 1) , то функция

𝑥𝑖(𝑡) находится из 𝑖−го равенства соотношений (1.13) и (1.16):

𝐹𝑖(𝑥1(𝑡), . . . ,𝑥𝑖−1(𝑡),𝑥𝑖(𝑡)) = 𝑧𝑖(𝑡). (1.20)

Для разрешимости уравнения (1.20) достаточно установить, что

𝜕𝐹𝑖
𝜕𝑥𝑖

=
𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

· . . . · 𝜕𝑓𝑖−1

𝜕𝑥𝑖
, 𝑖 = 2, . . . , 𝑛+ 1 (1.21)

тогда |𝜕𝐹𝑖

𝜕𝑥𝑖
| ⩾ 𝑎 > 0, а это значит, что функция 𝑧𝑖 = 𝐹𝑖(𝑥1, . . . , 𝑥𝑖) строго монотон­

на по 𝑥𝑖 и при фиксированных значениях 𝑥1, . . . , 𝑥𝑖−1 и изменении 𝑥𝑖 непрерывно

отображает интервал (−∞,∞) на интервал (−∞,∞), что означает однознач­

ную разрешимость уравнения (1.20). Соотношение (1.21) следует из формул

(1.13) и (1.16), т.к.

𝜕𝐹2

𝜕𝑥2
=
𝜕𝑓1
𝜕𝑥2

,

𝜕𝐹3

𝜕𝑥3
=

𝜕

𝜕𝑥3

(︂
𝜕𝐹2(𝑥1,𝑥2)

𝜕𝑥1
𝑓1(𝑥1,𝑥2) +

𝜕𝐹2(𝑥1,𝑥2)

𝜕𝑥2
𝑓2(𝑥1,𝑥2,𝑥3)

)︂
=
𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

и т.д. Покажем, что функции

𝑥𝑖(𝑡) = 𝐻𝑖(𝑧1(𝑡), . . . , 𝑧𝑛(𝑡)), 𝑖 = 1, . . . ,𝑛

удовлетворяют системе (1.11) при полученном управлении

𝑥𝑛+1 = 𝐻𝑛+1(𝑧1(𝑡), . . . , 𝑧𝑛+1(𝑡)),

которое измеримо, т.к. 𝐻𝑛+1, 𝑧𝑖, 𝑖 = 1, . . . , 𝑛 непрерывны от своих аргументов, а

𝑧𝑛+1(𝑡) непрерывна по 𝑡. Из (1.13) имеем

𝑧̇𝑖 =
𝑖∑︁

𝑗=1

𝜕𝐹𝑖(𝑥1(𝑡), . . . ,𝑥𝑖(𝑡))

𝜕𝑥𝑗

𝑑𝑥𝑗
𝑑𝑡
. (1.22)

Так как 𝑧̇𝑖 = 𝑧𝑛+1(𝑡) = 𝐹𝑖+1(𝑥1(𝑡), . . . ,𝑥𝑖+1(𝑡), то

𝑧̇𝑖 =
𝜕𝐹𝑖(𝑥1(𝑡), . . . ,𝑥𝑖(𝑡))

𝜕𝑥𝑗
𝑓𝑗(𝑥1(𝑡), . . . ,𝑥𝑗+1(𝑡)). (1.23)
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Таким образом, равенства (1.22) и (1.23) дают

𝑑𝑧𝑖
𝑑𝑡

=
𝑖∑︁

𝑗=1

𝜕𝐹𝑖(𝑥1(𝑡), . . . ,𝑥𝑖(𝑡))

𝜕𝑥𝑗
×
(︂
𝑑𝑥𝑗
𝑑𝑡

− 𝑓𝑗(𝑥1(𝑡), . . . ,𝑥𝑗+1(𝑡)

)︂
= 0, 𝑖 = 1, . . . , 𝑛.

(1.24)

Определитель Δ полученной системы относительно

𝑑𝑥𝑗
𝑑𝑡

− 𝑓𝑗(𝑥1(𝑡), . . . ,𝑥𝑗+1(𝑡)), 𝑗 = 1, . . . , 𝑛

отличен от нуля, так как

Δ =
𝜕𝐹1

𝜕𝑥1

𝜕𝐹2

𝜕𝑥2
. . .

𝜕𝐹𝑛
𝜕𝑥𝑛

=

(︂
𝜕𝑓1
𝜕𝑥2

)︂𝑛−1(︂
𝜕𝑓2
𝜕𝑥3

)︂𝑛−2

· . . . ·
(︂
𝜕𝑓𝑛−1

𝜕𝑥𝑛

)︂
̸= 0.

Тогда из (1.24) вытекает, что

𝑑𝑥𝑗
𝑑𝑡

− 𝑓𝑗(𝑥1(𝑡), . . . ,𝑥𝑗+1(𝑡)), 𝑗 = 1, . . . , 𝑛

где 𝑥𝑛+1(𝑡) = 𝑢(𝑡). Так как траектория 𝑧(𝑡) проходит через точки (1.18),

(1.19), то в силу однозначной разрешимости соотношения (1.13) относитель­

но 𝑥1, . . . , 𝑥𝑛, полученные функции 𝑥𝑖(𝑡) удовлетворяют граничным условиям

𝑥𝑖(0) = 𝑥𝑖0, 𝑥𝑖(τ) = 𝑥𝑖1, 𝑖 = 1, . . . , 𝑛.

После попадания объекта на гиперплоскость перехода Γ, осуществим пере­

ход в пространство 𝑌 с помощью отображения 𝑞 : 𝑋 → 𝑌 и получим начальную

точку при движении объекта в пространстве 𝑌 𝑦(τ) = 𝑞(𝑥(τ)). Причем полу­

ченная точка не принадлежит конечному множеству 𝑀1 ∈ 𝑌 . Таким образом в

пространстве получили следующую задачу:

для объекта, движение которого описывается системой уравнений⎧⎨⎩
𝑑𝑦𝑘
𝑑𝑡 = 𝑔𝑘(𝑦1,...,𝑦𝑘+1), 𝑘 = 1,...,𝑚− 1,

𝑑𝑦𝑚
𝑑𝑡 = 𝑔𝑚(𝑦1,...,𝑦𝑚; 𝑣).

(1.25)

𝑦 ∈ 𝑌 = 𝑅𝑚, 𝑡 ∈ [τ, 𝑇 ], найти такое допустимое управление 𝑣, что

соответствующее ему решение системы (1.25) будет удовлетворять граничным

условиям 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈𝑀1. Аналогично пространству 𝑋 введем заме­

ну переменных и сведем нелинейную систему к линейной.

𝑧1 = 𝑦1 ≡ 𝐺1(𝑦1),

𝑧𝑘 =
𝜕𝐺𝑘−1

𝜕𝑦1
𝑔1(𝑦1,𝑦2) + ...+

𝜕𝐺𝑘−1

𝜕𝑦𝑘−1
𝑔𝑘−1(𝑦1,...,𝑦𝑘) ≡

≡ 𝐺𝑘(𝑦1,...,𝑦𝑘), 𝑘 = 2, . . . ,𝑚.

(1.26)
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Управление обозначим через

𝑧𝑚+1 =
𝜕𝐺𝑚

𝜕𝑦1
𝑔1(𝑦1,𝑦2) + . . .+

𝜕𝐺𝑚

𝜕𝑦𝑚
𝑔𝑚(𝑦1, . . .+ 𝑦𝑚,𝑦𝑚+1) ≡

≡ 𝐺𝑚+1(𝑦1, . . .+ 𝑦𝑚,𝑦𝑚+1).

(1.27)

В результате такой замены, система (1.25) примет вид

𝑧̇𝑘 = 𝑧𝑘+1, 𝑘 = 1, . . . ,𝑚. (1.28)

Как и в предыдущем случае, система (1.28) в силу рангового критерия Калма­

на [76] является полностью управляемой. То есть существует такое допустимое

управление 𝑣, которое переводит объект, описанный данной системой, из лю­

бой точки в любую на отрезке времени [τ, 𝑇 ]. В силу полной управляемости

системы, в качестве начальной точки возьмем 𝑦(τ), а в качестве конечной -

произвольную точку 𝑦(𝑇 ) ∈𝑀1. Найдем траекторию, соединяющую эти точки.

В системе (1.28) выберем новое управление 𝑧𝑚+1 в виде функции от времени 𝑡

таким образом, чтобы за время 𝑇 − τ попасть из точки

𝑧(τ) = (𝐺1(𝑦10), . . . ,𝐺𝑚(𝑦10, . . . , 𝑦𝑚0))
𝑇 (1.29)

в точку

𝑧(𝑇 ) = (𝐺1(𝑦11), . . . ,𝐺𝑚(𝑦11, . . . , 𝑦𝑚1))
𝑇 . (1.30)

Управление 𝑧𝑚+1 выберем в виде

𝑧𝑚+1(𝑡) = 𝑏𝑇0 𝑒
𝐶𝑇

0 (𝑇−𝑡)𝑁−1(𝑧𝑇 − 𝑒𝐶
𝑇
0 (𝑇−τ)𝑧τ),

где

𝑁 =

𝑇�

τ

𝑒𝐶0(𝑇−𝑡)𝑏0𝑏
𝑇
0 𝑒

𝐶𝑇
0 (𝑇−𝑡)𝑑𝑡.

Подставляя в левые части формул (1.26) и (1.27) вместо 𝑧𝑖 функции 𝑧𝑖(𝑡), 𝑖 =

1, . . . ,𝑚 + 1, из полученных равенств последовательно находим функции

𝑦1(𝑡), . . . , 𝑦𝑚+1(𝑡). В силу однозначной разрешимости соотношения (1.26) (кото­

рая доказывается аналочично случаю в пространстве 𝑋), полученные функции

𝑦1(𝑡), . . . , 𝑦𝑚+1(𝑡) удовлетворяют граничным условиям 𝑦𝑖(τ) = 𝑦𝑖τ, 𝑦𝑖(𝑇 ) =

𝑦𝑖𝑇 , 𝑖 = 1, . . . ,𝑚. Таким образом, доказана управляемость объекта, описанно­

го системами (1.1) и (1.2) из начального множества 𝑀0 пространства 𝑋 на
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конечное множество 𝑀1 пространства 𝑌 на отрезке времени [0,𝑇 ]. Также явно

получены уравнения траекторий, удовлетворяющие заданным граничным усло­

виям. Что и доказывает теорему.

Рассмотрим пример, иллюстрирующий данный подход к исследованию.

Пример 1.4.1. В пространствах 𝑋 = R3 и 𝑌 = R3 движение управляемо­

го объекта задается следующими нелинейными системами дифференциальных

уравнений:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥̇1 = 𝑥41 + 𝑥2,

𝑥̇2 = −4𝑥31𝑥2 + 𝑥3,

𝑥̇3 = −28𝑥101 − 28𝑥61𝑥2 + 𝑢, 𝑡 ∈ [0,1].

(1.31)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦̇1 = 2𝑦21 + 𝑦2,

𝑦̇2 = −4𝑦1𝑦2 + 𝑦3,

𝑦̇3 = −48𝑦41 − 24𝑦21𝑦2 + 𝑣, 𝑡 ∈ [1,2].

(1.32)

В пространстве 𝑋 = R3 задано начальное множество 𝑀0 = (1,1,2), в

пространстве 𝑌 = R3 задано конечное множество 𝑀1 = (0, − 1,1). Движение

объекта осуществляется по следующей схеме: на отрезке времени [0,1] объект

движется по решениям системы (1.31) из начального множества 𝑀0 в точку

(0,0,0), далее происходит переход в пространство 𝑌 = R3, заданный отображе­

нием 𝑞(𝑥1,𝑥2,𝑥3) = (𝑦1,𝑦2,𝑦3) и дальнейшее движение на отрезке времени [1,2]

осуществляется по решениям системы (1.32). Требуется определить, является

ли объект управляемым из множества 𝑀0 ∈ 𝑋 на множество 𝑀1 ∈ 𝑌 на отрез­

ке [0,2] и найти траектории, реализующие этот переход. Применим указанный

выше подход к исследованию. Рассмотрим движение объекта в пространстве

𝑋 = R3. Исследуем задачу управляемости из точки 𝑥(0) = (1,1,2)𝑇 в точку

𝑥(1) = (0,0,0)𝑇 на отрезке [0,1]. С помощью замены переменных⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧1 = 𝑥1,

𝑧2 = 𝑥41 + 𝑥2,

𝑧3 = 4𝑥71 + 𝑥3

(1.33)
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система (1.31) отображается на линейную систему⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧̇1 = 𝑧2,

𝑧̇2 = 𝑧3,

𝑧̇3 = 𝑢.

(1.34)

Полученная линейная система (1.34) в силу рангового критерия Калмана явля­

ется полностью управляемой. Новое управление выберем таким образом , чтобы

за время 𝑇 = 1 попасть из точки 𝑧(0) = (1,2,6)𝑇 в точку 𝑧(1) = (0,0,0)𝑇 . Его

можно взять [70], например, в виде

𝑢(𝑡) = −𝑏𝑇0 𝑒−𝐴
𝑇
0 𝑡𝑊−1(𝑧(0)− 𝑒−𝐴01𝑧(1)),

где 𝑊−1- матрица обратная к матрице

𝑊 =

1�

0

𝑒−𝐴0𝑡𝑏0𝑏
𝑇
0 𝑒

−𝐴𝑇
0 𝑡𝑑𝑡.

Тогда управление имеет вид

𝑢(𝑡) =
(︁
0 0 −1

)︁⎛⎜⎝ 1 0 0

−𝑡 1 0
𝑡2

2 −𝑡 1

⎞⎟⎠
⎛⎜⎝720 360 60

360 192 36

60 36 9

⎞⎟⎠
⎛⎜⎝1

2

6

⎞⎟⎠
= −900𝑡2 + 960𝑡− 186.

Подставляя полученное управление в систему (1.34) и учитывая краевые усло­

вия, получим ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧1(𝑡) = −15𝑡5 + 40𝑡4 − 31𝑡3 + 3𝑡2 + 2𝑡+ 1,

𝑧2(𝑡) = −75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2,

𝑧3(𝑡) = −300𝑡3 + 480𝑡2 − 186𝑡+ 6.

(1.35)

Делая обратную замену, получаем, что траектории системы (1.31), соединяю­

щие точки 𝑥(0) = (1,1,2)𝑇 и 𝑥(1) = (0,0,0)𝑇 , на отрезке времен [0, 1] имеют
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вид ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥1(𝑡) = 𝑧1(𝑡) = −15𝑡5 + 40𝑡4 − 31𝑡3 + 3𝑡2 + 2𝑡+ 1,

𝑥2(𝑡) = 𝑧2(𝑡)− 𝑥41 = −75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2−

−(75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2)4,

𝑥3(𝑡) = 𝑧3(𝑡)− 4𝑥71 = −300𝑡3 + 480𝑡2 − 186𝑡+ 6−

−4(75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2)7.

(1.36)

Теперь, используя отображение 𝑞 : 𝑋 → 𝑌 , 𝑞(𝑥1,𝑥2,𝑥3) = (𝑦1,𝑦2,𝑦3), перейдем

в пространство 𝑌 = R3. Полученная точка 𝑦(1) = 𝑞(0,0,0) = (0,0,0) является

начальной при движении объекта в этом пространстве по решениям системы

(1.32). Таким образом, получили следующую задачу управляемости: из точки

𝑦(1) = (0,0,0)𝑇 попасть в точку 𝑦(2) = (0, − 1,1)𝑇 на отрезке времени [1,2].

Сведем систему (1.32) к линейной с помощью замены переменных⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧1 = 𝑦1,

𝑧2 = 2𝑦21 + 𝑦2,

𝑧3 = 8𝑦31 + 𝑦3.

(1.37)

После такой замены система примет вид⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧̇1 = 𝑧2,

𝑧̇2 = 𝑧3,

𝑧̇3 = 𝑣.

(1.38)

Аналогично предыдущему случаю, в силу полной управляемости полученной

линейной системы, управление, переводящее систему (1.38) из точки 𝑧(1) =

(0,0,0)𝑇 в точку 𝑧(2) = (0,− 1,1)𝑇 выберем в виде [70]:

𝑣(𝑡) = 𝑏𝑇0 𝑒
𝐴𝑇

0 (2−𝑡)𝑁−1(𝑧(2)− 𝑒𝐴0(2−𝑡)𝑧(1)),

где 𝑁−1- матрица обратная к матрице

𝑁 =

2�

1

𝑒𝐴0(2−𝑡)𝑏0𝑏
𝑇
0 𝑒

𝐴𝑇
0 (2−𝑡)𝑑𝑡.
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Управление имеет вид

𝑣(𝑡) =
(︁
0 0 1

)︁⎛⎜⎝ 1 0 0

2− 𝑡 1 0
(2−𝑡)2

2 2− 𝑡 1

⎞⎟⎠
⎛⎜⎝ 720 −360 60

−360 192 −36

60 −36 9

⎞⎟⎠
⎛⎜⎝ 0

−1

1

⎞⎟⎠ =

= 210𝑡2 − 612𝑡+ 429.

Подставляя полученное управление в систему (1.38), находим траектории⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧1(𝑡) = 3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16,

𝑧2(𝑡) = 17,5𝑡4 − 102𝑡3 + 214,5𝑡2 − 193𝑡+ 63,

𝑧3(𝑡) = 70𝑡3 − 306𝑡2 + 429𝑡− 193.

(1.39)

Из формулы (1.37) получаем тректории исходной системы (1.32), соединя­

ющие точки 𝑦(1) = (0,0,0)𝑇 и 𝑦(2) = (0,− 1,1)𝑇 на отрезке времени [1,2].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦1 = 𝑧1 = 3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16,

𝑦2 = 𝑧2 − 2𝑦21 =

= 17,5𝑡4 − 102𝑡3 + 214,5𝑡2 − 193𝑡+ 63−

−2(3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16)2,

𝑦3 = 𝑧3 − 8𝑦31 =

= 70𝑡3 − 306𝑡2 + 429𝑡− 193−

−8(3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16)3.

(1.40)

Таким образом, получаем, что объект, описываемый системами (1.31) и

(1.32), является управляемым из множества𝑀0 = (1,1,2) пространства 𝑋 = R3

на множество 𝑀1 = (0, − 1,1) пространства 𝑌 = R3 на отрезке времени [0,2].

При этом траектории, по которым реализуется переход, имееют вид⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥1(𝑡) = 𝑧1(𝑡) = −15𝑡5 + 40𝑡4 − 31𝑡3 + 3𝑡2 + 2𝑡+ 1,

𝑥2(𝑡) = 𝑧2(𝑡)− 𝑥41 = −75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2−

−(75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2)4,

𝑥3(𝑡) = 𝑧3(𝑡)− 4𝑥71 = −300𝑡3 + 480𝑡2 − 186𝑡+ 6−

−4(75𝑡4 + 160𝑡3 − 93𝑡2 + 6𝑡+ 2)7, 𝑡 ∈ [0,1]
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦1 = 3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16,

𝑦2 = 17,5𝑡4 − 102𝑡3 + 214,5𝑡2 − 193𝑡+ 63−

−2(3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16)2,

𝑦3 = 70𝑡3 − 306𝑡2 + 429𝑡− 193−

−8(3,5𝑡5 − 25,5𝑡4 + 71,5𝑡3 − 96,5𝑡2 + 63𝑡− 16)3, 𝑡 ∈ [1,2].
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Глава 2. Достаточные условия управляемости в задаче со сменой

фазового пространства

В данной главе получены достаточные условия управляемости диффе­

ренциальных систем в задаче со сменой фазового пространства. Рассмотрены

подходы к исследованию как нелинейных, так и линейных систем. Условия

управляемости для нелинейного случая получены с помощью аппарата выпук­

лого анализа, теории многозначных отображений и теории управляемости. Для

линейных систем построен пример, иллюстрирующий данный подход к реше­

нию поставленной задачи.

Результаты данной главы опубликованы соискателем в следующих науч­

ных публикациях:

– Maximova, I. The Problem of Controllability with Phase Space Change.

Advances in Systems Science and Applications, 2023,— 23(1),—P. 61–68.

https://doi.org/10.25728/assa.2023.23.01.1364

2.1 Управляемость нелинейных систем

2.1.1 Постановка задачи

Имеются два фазовых пространства 𝑋 = R𝑛, 𝑌 = R𝑚 переменных

𝑥 = (𝑥1,...,𝑥𝑛), 𝑦 = (𝑦1,...,𝑦𝑚). Обозначим Ω(R𝑛), Ω(R𝑚) - совокупности всех

непустых выпуклых компактных подмножеств пространств R𝑛 и R𝑚, соответ­

ственно. Пусть заданы множества 𝑈 ∈ Ω(R𝑛), 𝑉 ∈ Ω(R𝑚). Движение объекта

описывается следующими нелинейными системами дифференциальных урав­

нений:

𝑥̇(𝑡) = 𝑓(𝑡,𝑥(𝑡),𝑢(𝑡)), 𝑢(𝑡) ∈ 𝑈, 𝑥(𝑡) ∈ 𝑋, 𝑡 ∈ [0,τ]; (2.1)

𝑦̇(𝑡) = 𝑔(𝑡,𝑦(𝑡),𝑣(𝑡)), 𝑣(𝑡) ∈ 𝑉, 𝑦(𝑡) ∈ 𝑌, 𝑡 ∈ [τ, 𝑇 ]. (2.2)

Допустимыми управлениями являются всевозможные функции 𝑢(·) ∈
𝐿∞([0,τ], 𝑅𝑛), 𝑣(·) ∈ 𝐿∞([τ, 𝑇 ], 𝑅𝑚), для которых 𝑢(𝑡) ∈ 𝑈 при п.в. 𝑡 ∈ [0,τ]

и 𝑣(𝑡) ∈ 𝑉 при п.в. 𝑡 ∈ [τ, 𝑇 ]. Решениями систем (2.1) и (2.2) при 𝑡 ∈ [0,τ]

и 𝑡 ∈ [τ, 𝑇 ] называются абсолютно непрерывные функции, удовлетворяющие

почти всюду на [0,τ] и [τ, 𝑇 ] системам (2.1) и (2.2) соответственно. Пусть
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функции 𝑓(𝑡,𝑥,𝑢), 𝑔(𝑡,𝑦,𝑣) таковы, решение задачи Коши для систем (2.1) и

(2.2) существует и единственно.

В 𝑋 заданы начальное множество 𝑀0 ∈ Ω(R𝑛) и не пересекающаяся с

ним выпуклая "гиперповерхность перехода" Γ. Пусть τ - наименьший момент

времени, при котором объект достигает гиперповерхности Γ. Когда объект, дви­

жущийся по закону (2.1), достигает гиперповерхности Γ, происходит переход в

пространство 𝑌 , заданный отображением 𝑞 : 𝑋 → 𝑌 , и дальнейшее движение

осуществляется в пространстве 𝑌 по закону (2.2). Наконец, в 𝑌 задано конеч­

ное множество 𝑀1 ∈ Ω(R𝑚) (не пересекающееся с множеством 𝑞(Γ)). Подобная

схема движения объекта описана, например, в [19].

Задача заключается в том, чтобы найти условия, при которых объект,

описываемый системами (2.1) и (2.2), будет управляемым из 𝑀0 в 𝑀1.

Определение 2.1.1. Объект, описываемый системами (2.1) и (2.2), на­

зывается управляемым из 𝑀0 в 𝑀1, если существуют такие допустимые

управления 𝑢(·) и 𝑣(·), что соответствующие им решения систем удовлетво­

ряют граничным условиям 𝑥(0) ∈𝑀0, 𝑥(τ) ∈ Γ и 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈𝑀1.

Для системы (2.1) в фазовом пространстве 𝑋 = R𝑛 в точке 𝑥 рассмотрим

множество 𝑓(𝑡,𝑥,𝑈), состоящее из всех векторов 𝑓(𝑡,𝑥,𝑢), где 𝑢 принадлежит

множеству 𝑈. Если 𝑥(𝑡) - некоторая траектория системы (2.1), соответствую­

щая допустимому управлению 𝑢(𝑡), то при почти всех 𝑡 ∈ [0,τ] выполняется

включение

𝑥̇(𝑡) ∈ 𝑓(𝑡,𝑥(𝑡),𝑈). (2.3)

Это приводит нас к дифференциальному включению

𝑥̇ ∈ 𝑓(𝑡,𝑥,𝑈). (2.4)

Под решением дифференциального включения (2.4) понимается абсолютно

непрерывная функция 𝑥(𝑡), определенная на интервале [0,τ], удовлетворяющая

включению (2.3) при почти всех 𝑡 ∈ [0,τ].

Итак, при довольно общих предположениях система (2.1) эквивалентна

дифференциальному включению (2.4), т.е. для любого решения 𝑥(·) включе­
ния (2.4) существует такое допустимое управление 𝑢(·), что функция 𝑥(·) будет
являться траекторией системы (2.1) с этим управлением 𝑢(·). Этот вопрос до­
вольно подробно рассматривается в [79].
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Теперь, при сделанных замечаниях, вместо нелинейной системы (2.1) бу­

дем рассматривать дифференциальное включение (2.4). Обозначим 𝑓(𝑡,𝑥,𝑈)

через 𝐹 (𝑡,𝑥), тогда в пространстве 𝑋 = R𝑛 движение управляемого объекта

описывается дифференциальным включением

𝑥̇ ∈ 𝐹 (𝑡,𝑥), 𝑡 ∈ [0,τ], (2.5)

где 𝐹 (𝑡,𝑥) - многозначное отображение. Аналогично в пространстве 𝑌 = R𝑚

движение управляемого объекта описывается дифференциальным включением

𝑦̇ ∈ 𝐺(𝑡,𝑦), 𝑡 ∈ [τ,𝑇 ]. (2.6)

Движение объекта из пространства 𝑋 в пространство 𝑌 осуществляется по

схеме, описанной выше.

2.1.2 Основной результат

Определение 2.1.2. [79] Многозначное отображение 𝐹 (𝑡,𝑥) называется во­

гнутым по 𝑥 на множестве 𝑀 , если для любых точек 𝑥1,𝑥2 ∈ 𝑀 и любого

числа 𝜆 ∈ [0,1] выполняется условие

𝜆𝐹 (𝑡,𝑥1) + (1− 𝜆)𝐹 (𝑡,𝑥2) ⊂ 𝐹 (𝑡,𝜆𝑥1 + (1− 𝜆)𝑥2).

Заметим, что из этого условия следует (см., например, [79]) выпуклость множе­

ства 𝐹 (𝑡,𝑥) при каждом 𝑥 ∈ 𝑀 . Множество достижимости 𝐾(𝑡) для каждого

𝑡 ∈ [0,τ] состоит из всех точек 𝑥(𝑡) ∈ R𝑛, где 𝑥(𝑡) - решение включения (2.5) с

начальным условием 𝑥(0) ∈𝑀0.

Происхождение термина "вогнутость многозначного отображения"(см.

[80]) связано с тем обстоятельством, что в этом случае опорная функция

𝑐(𝐹 (𝑡,𝑥),𝜓) = max
𝑓∈𝐹 (𝑡,𝑥)

(𝑓,𝜓)

является вогнутой функцией по переменной 𝑥 для любого сопряженного век­

тора 𝜓 ∈ R𝑛.

Если многозначное отображение 𝐹 (𝑡,𝑥) вогнуто по 𝑥 на всем пространстве

R𝑛, то оно является линейным по переменной 𝑥, т.е. представимо в виде

𝐹 (𝑡,𝑥) = 𝐴(𝑡)𝑥+ 𝐹 (𝑡,0)
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𝐴(𝑡) – некоторая матрица.

Рассмотрим движение объекта в пространстве𝑋 из начального множества

𝑀0 до "гиперповерхности перехода" Γ. Предположим, что отображение 𝐹 (𝑡,𝑥)

вогнуто по 𝑥 на множестве достижимости 𝐾(τ) при всех 𝑡 ∈ [0,τ]. Известно

(см. [79]), что в этом случае семейство всех решений на отрезке [0,τ] с начальным

условием 𝑥(0) ∈ 𝑀0 будет выпуклым множеством в пространстве 𝐶[0,τ].

Выпуклость семейства решений дифференциального включения впервые

была получена В.И. Благодатских в работе [81] и в более полном виде содер­

жится в обзоре [79].

Из выпуклости семейства решений следует выпуклость множества до­

стижимости 𝐾(τ). Обратное утверждение не выполняется, например, для

линейных управляемых систем

𝑥̇ = 𝐴𝑥+ 𝑢, 𝑢 ∈ 𝑈.

Для них множество достижимости всегда выпукло, если начальное множество

является выпуклым, а семейство решений выпукло лишь при условии выпук­

лости множества 𝑈 .

Если семейство решений выпукло в пространстве 𝐶[0,τ], то каждое мно­

жество достижимости 𝐾(τ) также будет выпуклым в пространсве R𝑛.

Итак, при сделанных предположениях, множество достижимости𝐾(τ) вы­

пукло. Пересекая его с "гиперповерхностью перехода" Γ, получим множество

𝐾1(τ) = 𝐾(τ) ∩ Γ.

Предположим, что существует τ такое, что 𝐾1(τ) ̸= ∅. Тогда 𝐾1(τ) является

выпуклым, как пересечение двух выпуклых множеств. Преобразуем множество

𝐾1(τ) следующим образом: 𝐾2(τ) = 𝑞(𝐾1(τ)). Полученное множество 𝐾2(τ)

выпукло в силу свойств отображения 𝑞. Множество 𝐾2(τ) является начальным

множеством при движении объекта в пространстве 𝑌 в множество 𝑀1.

В пространсве 𝑌 мы получили следующую задачу управляемости: являет­

ся ли система (2.2) управляемой из множества𝐾2(τ) в множество𝑀1 на отрезке

времени [τ, 𝑇 ]. Обозначим через 𝐾3(𝑇 ) множество достижимости системы (2.2)

из𝐾2(τ) в момент времени 𝑇 . Предположим, что отображение𝐺(𝑡,𝑦) вогнуто по

𝑦 на множестве достижимости 𝐾3(𝑇 ) и 𝐾3(𝑇 ) компактно. Тогда, для управляе­

мости системы (2.2) будет достаточно, чтобы 𝐾3(𝑇 ) ∩𝑀1 ̸= ∅ или по свойству

опорных функций 𝑐(𝐾3(𝑇 ),𝜓) + 𝑐(𝑀1,− 𝜓) ⩾ 0, для любого 𝜓 ∈ R𝑚 (см. [82]).
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Итак, условия управляемости из множесва 𝑀0 пространства 𝑋 в множе­

ство𝑀1 пространства 𝑌 для систем (2.1) и (2.2) можно сформулировать в виде

следующей теоремы.

Теорема 2.1.1. Пусть отображение 𝐹 (𝑡,𝑥) вогнуто по 𝑥 на множестве

достижимости 𝐾(τ) при всех 𝑡 ∈ [0,τ] и пусть 𝐺(𝑡,𝑦) вогнуто по 𝑦 на

множестве 𝐾3(𝑇 ) при всех 𝑡 ∈ [τ, 𝑇 ]. 𝐾3(𝑇 ) - множество достижимости

системы (2.2) из 𝐾2(τ) в момент времени 𝑇 , где 𝐾2(τ) = 𝑞(𝐾1(τ)). Тогда

для управляемости объекта, описываемого системами (2.1) и (2.2), на отрез­

ке времени [0,𝑇 ] достаточно, чтобы было выполнено следующее соотношение

𝑐(𝐾3(𝑇 ),𝜓) + 𝑐(𝑀1,− 𝜓) ⩾ 0, для любого 𝜓 ∈ R𝑚.

Замечание 2.1.1. Известно [79], что если 𝐹 (𝑡,𝑥) липшицево по (𝑡,𝑥), тогда для

выпуклости семейства решений необходимо и достаточно, чтобы отображение

𝐹 (𝑡,𝑥) было вогнуто по 𝑥 на каждом множестве достижимости 𝐾(𝑡), 𝑡 ∈ [0,τ].

Таким образом, если отображение 𝐹 (𝑡,𝑥) системы (2.5) дополнительно к сфор­

мулированным выше условиям является еще и липшицевым по (𝑡,𝑥), тогда

теорема 2.1.1 становится необходимым и достаточным условием управляемости.

Замечание 2.1.2. Для нелинейных систем выписать множество достижимо­

сти в явном виде удается не всегда. Часто оказывается проще найти внешнюю

оценку для множества достижимости. В случае, если известна внешняя оценка

для множества достижимости, можно воспользоваться следующим результатом

(см. [79]): пусть известно, что множество достижимости содержится в некото­

ром множестве:

𝐾(τ) ⊂𝑀, τ ∈ [0,τ],

а многозначное отображение 𝐹 (𝑡,𝑥) вогнуто по 𝑥 на множестве𝑀 . Тогда семей­

ство решений является выпуклым.

Таким образом, в случае невозможности нахождения множества дости­

жимости в явном виде, достаточно выписать для него внешнюю оценку и

применять теорему 2.1.1 для этой внешней оценки.

Замечание 2.1.3. Для автономной системы (2.2) можно рассматривать движе­

ние объекта в пространстве 𝑌 в "обратном времени" и выписывать множество

достижимости 𝐾4(𝑇 ) из множества 𝑀1 на "гиперповерхность перехода" Γ. То­

гда условием управляемости для систем (2.1) и (2.2) на отрезке времени [0,𝑇 ]

будет непустое пересечение множеств 𝐾4(𝑇 ) и 𝐾2(τ).
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2.2 Управляемость линейных систем

В этой части работы рассмотрим случай, когда движение управляемо­

го объекта описывается линейными системами дифференциальных уравнений.

Пусть системы (2.1) и (2.2) линейны, тогда получаем следующую задачу.

2.2.1 Постановка задачи

Имеются два фазовых пространства 𝑋 = R𝑛, 𝑌 = R𝑚 переменных 𝑥 =

(𝑥1,...,𝑥𝑛), 𝑦 = (𝑦1,...,𝑦𝑚). Заданы множества 𝑈 ∈ Ω(R𝑛), 𝑉 ∈ Ω(R𝑚). Движение

объекта описывается следующими системами дифференциальных уравнений

𝑥̇ = 𝐴𝑥+ 𝑢, 𝑢(𝑡) ∈ 𝑈, 𝑥(𝑡) ∈ 𝑋, 𝑡 ∈ [0,τ]; (2.7)

𝑦̇ = 𝐵𝑦 + 𝑣, 𝑣(𝑡) ∈ 𝑉, 𝑦(𝑡) ∈ 𝑌, 𝑡 ∈ [τ,𝑇 ]. (2.8)

Класс допустимых управлений — это множества функций

{𝑢(·) ∈ 𝐿∞([0,τ],R𝑛) | 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [0,τ]},

{𝑣(·) ∈ 𝐿∞([τ, 𝑇 ],R𝑚) | 𝑣(𝑡) ∈ 𝑉, 𝑡 ∈ [τ,𝑇 ]}.

В 𝑋 заданы начальное множество 𝑀0 ∈ Ω(R𝑛) и не пересекающаяся с ним

выпуклая "гиперповерхность перехода" Γ. Число τ — наименьший момент вре­

мени, при котором объект достигает гиперповерхности Γ. В пространстве 𝑋

также задано линейное отображение 𝑞 : 𝑋 → 𝑌 , с помощью которого осуществ­

ляется переход из одного фазового пространства в другое. Движение объекта

из одного пространства в другое происходит также как и в первой части главы.

Наконец, в 𝑌 задано конечное множество 𝑀1 ∈ Ω(𝑅𝑚) (не пересекающееся с

множеством 𝑞(Γ)). Задача заключается в том, чтобы найти условия, при кото­

рых объект, описываемый системами (2.7) и (2.8), будет управляемым из 𝑀0

в 𝑀1.

2.2.2 Основной результат

Множество достижимости 𝐾(τ) для системы (2.7) — это множество кон­

цов траекторий системы (2.7) с начальным множеством 𝑀0, соответсвующих
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всевозможным допустимым управлениям 𝑢(·), и рассматриваемое в момент вре­
мени τ. В силу линейности системы (2.7) множество достижимости может быть

выписано явно (см. [82]):

𝐾(τ) = 𝑒τ𝐴𝑀0 +

τ�

0

𝑒(τ−𝑠)𝐴𝑈𝑑𝑠, (2.9)

здесь 𝑒τ𝐴𝑀0 - образ множества𝑀0 при линейном преобразовании 𝑒τ𝐴, а под зна­

ком интеграла стоит многозначное отображение, которое получается для всех

𝑠 ∈ [0,τ] как образ множества 𝑈 при линейном преобразовании 𝑒(τ−𝑠)𝐴. Форму­

ла (2.9) следует из формулы Коши для решения системы дифференциальных

уравнений, определений множества достижимости, образа множества при ли­

нейном преобразовании, алгебраической суммы множеств и интеграла Лебега

от многозначного отображения.

В некоторых случаях существует возможность нахождения множества до­

стижимости в явном виде с помощью опорных функций. Итак, для нахождения

множества достижимости с начальным выпуклым множеством 𝑀0 сначала вы­

числим его опорную функцию, а затем восстановим множество 𝐾(τ) по его

опорной функции. В силу свойств опорных функций, выпуклое множество од­

нозначно восстанавливается по своей опорной функции [82]. Итак, опорная

функция множесва достижимости имеет вид:

𝑐(𝐾(τ),𝜓) = 𝑐(𝑀0,𝑒
τ𝐴*
𝜓) +

τ�

0

𝑐(𝑈,𝑒𝑠𝐴
*
𝜓)𝑑𝑠. (2.10)

Формула (2.10) следует из формулы (2.9), свойств опорных функций и того

факта, что опорная функция от интеграла равна интегралу от опорной функ­

ции в случае непрерывности многозначного отображения под знаком интеграла.

Поскольку начальное множество является выпуклым, то и множество достижи­

мости тоже будет выпуклым [82].

Далее, восстановленное по опорной функции множество 𝐾(τ) пересечем

в момент времени τ с "гиперповерхностью перехода" Γ. Получим, по предпо­

ложению, выпуклое множество

𝐾1(τ) = 𝐾(τ) ∩ Γ.
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Предположим, что существует τ : 𝐾1(τ) ̸= ∅. Преобразуем множество 𝐾1(τ)

следующим образом:𝐾2(τ) = 𝑞(𝐾1(τ)). Тогда множество𝐾2(τ) является выпук­

лым в силу свойств отображения 𝑞. Множество 𝐾2(τ) - начальное множество

для системы (2.8) при движении объекта в пространстве 𝑌 в множество 𝑀1.

Итак, в пространсве 𝑌 мы получили следующую задачу управляемости:

является ли система (2.8) управляемой из множества 𝐾2(τ) в множество 𝑀1 на

отрезке времени [τ, 𝑇 ].

Определим функцию управляемости [82] 𝜙 : R𝑚 → R1 соотношением

𝜙(𝜓) = 𝑐(𝐾2(τ),𝑒
(𝑇−τ)𝐵*

𝜓) + 𝑐(𝑀1,− 𝜓) +

𝑇−τ�

0

𝑐(𝑉,𝑒𝑠𝐵
*
𝜓)𝑑𝑠. (2.11)

По теореме об управляемости [82], объект является управляемым на от­

резке времени [τ, 𝑇 ] из множества 𝐾2(τ) на множество𝑀1 тогда и только тогда,

когда для любого вектора 𝜓 ∈ 𝑆 функция управляемости неотрицательна, т.е.

𝜙(𝜓) ⩾ 0,

а это в свою очередь эквивалентно условию

𝜙0 = min
𝜓∈𝑆

𝜙(𝜓) ⩾ 0.

Здесь 𝑆 – единичная сфера в R𝑛 с центром в 0. Применяя данную теоре­

му, выпишем условия управляемоти для поставленной задачи, которые можно

сформулировать в виде следующей теоремы.

Теорема 2.2.1. Пусть заданы начальное множество 𝑀0 ∈ Ω(R𝑛) и не

пересекающаяся с ним выпуклая "гиперповерхность перехода" Γ, линейное

отображение 𝑞 : 𝑋 → 𝑌 , конечное множество 𝑀1 ∈ Ω(R𝑚). Для управ­

ляемости объекта, описываемого системами (2.7) и (2.8) на отрезке [0, 𝑇 ]

достаточно, чтобы функция управляемости

𝜙(𝜓) = 𝑐(𝐾2(τ),𝑒
(𝑇−τ)𝐵*

𝜓) + 𝑐(𝑀1,− 𝜓) +

𝑇−τ�

0

𝑐(𝑉,𝑒𝑠𝐵
*
𝜓)𝑑𝑠

была неотрицательна для любых 𝜓 ∈ 𝑆, здесь 𝐾2(τ) = 𝑞(𝐾1(τ)).

Замечание 2.2.1. Функция управляемости 𝜙(𝜓) зависит лишь от длины отрез­

ка времени [τ, 𝑇 ]. Т.о. для любого отрезка времени длины 𝑇 − τ она принимает
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одинаковые значения. Полученная теорема 2.2.1. об управляемости позволяет

находить или оценивать такой отрезок времени, на котором объект является

управляемым.

2.2.3 Пример

Теперь рассмотрим пример, иллюстрирующий описанный выше подход к

решению поставленной задачи.

Имеются два пространства R3 и R2, движение объекта в которых описы­

вается следующими системами уравнений:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥̇1 = 𝑥2 + 𝑢1,

𝑥̇2 = −𝑥1 + 𝑢2, |𝑢| ⩽ 1, 𝑢 = (𝑢1,𝑢2,𝑢3) ∈ R3,

𝑥̇3 = 𝑢3, 𝑡 ∈ [0,τ],

(2.12)

⎧⎨⎩𝑦̇1 = 𝑦1 + 𝑣1, |𝑣| ⩽ 1, 𝑣 = (𝑣1,𝑣2) ∈ R2,

𝑦̇2 = 𝑣2, 𝑡 ∈ [τ,𝑇 ].
(2.13)

В пространстве R3 задано начальное множество 𝑀0 = {(0, − 1,0)} и "ги­

перповерхность перехода," которая имеет вид

Γ = {(𝑥1,𝑥2,𝑥3) ∈ R3 | 𝑥2 = 0, 𝑥3 ⩾ 0}.

Здесь τ - наименьший момент времени, при котором объект достигает гипер­

поверхности Γ. Отображение, осуществляющее переход из пространства R3 в

пространство R2 имеет вид:

𝑞(𝑥1,𝑥2,𝑥3) = (𝑥1 + sin τ,𝑥3) = (𝑦1,𝑦2).

В пространстве R2 задано конечное множество

𝑀1 = {𝑦 = (𝑦1,𝑦2) : 𝑦21 + (𝑦2 + 3)2 ⩽ 1}.

Требуется найти условия, при которых объект, описываемый системами (2.12)

и (2.13), будет управляемым из 𝑀0 в 𝑀1 на отрезке времени [0, 𝑇 ].

Решение: Множество достижимости системы (2.12) из множества 𝑀0 в

момент времени τ обозначим через 𝐾(τ). Рассмотрим движение объекта в про­

странстве R3. Опорная функция множества достижимости 𝐾(τ) из (2.10) имеет
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вид:

𝑐(𝐾(τ),𝜓) = −𝜓1 sin τ− 𝜓2 cos τ+ τ‖𝜓‖.

Восстанавливая множество 𝐾(τ) по функции 𝑐(𝐾(τ),𝜓), получаем, что

множество достижимости 𝐾(τ) - это круг радиуса τ с центром в точке

(− sin τ,− cos τ, 0). Пересечение множества достижимости с "гиперповерх­

ностью перехода " Γ происходит при τ > 1 и является отрезком с концами

в точках с координатами

(− sin τ−
√︀

τ2 − cos2 τ,0,0) и (− sin τ+
√︀
τ2 − cos2 τ,0,0).

Переходим в пространство R2 под действием отображения 𝑞. Получаем

множество 𝐾1(τ), которое является начальным для системы (2.13) при дви­

жении объекта в пространстве R2. Множество 𝐾1(τ) это отрезок с концами в

точках с координатами

(−
√︀
τ2 − cos2 τ,0) и (

√︀
τ2 − cos2 τ,0).

Итак, в пространстве R2 имеем следующую задачу управляемости. Найти такие

условия на системы (2.12) и (2.13), чтобы объект описываемый этими системами

являлся управляемым из множества 𝐾1(τ) в множество 𝑀1.

Функция управляемости в данном случае имеет вид

𝜙(𝜓) =
√︀
τ2 − cos2 τ · |𝜓1|+ ‖𝜓‖+ 3𝜓2 +

𝑇−τ�

0

√︁
𝜓2
1 + (𝑠𝜓1 + 𝜓2)2𝑑𝑠,

здесь ‖𝜓‖ = 1. Минимум функции управляемости будет достигаться при 𝜓2 =

−1, тогда в силу того, что ‖𝜓‖ = 1, 𝜓1 = 0. Получаем, что

min
𝜓∈𝑆

𝜙(𝜓) = 𝑇 − (2 + τ).

Итак, при 𝑇 > 2 + τ объект, описываемый системами (2.12) и (2.13), будет

управляемым на отрезке времени [0,𝑇 ] из множества 𝑀0 в множество 𝑀1.
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Глава 3. Применение локальной управляемости к исследованию

задачи управляемости со сменой фазового пространства

В настоящей главе исследуется возможность применения локальной управ­

ляемости для решения задачи управляемости со сменой фазового пространства,

сформулированной в главе 1.

Результаты данной главы опубликованы соискателем в следующих науч­

ных публикациях:

– Максимова И.С. Управляемость нелинейных систем со сменой фазо­

вого пространства, Таврический вестник информатики и математики,

2021,—№2(51),—С. 53–64.

– Maximova Irina, Local Controllability in the Problem with Variable

structure, 2023 16th International Conference Management of large-scale

system development (MLSD), Moscow, 2023,—P. 1–3,

doi:10.1109/MLSD58227.2023.10303947.

3.1 Постановка задачи

В фазовых пространствах 𝑋 = R𝑛, 𝑌 = R𝑚 переменных 𝑥 = (𝑥1, . . . ,𝑥𝑛),

𝑦 = (𝑦1, . . . ,𝑦𝑚) движение объекта описывается нелинейными управляемыми

системами дифференциальных уравнений:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥̇1 = 𝑔1(𝑥1,𝑥2),

𝑥̇2 = 𝑔2(𝑥1,𝑥2,𝑥3),

· · ·

𝑥̇𝑛−1 = 𝑔𝑛−1(𝑥1, . . . ,𝑥𝑛−1,𝑥𝑛),

𝑥̇𝑛 = 𝑔𝑛(𝑥1, . . . ,𝑥𝑛−1,𝑥𝑛; 𝑣),

(3.1)

где 𝑡 ∈ [0,τ], 𝑥(𝑡) ∈ 𝑋.

𝑦̇ = 𝑓(𝑦) +𝐵(𝑡)𝑢, (3.2)

где 𝑓(𝑦) ∈ 𝐶1(R𝑚), 𝑓(0) = 0, 𝜕𝑓
𝜕𝑦 (0) ̸= 0, 𝑢(𝑡) ∈ 𝑈, 𝑡 ∈ [τ, 𝑇 ], 𝑦(𝑡) ∈ 𝑌, 𝐵(𝑡) -

матрица размера 𝑚 × 𝑟 специального вида:

𝐵(𝑡) = 𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡).
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Функции 𝜙1(𝑡) и 𝜙2(𝑡) имеют непрерывные производные вплоть до (𝑚−1)

- го порядка включительно по крайней мере в окрестности некоторой точки

𝑡 = 𝑡* ∈ [τ,𝑇 ], также 𝜙1(𝑡) и 𝜙2(𝑡) допускают четное продолжение. Специальный

вид управляющего воздействия обусловлен физическими приложениями [83].

Моменты времени τ и 𝑇 заданы. Допустимыми управлениями являются

всевозможные функции 𝑢(·) ∈ 𝑈 = {𝑢(𝑡) ∈ R𝑟|𝑢(·) ∈ 𝐿∞[τ, 𝑇 ];𝑢(𝑡) ∈ Ω ⊂ R𝑟},
0 ∈ 𝑖𝑛𝑡Ω. Здесь 𝑖𝑛𝑡Ω− внутренность множества Ω.

Функции 𝑓(𝑦), 𝑔𝑖(𝑥1, . . . , 𝑥𝑖), 𝑖 = 1,𝑛 таковы, что решение задачи Коши

для систем (3.1) и (3.2) существует и единственно.

Будем использовать схему движения управляемого объекта с переходом

системы через ноль. Опишем эту схему подробно.

В пространстве 𝑋 задано некоторое начальное множество 𝑀0, в про­

странстве 𝑌 задано конечное множество 𝑀1. На отрезке времени [0,τ] объект

движется по закону (3.1) из начального множества 𝑀0, в момент времени τ он

попадает в точку ноль. Далее происходит переход в пространство 𝑌 , заданный

некоторым отображением 𝑞 : 𝑋 → 𝑌 , и дальнейшее движение осуществляется

в пространстве 𝑌 по закону (3.2). Причем 𝑞(𝑥(τ)) /∈ 𝑀1 (если 𝑞(𝑥(τ)) ∈ 𝑀1,

то задача решена).

Задача: найти условия, при которых объект, описываемый системами

(3.1) и (3.2), будет управляемым из множества 𝑀0 пространства 𝑋 в множе­

ство 𝑀1 пространства 𝑌 .

Объект, описываемый системами (3.1) и (3.2), называется управляемым из

𝑀0 в 𝑀1, если существуют такие допустимые управления 𝑣 и 𝑢(·), что соответ­
ствующие им решения систем удовлетворяют граничным условиям 𝑥(0) ∈ 𝑀0,

𝑥(τ) = 0 и 𝑦(τ) = 𝑞(𝑥(τ)), 𝑦(𝑇 ) ∈ 𝑀1 [65].

3.2 Исследование управляемости

Для решения поставленной задачи будем использовать следующий под­

ход. Пусть при выполнении некоторых условий, объект, описываемый системой

(3.1) является полностью управляемым. Тогда найдется допустимое управ­

ление, переводящее объект из заданного начального множества 𝑀0 в ноль

простраства 𝑋 по решениям системы (3.1) на отрезке времени [0,τ]. Далее

осуществим переход в пространство 𝑌 , заданный отображением 𝑞 : 𝑋 → 𝑌 ,
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причем 𝑞(𝑥(τ)) = 𝑞(0) = 𝑦(τ) = 0. Причем 0 /∈𝑀1. В пространстве 𝑌 при неко­

торых условиях объект, описываемый системой (3.2) является локально нуль

- управляемым. Если конечное заданное множество 𝑀1 содержится в окрест­

ности локальной управляемости или имеет с ней непустое пересечение, то по

определению локальной управляемости мы имеем возможность попасть из ну­

ля в 𝑀1. Условия управляемости данного объекта можно сформулировать в

виде следующей теоремы:

Теорема 3.2.1. Пусть функции 𝑔𝑖(𝑥1, . . . ,𝑥𝑖+1), 𝑖 = 1, . . . ,𝑛, имеют непре­

рывные частные производные до (𝑛− 𝑖 + 1) - го порядка включительно и при

всех 𝑥1, . . . , 𝑥𝑛+1

| 𝜕𝑔𝑖
𝜕𝑥𝑖+1

| ⩾ 𝑏 > 0, 𝑖 = 1, . . . ,𝑛

где 𝑏 - постоянная, не зависящая от 𝑥1, . . . ,𝑥𝑛+1. Пусть 𝑓(𝑦) ∈ 𝐶1(R𝑚),

𝑓(0) = 0, 𝜕𝑓
𝜕𝑦 (0) ̸= 0, 𝑢(𝑡) ∈ 𝑈, 𝐵(𝑡) = 𝐵1𝜙1(𝑡) + 𝐵2𝜙2(𝑡). Функции 𝜙1(𝑡) и

𝜙2(𝑡) имеют непрерывные производные вплоть до (𝑚−1) - го порядка включи­

тельно в окрестности некоторой точки 𝑡 = 𝑡* ∈ [τ, 𝑇 ], также 𝜙1(𝑡) и 𝜙2(𝑡)

допускают четное продолжение. Также на отрезке [τ,𝑇 ] существует точка

𝑡*, в которой ранг матрицы 𝐿(𝑡) равен 𝑚, где

𝐿(𝑡) = (𝐵(𝑡), 𝐴𝐵(𝑡)−𝐵′(𝑡), 𝐴2𝐵(𝑡)− 2𝐴𝐵′(𝑡) +𝐵′′(𝑡),...,

𝐶0
𝑚−1𝐴

𝑚−1𝐵(𝑡)− 𝐶1
𝑚−1𝐴

𝑚−2𝐵′(𝑡) + ...+ (−1)𝑚+1𝐶𝑚−1
𝑚−1𝐴

0𝐵(𝑚−1)(𝑡)).

Тогда объект, описываемый системами (3.1) и (3.2), является управляемым

из множества 𝑀0 пространства 𝑋 в множество 𝑀1 пространства 𝑌 на

отрезке времени [0,𝑇 ].

Доказательство. Рассморим управляемость нелинейных систем в пространсте

𝑋. В пространстве 𝑋 переменных 𝑥 = (𝑥1, . . . ,𝑥𝑛) рассмотрим управляемую

систему: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥̇1 = 𝑔1(𝑥1,𝑥2),

𝑥̇2 = 𝑔2(𝑥1,𝑥2,𝑥3),

· · ·

𝑥̇𝑛−1 = 𝑔𝑛−1(𝑥1, . . . ,𝑥𝑛−1,𝑥𝑛),

𝑥̇𝑛 = 𝑔𝑛(𝑥1, . . . ,𝑥𝑛−1,𝑥𝑛; 𝑣),

(3.3)
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где 𝑣 ∈ R, 𝑡 ∈ [0, τ], 𝑥 ∈ R𝑛 = 𝑋.

Рассмотрим следующую задачу управляемости - выбрать управление 𝑣

таким образом, чтобы попасть из множества 𝑀0 в ноль в пространстве 𝑋 по

решениям системы (3.3). В главе 1 был приведен пример, в котором дан способ

выбора управления, решающего поставленную задачу.

Обозначим 𝑣 через 𝑥𝑛+1 и сформулируем теорему об управляемости систе­

мы (3.3) (см. [70]):

Пусть в системе (3.3) функции 𝑔𝑖(𝑥1, . . . ,𝑥𝑖+1), 𝑖 = 1, . . . ,𝑛, имеют непре­

рывные частные производные до (𝑛− 𝑖+1) - го порядка включительно и пусть

при всех 𝑥1, . . . , 𝑥𝑛+1

| 𝜕𝑔𝑖
𝜕𝑥𝑖+1

| ⩾ 𝑏 > 0, 𝑖 = 1, . . . ,𝑛 (3.4)

где 𝑏 - постоянная, не зависящая от 𝑥1, . . . ,𝑥𝑛+1. Тогда система (3.3) полностью

упраявляема за время τ.

Объект, описываемый системой (3.3), называется полностью управляемым

на отрезке [0, τ], если для любых 𝑥0, 𝑥1 ∈ 𝑅𝑛 найдется допустимое управление

𝑣(𝑡) ∈ 𝑉 на [0, τ], переводящее систему (3.3) из состояния 𝑥0 в момент времени

0 в состояние 𝑥1 в момент времени τ.

При выполнении условий данной теоремы, система (3.3) полностью управ­

ляема за время τ, тогда по определению полной управляемости, найдется

допустимое управление, переводящее объект из заданного начального множе­

ства 𝑀0 в ноль простраства 𝑋 по решениям системы (3.3) на отрезке времени

[0,τ], тем самым осуществляется искомый переход системы (3.3) из множества

𝑀0 в ноль в пространстве 𝑋.

Далее осуществим переход в пространство 𝑌 , заданный отображением

𝑞 : 𝑋 → 𝑌 , причем 𝑞(𝑥(τ)) = 𝑞(0) = 𝑦(τ) = 0. Продолжим исследование

в пространстве 𝑌 - рассмотрим условия локальной нуль - управляемости для

нелинейной системы специального вида.

В пространстве 𝑌 = R𝑚 рассмотрим управляемую систему:

𝑦̇ = 𝑓(𝑦) +𝐵(𝑡)𝑢, (3.5)

где 𝑓(𝑦) ∈ 𝐶1(R𝑚), 𝑓(0) = 0, 𝜕𝑓𝜕𝑦 (0) ̸= 0 , 𝑦 ∈ R𝑚, 𝑡 ∈ [τ, 𝑇 ].

𝐵(𝑡) - матрица размера 𝑚 × 𝑟 вида: 𝐵(𝑡) = 𝐵1𝜙1(𝑡) + 𝐵2𝜙2(𝑡). Функции

𝜙1(𝑡) и 𝜙2(𝑡) имеют непрерывные производные вплоть до (𝑚− 1) - го порядка
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включительно в окрестности некоторой точки 𝑡 = 𝑡* ∈ [τ, 𝑇 ], также 𝜙1(𝑡) и

𝜙2(𝑡) допускают четное продолжение.

Допустимыми управлениями являются всевозможные функции 𝑢(·) ∈
𝑈 = {𝑢(𝑡) ∈ R𝑟|𝑢(·) ∈ 𝐿∞[τ, 𝑇 ];𝑢(𝑡) ∈ Ω ⊂ R𝑟}, 0 ∈ 𝑖𝑛𝑡Ω.

Задача: Найти условия локальной нуль - управляемости системы (3.5) на

[τ,𝑇 ] и выразить их через элементы матриц 𝐴, 𝐵1 и 𝐵2, где

𝐴 =
𝜕𝑓

𝜕𝑦
(0) ̸= 0.

Обозначим через 𝑆ε(0) открытый шар радиуса ε с центром в точке 0.

Управляемый объект, описываемый системой (3.5), называется локально

нуль-управляемым [82] на отрезке времени [τ,𝑇 ], если существует ε > 0 такое,

что для любой точки 𝑦0 ∈ 𝑆ε(0) объект является управляемым на отрезке [τ,𝑇 ]

из начального положения 𝑦0 на конечное множество 𝑀 = 0. Это означает, что

для любой точки 𝑦0 ∈ 𝑆ε(0) существует допустимое управление 𝑢(𝑡) такое, что

соответствующее этому управлению решение 𝑦(𝑡) системы (3.5) перейдет из

точки 𝑦0 в нуль на отрезке времени [τ,𝑇 ].

Условия локальной нуль - управляемости системы (3.5) на [τ,𝑇 ] можно

сформулировать в виде следующей теоремы:

Теорема 3.2.2. Пусть для системы (3.5) 𝑓(𝑦) ∈ 𝐶1(R𝑚), 𝑓(0) = 0, 𝜕𝑓𝜕𝑦 (0) ̸= 0,

𝑢(𝑡) ∈ 𝑈 , 𝐵(𝑡) = 𝐵1𝜙1(𝑡) + 𝐵2𝜙2(𝑡). Функции 𝜙1(𝑡) и 𝜙2(𝑡) имеют непрерыв­

ные производные вплоть до (𝑚−1) - го порядка включительно в окрестности

некоторой точки 𝑡 = 𝑡* ∈ [τ, 𝑇 ], также 𝜙1(𝑡) и 𝜙2(𝑡) допускают четное про­

должение. и на отрезке [τ,𝑇 ] существует точка 𝑡*, в которой ранг матрицы

𝐿(𝑡) равен 𝑚, где

𝐿(𝑡) = (𝐵(𝑡), 𝐴𝐵(𝑡)−𝐵′(𝑡), 𝐴2𝐵(𝑡)− 2𝐴𝐵′(𝑡) +𝐵′′(𝑡),...,

𝐶0
𝑚−1𝐴

𝑚−1𝐵(𝑡)− 𝐶1
𝑚−1𝐴

𝑚−2𝐵′(𝑡) + ...+ (−1)𝑚+1𝐶𝑚−1
𝑚−1𝐴

0𝐵(𝑚−1)(𝑡)).

Тогда система (3.5) локально нуль – управляема на отрезке [τ, 𝑇 ].

Доказательство. Сформулируем следующие утверждения, необходимые для

доказательства теоремы.

Лемма 3.2.1. Рассмотрим систему

𝑦̇ = 𝐴𝑦 +𝐵(𝑡)𝑢, (3.6)
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Система (3.6) полностью управляема на [τ, 𝑇 ], если на отрезке [τ, 𝑇 ] суще­

ствует точка 𝑡*, в которой ранг матрицы 𝐾(𝑡) равен 𝑚, где

𝐾(𝑡) = (𝐵(𝑡), 𝐴𝐵(𝑡)−𝐵′(𝑡), 𝐴2𝐵(𝑡)− 2𝐴𝐵′(𝑡) +𝐵′′(𝑡),...,

𝐶0
𝑚−1𝐴

𝑚−1𝐵(𝑡)− 𝐶1
𝑚−1𝐴

𝑚−2𝐵′(𝑡) + ...+ (−1)𝑚+1𝐶𝑚−1
𝑚−1𝐴

0𝐵(𝑚−1)(𝑡)).

Доказательство. Исследуем управляемость данной системы, используя доста­

точное условие управляемости Красовского [4]. Для этого составим матрицу

𝐾(𝑡), имеющую следующие элементы:

𝐿1(𝑡) = 𝐵(𝑡),

𝐿𝑘(𝑡) = 𝐴𝐿𝑘−1(𝑡)−
𝑑𝐿𝑘−1(𝑡)

𝑑𝑡
, 𝑘 = 2,...,𝑚

Для системы (3.6) элементы матрицы 𝐾(𝑡) будут иметь вид:

𝐿1(𝑡) = 𝐵(𝑡),

𝐿2(𝑡) = 𝐴𝐵(𝑡)−𝐵′(𝑡),

𝐿3(𝑡) = 𝐴2𝐵(𝑡)− 2𝐴𝐵′(𝑡) +𝐵′′(𝑡),

· · ·

𝐿𝑚(𝑡) = 𝐶0
𝑚−1𝐴

𝑚−2𝐵(𝑡)− 𝐶1
𝑚−1𝐴

𝑚−2𝐵′(𝑡) + ...+ (−1)𝑚+1𝐶𝑚−1
𝑚−1𝐴

0𝐵(𝑚−1)(𝑡).

Итак, пусть на отрезке [τ, 𝑇 ] существует точка 𝑡*, в которой ранг матрицы

𝐾(𝑡) = (𝐵(𝑡), 𝐴𝐵(𝑡)−𝐵′(𝑡), 𝐴2𝐵(𝑡)− 2𝐴𝐵′(𝑡) +𝐵′′(𝑡),...,

𝐶0
𝑚−1𝐴

𝑚−1𝐵(𝑡)− 𝐶1
𝑚−1𝐴

𝑚−2𝐵′(𝑡) + ...+ (−1)𝑚+1𝐶𝑚−1
𝑚−1𝐴

0𝐵(𝑚−1)(𝑡))

равен𝑚, тогда система (3.6) является полностью управляемой на отрезке [τ, 𝑇 ].

Лемма 3.2.1 доказана.

Лемма 3.2.2. [9] Пусть система (3.6) полностью управляема, и пусть

𝑒1, · · · , 𝑒𝑚 – точки на осях координат. Тогда существуют ε > 0, дифферен­

цируемые функции 𝑢𝑖(𝑡), ‖𝑢𝑖(𝑡)‖ < ε и окрестность нуля 𝑆𝛿(0) такие, что

∀𝑒𝑖 ∈ 𝑆𝛿(0) функции 𝑢
𝑖(𝑡) переводят систему (3.6) из 𝑒𝑖 в ноль.

Доказательство. Поскольку система (3.6) полностью управляема, то по тео­

реме о полной управляемости без ограничений (теорема Красовского [4]),

получаем, что строки матрицы Ψ(𝑡) = 𝑌 −1(𝑡)𝐵(𝑡) линейно независимы
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на [τ, 𝑇 ]. Следовательно, существует Φ(𝑡) непрерывная на [τ, 𝑇 ], такая что

𝑟𝑎𝑛𝑔𝑊 (τ, 𝑇 ) = 𝑚, где

𝑊 (τ, 𝑇 ) =

𝑇�

τ

𝑌 −1(𝑡)𝐵(𝑡)Φ(𝑡)𝑑𝑡 =

𝑇�

τ

Ψ(𝑡)Φ(𝑡)𝑑𝑡

Возьмем управление 𝑢(𝑡) = −Φ(𝑡)𝑊−1(τ, 𝑇 )𝑌 −1(τ)𝑦0, переводящее 𝑦0 в

ноль на [τ, 𝑇 ]. Тогда

𝑢𝑖(𝑡) = −Φ(𝑡)𝑊−1(τ, 𝑇 )𝑌 −1(τ)𝑒𝑖.

Оценим

‖𝑢𝑖‖ ⩽ ‖Φ‖‖𝑊−1(τ, 𝑇 )‖‖𝑌 −1(τ)‖‖𝑒𝑖‖.

Рассмотрим max[τ,𝑇 ] ‖Φ‖ = 𝑘 , тогда

‖𝑢𝑖‖ ⩽ 𝑘‖𝑊−1(τ, 𝑇 )‖ · ‖𝑌 −1(τ)‖ · ‖𝑒𝑖‖ ⩽ 𝑘1‖𝑒𝑖‖,

где

𝑘1 = 𝑘‖𝑊−1(τ, 𝑇 )‖ · ‖𝑌 −1(τ)‖.

Имеем

‖𝑢𝑖‖ ⩽ 𝑘1‖𝑒𝑖‖

Возьмем 𝛿 = ε
𝑘1
, тогда

‖𝑢𝑖‖ ⩽ ε ‖𝑒𝑖‖ ⩽ 𝛿.

Лемма 3.2.2 доказана.

Рассмотрим систему (3.5) и систему (3.6) в обратном времени. Для этого

сделаем замену τ = −𝑡 , получим

𝑦̇ = −𝑓(𝑦)− (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))𝑢, (3.7)

𝑦̇ = −𝐴𝑦 − (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))𝑢, (3.8)

где 𝐴 = 𝜕𝑓
𝜕𝑦 (0).

Известно, что для данной системы (3.5) при сделанных предположениях

существует ε > 0 такое, что при ‖𝑢‖ < ε все траектории системы (3.7) с началь­

ным условием 𝑦(τ) = 0 продолжаемы на [τ, 𝑇 ].
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Действительно, рассмотрим множество

𝑄𝛿 = {(𝑦,𝑢)|‖𝑦‖ < 𝛿, ‖𝑢‖ < 𝛿}.

Учитывая, что 𝑓(𝑦) ∈ 𝐶1(𝑅𝑚), имеем, по непрерывности, на множестве 𝑄𝛿:

max
𝑦∈𝑄𝛿

‖𝜕𝑓
𝜕𝑦

‖ =𝑀𝛿 <∞

Оценим 𝑦(𝑡,τ,0,𝑢). Поскольку 𝑦(𝑡,τ,0,𝑢) является решением системы (3.5), то

оно имеет вид:

𝑦(𝑡,τ,0,𝑢) = 𝑦(τ) +

𝑡�

τ

𝑓(𝑦)𝑑𝑡+

𝑡�

τ

𝐵(𝑡)𝑢𝑑𝑡

Далее, используя формулу Тейлора и оценку, полученную выше, имеем:

‖𝑦(𝑡)‖ ⩽

𝑡�

τ

‖𝑓(𝑦)‖𝑑𝑡+
𝑡�

τ

‖𝐵(𝑡)𝑢‖𝑑𝑡 ⩽

⩽

𝑡�

τ

𝑀𝛿‖𝑦‖𝑑𝑡+
𝑡�

τ

𝑀1‖𝑢‖𝑑𝑡 ⩽

⩽

𝑡�

τ

𝑀‖𝑦‖𝑑𝑡+
𝑡�

τ

𝑀‖𝑢‖𝑑𝑡,

где 𝑀 = max{𝑀𝛿,𝑀1}. Пусть 𝑡 = 𝑇 , тогда имеем

‖𝑦‖ ⩽

𝑇�

τ

𝑀‖𝑦‖𝑑𝑡+𝑀ε.

По лемме Гронуолла при соответствующем выборе ε получаем

‖𝑦‖ ⩽𝑀ε𝑒|
� 𝑇

τ
𝑀𝑑𝑡| ⩽𝑀ε𝑒𝑀𝑇 < 𝛿.

Таким образом, решение 𝑦(𝑡,τ,0,𝑢) ограничено на отрезке [τ, 𝑇 ] и, следователь­

но, продолжаемо на [τ, 𝑇 ]. Таким образом, решения 𝑦(𝑡,τ,0,𝑢) системы (3.7)

определены на отрезке [τ, 𝑇 ] для допустимых управлений 𝑢: ‖𝑢‖ < ε.

По условию теоремы 3.2.2 получаем, что лемма 3.2.1 выполнена и система

(3.8) полностью управляема на отрезке [τ, 𝑇 ]. Тогда, по лемме 3.2.2 для системы
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(3.8) существуют ε > 0 и 𝑢𝑖(𝑡), ‖𝑢𝑖(𝑡)‖ < ε, переводящие систему из нуля на 𝑒𝑖,

‖𝑒𝑖‖ < 𝛿(ε), принадлежащие осям координат. Кроме того, 𝑢𝑖(𝑡) можно выбрать

дифференцируемыми.

Рассмотрим управление 𝑢(𝑡,𝜉) = 𝜉1𝑢
1(𝑡)+ · · ·+𝜉𝑚𝑢𝑚(𝑡), где 𝜉 ∈ 𝑅𝑚, ‖𝜉‖ =

max
𝑖

|𝜉𝑖| ⩽ 1 . Тогда ‖𝑢‖ < ε, т.к. ‖𝑢𝑖(𝑡)‖ < ε. Применим данное управление

𝑢(𝑡, 𝜉) к системе (3.7). Имеем

𝑦̇ = −𝑓(𝑦)− (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))𝑢(𝑡, 𝜉), (3.9)

𝑦(τ) = 0 - начальное условие. Решение системы (3.9) имеет вид:

𝑦(𝑡,𝜉) = 𝑦(𝑡,τ,0,𝑢(𝑡,𝜉)).

Заметим, что 𝑢(𝑡,0) = 0 и 𝑦(𝑡,τ) = 0 и полученное решение 𝑦(𝑡,𝜉) определено

на [τ, 𝑇 ].

Покажем, что образы 𝑦(𝑇,𝜉) покрывают некоторую окрестность начала

координат при ‖𝜉‖ ⩽ 1, т.е. 𝑥(1,𝜉) = 𝑦0 для любой точки 𝑦0 ∈ 𝑆𝛿(0).

Применим теорему о неявной функции к уравнению 𝑦(𝑇,𝜉) = 𝑦0. Рассмот­

рим матрицу

𝑍(𝑡,𝜉) =
𝜕𝑦(𝑡, 𝜉)

𝜕𝜉
.

Докажем, что 𝑍(𝑇,𝜉) невырождена. Из теории дифференциальных уравнений,

имеем

𝜕𝑦(𝑡, 𝜉)

𝜕𝑡
= −𝑓(𝑦(𝑡, 𝜉))− (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))𝑢(𝑡,𝜉),

𝜕

𝜕𝑡

𝜕𝑦(𝑡, 𝜉)

𝜕𝜉
= −𝜕𝑓(𝑦(𝑡, 𝜉))

𝜕𝑦
|0 ·

𝜕𝑦

𝜕𝜉
− (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))

𝜕𝑢(𝑡,𝜉)

𝜕𝜉
,

т.е.

𝑍̇ = −𝐴𝑍 − (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))
𝜕𝑢(𝑡,𝜉)

𝜕𝜉
,

где 𝜕𝑢
𝜕𝜉 = (𝑢1, · · · , 𝑢𝑚) .
Пусть 𝑧1, · · · , 𝑧𝑚 – столбцы матрицы 𝑍(𝑡,𝜉), тогда

𝑧𝑗 = −𝐴𝑧𝑗 − (𝐵1𝜙1(𝑡) +𝐵2𝜙2(𝑡))𝑢
𝑗, 𝑗 = 1,𝑚.

По свойству управления 𝑢𝑗, 𝑧𝑗(1) = 𝑒𝑗 и 𝑒𝑗 являются линейно независи­

мыми по условию. Таким образом, 𝑑𝑒𝑡𝑍(𝑇,𝜉) ̸= 0 . Тогда, по теореме о неявной

функции, имеем, что если ‖𝜉‖ ⩽ 1, то концы траектории системы (3.7) покры­

вают некоторую окрестность нуля. Таким образом, система (3.5) локально нуль

– управляема на [τ, 𝑇 ]. Теорема 3.2.2 доказана.
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Таким образом, при выполении условий теоремы 3.2.2 объект, описывае­

мый системой (3.5), локально нуль – управляем на [τ,𝑇 ]. Если множество 𝑀1

содержится в окрестности локальной управляемости или имеет с ней непустое

пересечение, тогда при выполнении условий теоремы 3.2.2 и в силу локаль­

ной управляемости системы (3.5) объект попадает из нуля в множество 𝑀1.

При этом мы воспользумся свойством автономности системы (3.5) и, рассмат­

ривая движение объекта ”в обратном времени”, т.е. рассматривая систему 𝑦̇ =

−𝑓(𝑦) − 𝐵(𝑡)𝑢, выберем управление таким образом, что соответствующая ему

траектория соединит точку нуль с точкой из заданного множества 𝑀1. Таким

образом доказана управляемость объекта, описываемого системами (3.1) и (3.2),

из множества 𝑀0 пространства 𝑋 в множество 𝑀1 пространства 𝑌 на отрезке

времени [0,𝑇 ].

Заметим, что требование локальной управляемости системы является

условием, которое не обязано выполняться. Например, система⎧⎨⎩𝑥̇ = −𝑥+ 𝑢,

𝑦̇ = −𝑦 − 𝑥2𝑛
(3.10)

не является локально нуль- управляемой.

Действительно, поскольку система (3.10) является автономной, рассмот­

рим ее в обратном времени, сделав замену переменных τ = −𝑡:⎧⎨⎩𝑥̇ = 𝑥− 𝑢,

𝑦̇ = 𝑦 + 𝑥2𝑛.
(3.11)

Если система (3.10) является локально нуль-управляемой, то по определению,

существует некоторая окрестность нуля 𝑆𝛿(0), для любой точки которой найдет­

ся допустимое управление, переводящее систему из этой точки в ноль. Тогда

для системы (3.11) найдутся допустимые управления, переводящие систему из

нуля в любую точку окрестности 𝑆𝛿(0). Проверим это. Рассмотрим решение

системы (3.11): ⎧⎨⎩𝑥(𝑡) =
� 𝑡
0 𝑒

𝑡−𝑠𝑢(𝑠)𝑑𝑠,

𝑦(𝑡) =
� 𝑡
0 𝑒

𝑡−𝑠𝑥2𝑛𝑑𝑠.
(3.12)
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Тогда 𝑦(𝑡) =
� 𝑡
0 𝑒

𝑡−𝑠𝑥2𝑛𝑑𝑠 ⩾ 0 для любого решения 𝑥(𝑡) первого уравнения

системы (3.11). Таким образом, получили, что из точки ноль нельзя попасть

в любую точку окрестности 𝑆𝛿(0), т.е. система (3.11), как и система (3.10) не

являются локально нуль -управляемыми.

С другой стороны, локальная управляемость может иметь место в доста­

точно многих случаях, т.е. требование локальной управляемости не является

исключительным условием.

3.3 Пример

Пусть в пространстве 𝑋 = R3 переменных 𝑥 = (𝑥1,𝑥2,𝑥3) движение объек­

та описывается нелинейной системой дифференциальных уравнений :⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥̇1 = 𝑥31 + 𝑥2,

𝑥̇2 = −3𝑥21𝑥2 + 𝑥3,

𝑥̇3 = −15𝑥71 − 15𝑥41𝑥2 + 𝑣,

(3.13)

где 𝑣 ∈ R, 𝑡 ∈ [0, 1].

Задана начальная точка 𝑥0 = (1,− 2,− 1) и конечная точка 𝑥1 = (0,0,0).

Также в пространстве 𝑋 задано отображение 𝑞, с помощью которого осуществ­

ляется переход объекта из пространства 𝑋 в пространство 𝑌 : 𝑞(𝑥1,𝑥2,𝑥3) =

(𝑦1, 𝑦2), причем 𝑞(0,0,0) = (0,0).

В пространстве 𝑌 = R2 описывается следующей системой дифференци­

альных уравнений: ⎧⎨⎩𝑦̇1(𝑡) = 𝑦21 − 𝑦2 + 𝑡 sin 𝑡𝑢1,

𝑦̇2(𝑡) = 𝑦22 − 𝑦1 + cos 𝑡𝑢2,
(3.14)

где 𝑡 ∈ [1,5], 𝑢(·) ∈ 𝑈 = {𝑢(𝑡) ∈ R2|𝑢(·) ∈ 𝐿∞[1,5];𝑢(𝑡) ∈ Ω ⊂ R2},
0 ∈ 𝑖𝑛𝑡Ω.

В пространстве 𝑌 = R2 задано конечное множество 𝑀1 = (1,1).

Задача: Исследовать, является ли объект, описываемый системами (3.13)

и (3.14) управляемым из точки 𝑥0 пространства 𝑋 = R3 на множество 𝑀1

пространства 𝑌 = R2 на отрезке [0,5].
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Решение:

Рассмотрим сначала задачу управляемости из точки 𝑥0 = (1, − 2, − 1) в

точку 𝑥1 = (0,0,0) за время 𝑇 = 1 в пространстве 𝑋:

Система (3.13) является системой треугольного вида и с помощью замены

переменных ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧1 = 𝑥1,

𝑧2 = 𝑥31 + 𝑥2,

𝑧3 = 3𝑥51 + 𝑥3

(3.15)

приводится к линейной системе:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧̇1 = 𝑧2,

𝑧̇2 = 𝑧3,

𝑧̇3 = 𝑣.

(3.16)

Управление 𝑣(𝑡) выберем таким образом, чтобы за время 𝑇 = 1 попасть из

точки 𝑧0 = (1,−1,1) в точку 𝑧1 = 𝑧(1) = (0,0,0). Т.о. управление 𝑣(𝑡) имеет вид:

𝑣(𝑡) = −𝑏𝑇0 𝑒−𝐴
𝑇
0 𝑡𝑊−1

0 𝑧0,

где 𝑊−1
0 - матрица обратная к матрице

𝑊0 =

1�

0

𝑒−𝐴0τ𝑏0𝑏
𝑇
0 𝑒

−𝐴𝑇
0 τ𝑑τ.

Выбранное управление 𝑣(𝑡), переводящее точку 𝑥0 = (1,− 2,− 1) в точку

𝑥1 = (0,0,0) в силу системы (3.13), совпадает с управлением, переводящим точку

𝑧0 = (1, − 1,1) в точку 𝑧1 = (0,0,0) в силу системы (3.16).

Итак, получаем:

𝑊0 =

⎛⎜⎝
1
20 −1

8
1
6

−1
8

1
3 −1

2
1
6 −1

2 1

⎞⎟⎠ ,

𝑊−1
0 =

⎛⎜⎝ 720 360 60

360 192 36

60 36 9

⎞⎟⎠
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и управление 𝑣(𝑡) примет вид

𝑣(𝑡) = −210𝑡2 + 204𝑡− 33.

Таким образом, траектории системы (3.16), соединяющие точки

𝑧0 = (1,− 1,1) 𝑧1 = (0,0,0),

имеют вид: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑧1 = −7𝑡5

2 + 17𝑡4

2 − 11𝑡3

2 + 𝑡2

2 − 𝑡+ 1,

𝑧2 = −35𝑡4

2 + 34𝑡3 − 33𝑡2

2 + 𝑡− 1,

𝑧3 = −70𝑡3 + 102𝑡2 − 33𝑡+ 1.

(3.17)

Тогда, используя замену (3.15) и (3.17) получаем, что траектории системы (3.13)

соединяющие точки 𝑥0 = (1, − 2, − 1) и 𝑥1 = (0,0,0), имеют вид:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥1 = −7𝑡5

2 + 17𝑡4

2 − 11𝑡3

2 + 𝑡2

2 − 𝑡+ 1,

𝑥2 = −35𝑡4

2 + 34𝑡3 − 33𝑡2

2 + 𝑡− 1− (−7𝑡5

2 + 17𝑡4

2 − 11𝑡3

2 + 𝑡2

2 − 𝑡+ 1)3,

𝑥3 = −70𝑡3 + 102𝑡2 − 33𝑡+ 1− 3(−7𝑡5

2 + 17𝑡4

2 − 11𝑡3

2 + 𝑡2

2 − 𝑡+ 1)5.

(3.18)

Т.о. управление 𝑣(𝑡) = −210𝑡2 + 204𝑡− 33 перводит объект, описываемый

системой (3.13) по траекториям (3.18) из точки 𝑥0 = (1, − 2, − 1) в точку

𝑥1 = (0,0,0).

Далее осуществим переход в постранство 𝑌 = 𝑅2 и исследуем локальную

нуль-управляемость системы (3.14).

Возьмем в качестве точки 𝑡* точку 𝑡 = 𝜋
2 . Тогда ранг матрицы

𝐿(
𝜋

2
) =

(︃
𝜋
2 −1 −2

0 −𝜋
2 + 1 2

)︃

равен двум и по теореме 3.2.2 система (3.14) является локально нуль - управ­

ляемой на отрезке [1, 5].

В силу того, что конечное множество 𝑀1 имеет непустое пересечение с

окрестностью локальной нуль - управляемости и учитывая автономность си­

стемы (3.14), рассмотрев движение объекта ”в обратном времени”, найдется

допустимое управление, что соответствующая ему траектория, соединит точ­

ку нуль и множество 𝑀1.
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Глава 4. Оптимальное восстановление решения системы линейных

дифференциальных уравнений по исходной информации со

случайной ошибкой

Данная глава посвящена построению оптимальных методов восстановле­

ния решения системы линейных дифференциальных однородных уравнений по

исходной информации, заданной со случайной ошибкой. Следуя постановке,

предложенной в работе [60], используется ряд идей из этой работы для доказа­

тельства общего результата в конечномерном случае. Рассмотрены различные

варианты задания исходной информации: задача решается в предположении,

что начальная точка принадлежит некоторому эллипсоиду и ее координаты

в начальный момент времени известны со случайной ошибкой. Требуется вос­

становить решение в момент времени τ > 0. Также рассматривается задача,

в которой решение известно с некоторой случайной ошибкой в момент вре­

мени 𝑡 = 𝑇1. Требуется восстановить решение в некоторый момент времени

0 < τ < 𝑇1.

Общий результат применяется также к задаче о восстановлении 𝑘-ой про­

изводной тригонометрического полинома по его коэффициентам, известным со

случайной ошибкой.

В рассматриваемых задачах мы не ограничиваемся лишь нормальным

распределением случайной величины, а рассматриваем произвольные распре­

деления случайного вектора с фиксированным математическим ожиданием и

фиксированной оценкой для дисперсии. Как и в задачах с детерминированной

ошибкой здесь обнаруживаются такие эффекты, как линейность оптимального

метода и возможность использовать не всю доступную для измерений инфор­

мацию.

Результаты данной главы опубликованы соискателем в следующих науч­

ных публикациях:

– Максимова И.С., Осипенко К.Ю. Оптимальное восстановление реше­

ния системы линейных дифференциальных уравнений по исходной

информации со случайной ошибкой, Математический сборник, 2025,—Т.

216,—№4,—С. 67–89.
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4.1 Постановка задачи об оптимальном восстановлении решения

системы линейных дифференциальных уравнений

Рассмотрим задачу Коши для системы линейных однородных дифферен­

циальных уравнений ⎧⎨⎩
𝑑𝑥

𝑑𝑡
= 𝐴𝑥,

𝑥(0) = 𝑥0,
(4.1)

где 𝑥(𝑡) ∈ R𝑛, 𝑡 ⩾ 0 и

𝐴 =

⎛⎜⎝𝑎11 𝑎12 . . . 𝑎1𝑛
...

... . . .
...

𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛

⎞⎟⎠ , 𝑎𝑖𝑗 ∈ R.

Предположим, что матрица 𝐴 является самосопряженной,

𝜇1,𝜇2, . . . ,𝜇𝑛

— собственные числа матрицы 𝐴. Обозначим через {𝑒𝑗}𝑛𝑗=1 ортонормированный

базис из собственных векторов, соответствующих собственным значениям 𝜇𝑗,

𝑗 = 1, . . . ,𝑛. Пусть

𝑥0 =
𝑛∑︁
𝑗=1

𝑥𝑗𝑒𝑗.

Тогда решение задачи (4.1) записывается в виде

𝑥(𝑡) =
𝑛∑︁
𝑗=1

𝑒𝜇𝑗𝑡𝑥𝑗𝑒𝑗.

Предположим, что координаты начальной точки 𝑥0 известны со случайной

ошибкой. Пусть, кроме того, известен некоторый эллипсоид, в котором находит­

ся точка 𝑥0. Требуется восстановить решение в момент τ > 0.

Перейдем к точной постановке задачи. Положим для 𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ R𝑛

𝑊 =

{︂
𝑥 ∈ R𝑛 :

𝑛∑︁
𝑗=1

ν𝑗𝑥
2
𝑗 ⩽ 1.

}︂
, 𝑇𝑥 = (𝑒𝜇1τ𝑥1, . . . ,𝑒

𝜇𝑛τ𝑥𝑛), 𝐼𝑥 = (𝑥1, . . . ,𝑥𝑛).
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Зафиксируем 𝛿 > 0 и для каждого 𝑥 ∈ 𝑊 будем рассматривать множество

случайных векторов

𝑌𝛿(𝑥) = { 𝑦 = (𝑦1, . . . ,𝑦𝑛) : M(𝑦) = 𝐼𝑥, D(𝑦𝑗) ⩽ 𝛿2, 𝑗 = 1, . . . ,𝑛 }.

Пространство R𝑛 – пространство векторов 𝑥 = (𝑥1, . . . ,𝑥𝑛) с нормой

‖𝑥‖R𝑛 =

(︂ 𝑛∑︁
𝑗=1

|𝑥𝑗|2
)︂1/2

.

Всякий метод восстановления сопоставляет случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥)

элемент из пространства R𝑛, принимаемый за приближение к значению 𝑇𝑥.

Погрешностью метода восстановления 𝜙 : R𝑛 → R𝑛 называется величина

𝑒(𝑇,𝑊,𝐼,𝛿,𝜙) =

(︂
sup

𝑥∈𝑊, 𝑦∈𝑌𝛿(𝑥)
M
(︀
‖𝑇𝑥− 𝜙(𝑦)‖2R𝑛

)︀)︂1/2

(рассматриваются только те методы, для которых эта величина определена).

Задача состоит в нахождении погрешности оптимального восстановления

𝐸(𝑇,𝑊,𝐼,𝛿) = inf
𝜙 : R𝑛→R𝑛

𝑒(𝑇,𝑊,𝐼,𝛿,𝜙)

и метода, на котором достигается нижняя грань, называемым оптимальным.

Для решения сформулированной задачи мы в пункте 4.2. рассмотрим

более общую задачу, решим ее и затем применим полученный результат к

поставленной исходной задаче восстановления решения системы дифференци­

альных уравнений в пункте 4.3.

4.2 Общий результат

Пусть 𝑋 — линейное пространство, 𝑍 — линейное нормированное про­

странство и 𝑇 : 𝑋 → 𝑍 — линейный оператор. Требуется восстановить значения

оператора 𝑇 на некотором множестве (классе) 𝑊 ⊂ 𝑋 по значениям линей­

ного оператора 𝐼 : 𝑋 → R𝑛, заданным со случайной ошибкой. Более точно,

зафиксируем 𝛿 > 0 и для каждого 𝑥 ∈ 𝑊 будем рассматривать множество

случайных векторов

𝑌𝛿(𝑥) = { 𝑦 = (𝑦1, . . . ,𝑦𝑛) : M(𝑦) = 𝐼𝑥, D(𝑦𝑗) ⩽ 𝛿2, 𝑗 = 1, . . . ,𝑛 }.
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Всякий метод восстановления сопоставляет случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥)

элемент из пространства 𝑍, принимаемый за приближение к значению 𝑇𝑥. По­

грешностью метода восстановления 𝜙 : R𝑛 → 𝑍 называется величина

𝑒(𝑇,𝑊,𝐼,𝛿,𝜙) =

(︂
sup

𝑥∈𝑊, 𝑦∈𝑌𝛿(𝑥)
M
(︀
‖𝑇𝑥− 𝜙(𝑦)‖2𝑍

)︀)︂1/2

(рассматриваются только те методы, для которых эта величина определена).

Задача состоит в нахождении погрешности оптимального восстановления

𝐸(𝑇,𝑊,𝐼,𝛿) = inf
𝜙 : R𝑛→𝑍

𝑒(𝑇,𝑊,𝐼,𝛿,𝜙) (4.2)

и метода, на котором достигается нижняя грань, называемым оптимальным.

Положим

𝑊 =

{︂
𝑥 ∈ R𝑛 :

𝑛∑︁
𝑗=1

ν𝑗|𝑥𝑗|2 ⩽ 1

}︂
,

где ν𝑗 > 0, 𝑗 = 1, . . . ,𝑛. Определим линейные операторы 𝑇 : R𝑛 → R𝑛 и 𝐼 : R𝑛 →
R𝑛 следующим образом

𝑇𝑥 = (𝜇1𝑥1, . . . ,𝜇𝑛𝑥𝑛), 𝐼𝑥 = (𝑥1, . . . ,𝑥𝑛),

|𝜇𝑗| > 0, 𝑗 = 1, . . . ,𝑛.

Введем обозначения

𝛾𝑗 =

√
ν𝑗

|𝜇𝑗|
, 𝑗 = 1, . . . ,𝑛, 𝜉𝑗 =

(︂ 𝑗∑︁
𝑘=1

ν𝑘

(︂
𝛾𝑗
𝛾𝑘

− 1

)︂)︂1/2

, 𝑗 = 1, . . . 𝑛.

Будем считать, что 𝛾1 ⩽ . . . ⩽ 𝛾𝑛. Нетрудно убедиться, что 0 = 𝜉1 ⩽ . . . ⩽ 𝜉𝑛.

Теорема 4.2.1. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некотором 1 ⩽ 𝑠 ⩽ 𝑛 − 1 или

1/𝛿 ∈ (𝜉𝑛,+∞) (в этом случае считаем 𝑠 = 𝑛). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

|𝜇𝑘|2
(︂
1− 𝛾𝑘(1− 𝑐1)

𝛾1

)︂)︂1/2

,

где

𝑐1 = 1−
𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

, (4.3)
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а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︂
1− 𝛾𝑘(1− 𝑐1)

𝛾1

)︂
𝜇𝑘𝑦𝑘𝑒𝑘,

где {𝑒𝑘} — стандартный базис в R𝑛, является оптимальным.

Доказательство. 1. Оценка снизу. Зафиксируем элемент τ = (τ1, . . . ,τ𝑛) ∈ 𝑊

такой, что

τ1 ⩾ . . . ⩾ τ𝑛 > 0.

Введем множество

𝐵 = {𝑥 ∈ 𝑙𝑛2 : 𝑥𝑗 = ±τ𝑗, 𝑗 = 1, . . . ,𝑛 }.

Очевидно, что 𝐵 ⊂ 𝑊 . Положим

𝑝𝑗 =
𝛿2

𝛿2 + τ2𝑗
, 𝑗 = 1, . . . ,𝑛.

В силу условий на монотонность τ𝑗 имеем

0 < 𝑝1 ⩽ . . . ⩽ 𝑝𝑛 < 1.

Произвольный элемент 𝑥 ∈ 𝐵 записывается в виде

𝑥 =
𝑛∑︁
𝑗=1

𝑠𝑗(𝑥)τ𝑗𝑒𝑗,

где 𝑠𝑗(𝑥) ∈ {−1,1}. Зададим распределение 𝜂(𝑥) для каждого 𝑥 ∈ 𝐵

𝜂(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, с вероятностью 𝑝1,

𝑠1(𝑥)τ1
1− 𝑝1

𝑒1 с вероятностью 𝑝2 − 𝑝1,

2∑︁
𝑗=1

𝑠𝑗(𝑥)τ𝑗
1− 𝑝𝑗

𝑒𝑗, с вероятностью 𝑝3 − 𝑝2,

. . . . . . . . . . . . . . . . . . . .
𝑛−1∑︁
𝑗=1

𝑠𝑗(𝑥)τ𝑗
1− 𝑝𝑗

𝑒𝑗, с вероятностью 𝑝𝑛 − 𝑝𝑛−1,

𝑛∑︁
𝑗=1

𝑠𝑗(𝑥)τ𝑗
1− 𝑝𝑗

𝑒𝑗, с вероятностью 1− 𝑝𝑛.
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Таким образом, для координат вектора 𝜂(𝑥) = (𝜂1(𝑥), . . . ,𝜂𝑛(𝑥)) имеем следую­

щие распределения:

𝜂𝑗(𝑥) =

⎧⎪⎨⎪⎩
0, с вероятностью 𝑝𝑗,

𝑠𝑗(𝑥)τ𝑗
1− 𝑝𝑗

, с вероятностью 1− 𝑝𝑗,
𝑗 = 0,1, . . . ,𝑛.

Несложно убедиться, что M(𝜂𝑗(𝑥)) = 𝑥𝑗, 𝑗 = 1, . . . ,𝑛. Кроме того,

D(𝜂𝑗(𝑥)) = (1− 𝑝𝑗)
τ2𝑗

(1− 𝑝𝑗)2
− τ2𝑗 = 𝛿2, 𝑗 = 1, . . . ,𝑛.

Следовательно, 𝜂(𝑥) ∈ 𝑌𝛿(𝑥) для всех 𝑥 ∈ 𝐵.

Пусть 𝜙 — произвольный метод восстановления. Учитывая, что число эле­

ментов в множестве 𝐵 равно 2𝑛, получаем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩾ sup
𝑥∈𝐵

M‖𝑇𝑥− 𝜙(𝜂(𝑥))‖2R𝑛

= sup
𝑥∈𝐵

(︂𝑛+1∑︁
𝑗=1

(𝑝𝑗 − 𝑝𝑗−1)

⃦⃦⃦⃦
𝑇𝑥− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘(𝑥)τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

)︂

⩾
1

2𝑛

∑︁
𝑥∈𝐵

(︂𝑛+1∑︁
𝑗=1

(𝑝𝑗 − 𝑝𝑗−1)

⃦⃦⃦⃦
𝑇𝑥− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘(𝑥)τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

)︂

=
1

2𝑛

𝑛+1∑︁
𝑗=1

(𝑝𝑗 − 𝑝𝑗−1)
∑︁
𝑥∈𝐵

⃦⃦⃦⃦
𝑇𝑥− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘(𝑥)τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

; (4.4)

здесь 𝑝0 = 0, а 𝑝𝑛+1 = 1. Положим

𝐵𝑠1,...,𝑠𝑗−1
= {𝑥 ∈ 𝐵 : 𝑠1(𝑥) = 𝑠1, . . . ,𝑠𝑗−1(𝑥) = 𝑠𝑗−1 },

𝑗 = 1, . . . ,𝑛+ 1 (при 𝑗 = 1 это множество совпадает с 𝐵). Тогда

𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑥∈𝐵

⃦⃦⃦⃦
𝑇𝑥− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘(𝑥)τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

=
𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑠1,...,𝑠𝑗−1

∑︁
𝑥∈𝐵𝑠1,...,𝑠𝑗−1

⃦⃦⃦⃦
𝑇𝑥− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

.

Если 𝑥 ∈ 𝐵𝑠1,...,𝑠𝑗−1
, то

𝑥 =

𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘 + 𝑧(𝑥), 𝑧(𝑥) =
𝑛∑︁
𝑘=𝑗

𝑠𝑘(𝑥)τ𝑘𝑒𝑘.
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Причем с каждым элементом

𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘 + 𝑧(𝑥) ∈ 𝐵𝑠1,...,𝑠𝑗−1

в множестве 𝐵𝑠1,...,𝑠𝑗−1
содержится и элемент

𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘 − 𝑧(𝑥).

Таким образом,

𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑠1,...,𝑠𝑗−1

∑︁
𝑥∈𝐵𝑠1,...,𝑠𝑗−1

⃦⃦⃦⃦
𝑇𝑥− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

=

=
𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑠1,...,𝑠𝑗−1

∑︁
𝑥∈𝐵𝑠1,...,𝑠𝑗−1

⃦⃦⃦⃦
𝑇

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘 + 𝑧(𝑥)

)︂
− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

=

=
𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑠1,...,𝑠𝑗−1

∑︁
𝑥∈𝐵𝑠1,...,𝑠𝑗−1

⃦⃦⃦⃦
𝑇

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘

)︂
+𝑇𝑧(𝑥)−𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

=

=
𝑝𝑗 − 𝑝𝑗−1

2𝑛+1

∑︁
𝑠1,...,𝑠𝑗−1

∑︁
𝑥∈𝐵𝑠1,...,𝑠𝑗−1

(︂⃦⃦⃦⃦
𝑇

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘

)︂
+ 𝑇𝑧(𝑥)−

− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

+

⃦⃦⃦⃦
𝑇

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘𝑒𝑘

)︂
− 𝑇𝑧(𝑥)− 𝜙

(︂ 𝑗−1∑︁
𝑘=1

𝑠𝑘τ𝑘
1− 𝑝𝑘

𝑒𝑘

)︂⃦⃦⃦⃦2
R𝑛

)︂
⩾

⩾
𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑠1,...,𝑠𝑗−1

∑︁
𝑥∈𝐵𝑠1,...,𝑠𝑗−1

‖𝑇𝑧(𝑥)‖2R𝑛 =
𝑝𝑗 − 𝑝𝑗−1

2𝑛

∑︁
𝑥∈𝐵

‖𝑇𝑧(𝑥)‖2R𝑛 =

= (𝑝𝑗 − 𝑝𝑗−1)
𝑛∑︁
𝑘=𝑗

|𝜇𝑘|2τ2𝑘.

Подставляя эту оценку в (4.4), получаем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩾
𝑛+1∑︁
𝑗=1

(𝑝𝑗 − 𝑝𝑗−1)
𝑛∑︁
𝑘=𝑗

|𝜇𝑘|2τ2𝑘 =

=
𝑛∑︁
𝑗=1

(︂
𝑝𝑗

𝑛∑︁
𝑘=𝑗

|𝜇𝑘|2τ2𝑘 − 𝑝𝑗

𝑛∑︁
𝑘=𝑗+1

|𝜇𝑘|2τ2𝑘
)︂

=
𝑛∑︁
𝑗=1

𝑝𝑗|𝜇𝑗|2τ2𝑗 =
𝑛∑︁
𝑗=1

𝛿2

𝛿2 + τ2𝑗
|𝜇𝑗|2τ2𝑗 .

В силу произвольности метода 𝜙 имеет место следующая оценка

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾ sup
τ∈𝑊

τ1⩾...⩾τ𝑛>0

𝑛∑︁
𝑗=1

𝛿2

𝛿2 + τ2𝑗
|𝜇𝑗|2τ2𝑗 . (4.5)
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Рассмотрим вектор τ = (τ1, . . . ,τ𝑘,0, . . . ,0) ∈ 𝑊 такой, что τ1 ⩾ . . . ⩾ τ𝑘 >

0, 1 ⩽ 𝑘 < 𝑛. Для достаточно малых ε > 0 положим τε = (τ1(ε), . . . ,τ𝑛(ε)), где

τ𝑗(ε) =

⎧⎨⎩
√︁
τ2𝑗 − ε, 1 ⩽ 𝑗 ⩽ 𝑘,

𝐶
√
ε, 𝑘 + 1 ⩽ 𝑗 ⩽ 𝑛,

а

𝐶 =

(︃ ∑︀𝑘
𝑗=1 ν𝑗∑︀𝑛

𝑗=𝑘+1 ν𝑗

)︃1/2

.

Тогда

𝑛∑︁
𝑗=1

ν𝑗τ
2
𝑗(ε) =

𝑘∑︁
𝑗=1

ν𝑗τ
2
𝑗 − ε

𝑘∑︁
𝑗=1

ν𝑗 + 𝐶2ε

𝑛∑︁
𝑗=𝑘+1

ν𝑗 =
𝑘∑︁
𝑗=1

ν𝑗τ
2
𝑗 ⩽ 1.

Тем самым τε ∈ 𝑊 . При ε < τ2𝑘/(1 + 𝐶2) справедливо неравенство√︁
τ2𝑘 − ε > 𝐶

√
ε.

Следовательно, при таких ε

τ1(ε) ⩾ . . . ⩾ τ𝑛(ε) > 0.

Из (4.5) вытекает, что

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾
𝑛∑︁
𝑗=1

𝛿2

𝛿2 + τ2𝑗(ε)
|𝜇𝑗|2τ2𝑗(ε).

Переходя к пределу при ε → 0, получаем

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾
𝑘∑︁
𝑗=1

𝛿2

𝛿2 + τ2𝑗
|𝜇𝑗|2τ2𝑗 .

Таким образом,

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾ sup
τ∈𝑊

τ1⩾...⩾τ𝑛⩾0

𝑛∑︁
𝑗=1

𝛿2

𝛿2 + τ2𝑗
|𝜇𝑗|2τ2𝑗 . (4.6)

2. Оценка сверху. Найдем погрешность методов, имеющих вид

𝜙(𝑦) =
𝑛∑︁
𝑗=1

𝛼𝑗𝑦𝑗𝑒𝑗.
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Положим 𝑧(𝑥) = 𝑦(𝑥) − 𝐼𝑥. Тогда M(𝑧(𝑥)) = 0, D(𝑧𝑗(𝑥)) ⩽ 𝛿2, 𝑗 = 1, . . . ,𝑛.

Имеем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) = sup
𝑥∈𝑊

𝑦(𝑥)∈𝑌𝛿(𝑥)

M
(︀
‖𝑇𝑥− 𝜙(𝑦(𝑥))‖2R𝑛

)︀
=

= sup
𝑥∈𝑊

𝑦(𝑥)∈𝑌𝛿(𝑥)

M
(︀
‖𝑇𝑥− 𝜙(𝐼𝑥)− 𝜙(𝑧(𝑥))‖2R𝑛

)︀
= sup

𝑥∈𝑊
𝑦(𝑥)∈𝑌𝛿(𝑥)

(︀
‖𝑇𝑥− 𝜙(𝐼𝑥)‖2R𝑛 +

+M(‖𝜙(𝑧(𝑥))‖2R𝑛)− 2M(𝜙(𝑧(𝑥)),𝑇𝑥− 𝜙(𝐼𝑥))
)︀
;

здесь (·,·) — скалярное произведение в R𝑛. Из вида 𝜙 следует, что

M(𝜙(𝑧(𝑥)),𝑇𝑥− 𝜙(𝐼𝑥)) = M
(︂ 𝑛∑︁
𝑗=1

𝛼𝑗𝑧𝑗(𝑥)𝑒𝑗,𝑇𝑥− 𝜙(𝐼𝑥)

)︂
=

=
𝑛∑︁
𝑗=1

(𝑒𝑗,𝑇𝑥− 𝜙(𝐼𝑥))𝛼𝑗M(𝑧𝑗(𝑥)) = 0.

Так как

M(‖𝜙(𝑧(𝑥))‖2R𝑛) = M
(︂ 𝑛∑︁
𝑗=1

|𝛼𝑗|2|𝑧𝑗(𝑥)|2
)︂

=
𝑛∑︁
𝑗=1

|𝛼𝑗|2D(𝑧𝑗(𝑥)),

то

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) = sup
𝑥∈𝑊

𝑦(𝑥)∈𝑌𝛿(𝑥)

(︃
‖𝑇𝑥− 𝜙(𝐼𝑥)‖2R𝑛 +

𝑛∑︁
𝑗=1

|𝛼𝑗|2D(𝑧𝑗(𝑥))

)︃
=

= sup
𝑥∈𝑊

‖𝑇𝑥− 𝜙(𝐼𝑥)‖2R𝑛 + 𝛿2
𝑛∑︁
𝑗=1

|𝛼𝑗|2.

Рассмотрим экстремальную задачу

‖𝑇𝑥− 𝜙(𝐼𝑥)‖2R𝑛 → max , 𝑥 ∈ 𝑊.

Перепишем эту задачу в виде
𝑛∑︁
𝑗=1

|𝜇𝑗 − 𝛼𝑗|2|𝑥𝑗|2 → max ,
𝑛∑︁
𝑗=1

ν𝑗|𝑥𝑗|2 ⩽ 1.

Из неравенства

𝑛∑︁
𝑗=1

|𝜇𝑗 − 𝛼𝑗|2|𝑥𝑗|2 =
𝑛∑︁
𝑗=1

|𝜇𝑗 − 𝛼𝑗|2

ν𝑗
ν𝑗|𝑥𝑗|2 ⩽

⩽ max

{︂
|𝜇1 − 𝛼1|2

ν1
, . . . ,

|𝜇𝑛 − 𝛼𝑛|2

ν𝑛

}︂ 𝑛∑︁
𝑗=1

ν𝑗|𝑥𝑗|2
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получаем

sup
𝑥∈𝑊

‖𝑇𝑥− 𝜙(𝐼𝑥)‖2R𝑛 ⩽ max

{︂
|𝜇1 − 𝛼1|2

ν1
, . . . ,

|𝜇𝑛 − 𝛼𝑛|2

ν𝑛

}︂
.

Таким образом,

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ max

{︂
|𝜇1 − 𝛼1|2

ν1
, . . . ,

|𝜇𝑛 − 𝛼𝑛|2

ν𝑛

}︂
+ 𝛿2

𝑛∑︁
𝑗=1

|𝛼𝑗|2.

Положим

𝑐𝑗 =
𝛼𝑗
𝜇𝑗
, 𝑗 = 1, . . . ,𝑛.

Тогда для погрешности метода 𝜙 имеем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ max

{︂
|1− 𝑐1|2

𝛾21
, . . . ,

|1− 𝑐𝑛|2

𝛾2𝑛

}︂
+ 𝛿2

𝑛∑︁
𝑗=1

|𝜇𝑗|2|𝑐𝑗|2.

2.1. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некотором 1 ⩽ 𝑠 ⩽ 𝑛 − 1. Тогда нетрудно

показать, что выполняются неравенства

1

𝛾𝑠+1
⩽

𝛿2
𝑠∑︁

𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

<
1

𝛾𝑠
.

Если определить 𝑐1 равенством (4.3), то

1

𝛾𝑠+1
⩽

1− 𝑐1
𝛾1

<
1

𝛾𝑠
.

Пусть

𝑐𝑘 = 1− 𝛾𝑘
1− 𝑐1
𝛾1

, 𝑘 = 2, . . . ,𝑠, 𝑐𝑘 = 0, 𝑘 = 𝑠+ 1, . . . ,𝑛.

Имеем
(1− 𝑐𝑘)

2

𝛾2𝑘
=

(1− 𝑐1)
2

𝛾21
, 𝑘 = 2, . . . ,𝑠.

При 𝑘 ⩾ 𝑠+ 1
(1− 𝑐𝑘)

2

𝛾2𝑘
=

1

𝛾2𝑘
⩽

1

𝛾2𝑠+1

⩽
(1− 𝑐1)

2

𝛾21
.

Поэтому

max

{︂
|1− 𝑐1|2

𝛾21
, . . . ,

|1− 𝑐𝑛|2

𝛾2𝑛

}︂
=

(1− 𝑐1)
2

𝛾21
. (4.7)
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Следовательно,

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽
(1− 𝑐1)

2

𝛾21
+ 𝛿2

𝑠∑︁
𝑘=1

|𝜇𝑘|2𝑐2𝑘 =
(1− 𝑐1)

2

𝛾21
+

+ 𝛿2
𝑠∑︁

𝑘=1

|𝜇𝑘|2((1− 𝑐𝑘)
2 − (1− 𝑐𝑘) + 𝑐𝑘) =

(1− 𝑐1)
2

𝛾21
+ 𝛿2

𝑠∑︁
𝑘=1

|𝜇𝑘|2
𝛾2𝑘
𝛾21

(1− 𝑐1)
2−

− 𝛿2
𝑠∑︁

𝑘=1

|𝜇𝑘|2
𝛾𝑘
𝛾1
(1− 𝑐1) + 𝛿2

𝑠∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘 = 𝛿2
𝑠∑︁

𝑘=1

|𝜇𝑘|2𝑐𝑘+

+
1− 𝑐1
𝛾21

(︂
1− 𝑐1 + 𝛿2

𝑠∑︁
𝑘=1

ν𝑘(1− 𝑐1)− 𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

)︂
= 𝛿2

𝑠∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘+

+
1− 𝑐1
𝛾21

(︂
(1− 𝑐1)

(︂
1 + 𝛿2

𝑠∑︁
𝑘=1

ν𝑘

)︂
− 𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

)︂
= 𝛿2

𝑠∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘. (4.8)

Рассмотрим вектор ̂︀τ ∈ R𝑛, имеющий вид

̂︀τ2𝑘 = 𝛿2
(︂

𝛾1
(1− 𝑐1)𝛾𝑘

− 1

)︂
, 𝑘 = 1, . . . ,𝑠, ̂︀τ𝑘 = 0, 𝑘 = 𝑠+ 1, . . . ,𝑛.

Имеем

𝑛∑︁
𝑘=1

ν𝑘̂︀τ2𝑘 = 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

(︂
𝛾1

(1− 𝑐1)𝛾𝑘
− 1

)︂
=

𝛿2𝛾1
1− 𝑐1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘
− 𝛿2

𝑠∑︁
𝑘=1

ν𝑘 =

=

(︂
1 + 𝛿2

𝑠∑︁
𝑘=1

ν𝑘

)︂
− 𝛿2

𝑠∑︁
𝑘=1

ν𝑘 = 1.

Таким образом, ̂︀τ ∈ 𝑊 . Подставляя ̂︀τ в оценку (4.6), получаем

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾
𝑠∑︁

𝑘=1

𝛿2|𝜇𝑘|2̂︀τ2𝑘
𝛿2 + ̂︀τ2𝑘 =

𝑠∑︁
𝑘=1

𝛿4|𝜇𝑘|2
(︂

𝛾1
(1− 𝑐1)𝛾𝑘

− 1

)︂
𝛿2

𝛾1
(1− 𝑐1)𝛾𝑘

=

= 𝛿2
𝑠∑︁

𝑘=1

|𝜇𝑘|2
(︂
1− (1− 𝑐1)𝛾𝑘

𝛾1

)︂
= 𝛿2

𝑠∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘 ⩾ 𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙).

Отсюда следует, что метод 𝜙 является оптимальным.

2.2. Пусть теперь 1/𝛿 > 𝜉𝑛. Тогда

𝛿2
𝑛∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑛∑︁
𝑘=1

ν𝑘

<
1

𝛾𝑛
.
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Положим

𝑐1 = 1− 𝛾1

𝛿2
𝑛∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑛∑︁
𝑘=1

ν𝑘

.

Тогда
1− 𝑐1
𝛾1

<
1

𝛾𝑛
.

Пусть

𝑐𝑘 = 1− 𝛾𝑘
1− 𝑐1
𝛾1

, 𝑘 = 2, . . . ,𝑛.

Имеем
(1− 𝑐𝑘)

2

𝛾2𝑘
=

(1− 𝑐1)
2

𝛾21
, 𝑘 = 2, . . . ,𝑛.

Тем самым, как и в предыдущем случае, справедливо равенство (4.7). Повторяя,

выкладки (4.8) для 𝑠 = 𝑛, получаем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ 𝛿2
𝑛∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘.

Рассмотрим вектор ̂︀τ ∈ R𝑛, имеющий вид

̂︀τ2𝑘 = 𝛿2
(︂

𝛾1
(1− 𝑐1)𝛾𝑘

− 1

)︂
, 𝑘 = 1, . . . ,𝑛.

Имеем

𝑛∑︁
𝑘=1

ν𝑘̂︀τ2𝑘 = 𝛿2
𝑛∑︁
𝑘=1

ν𝑘

(︂
𝛾1

(1− 𝑐1)𝛾𝑘
− 1

)︂
=

𝛿2𝛾1
1− 𝑐1

𝑛∑︁
𝑘=1

ν𝑘

𝛾𝑘
− 𝛿2

𝑛∑︁
𝑘=1

ν𝑘 =

=

(︂
1 + 𝛿2

𝑛∑︁
𝑘=1

ν𝑘

)︂
− 𝛿2

𝑛∑︁
𝑘=1

ν𝑘 = 1.

Таким образом, ̂︀τ ∈ 𝑊 . Подставляя ̂︀τ в оценку (4.6), получаем

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾
𝑛∑︁
𝑘=1

𝛿2|𝜇𝑘|2̂︀τ2𝑘
𝛿2 + ̂︀τ2𝑘 =

𝑛∑︁
𝑘=1

𝛿4|𝜇𝑘|2
(︂

𝛾1
(1− 𝑐1)𝛾𝑘

− 1

)︂
𝛿2

𝛾1
(1− 𝑐1)𝛾𝑘

=

= 𝛿2
𝑛∑︁
𝑘=1

|𝜇𝑘|2
(︂
1− (1− 𝑐1)𝛾𝑘

𝛾1

)︂
= 𝛿2

𝑛∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘 ⩾ 𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙).

Отсюда следует, что метод 𝜙 является оптимальным.
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4.3 Оптимальное восстановление решения системы линейных

дифференциальных уравнений

Здесь дается решение задачи о восстановлении для начальной точки в

эллипсоиде, затем рассматривается частный случай шара. Потом задача о вос­

становлении по коэффициентам в момент времени 𝑇 и для конечной точки в

эллипсоиде. Затем приводится частный случай шара.

4.3.1 Восстановление решений линейных дифференциальных

уравнений по исходной информации со случайной ошибкой в

начальный момент времени

Рассмотрим задачу Коши для системы линейных однородных дифферен­

циальных уравнений ⎧⎨⎩
𝑑𝑥

𝑑𝑡
= 𝐴𝑥,

𝑥(0) = 𝑥0,
(4.9)

где 𝑥(𝑡) ∈ R𝑛, 𝑡 ⩾ 0 и 𝐴 = (𝑎𝑖𝑗), 𝑎𝑖𝑗 ∈ R.
Предположим, что матрица 𝐴 является самосопряженной,

𝜇1 > 𝜇2 > . . . > 𝜇𝑛

— собственные числа матрицы 𝐴. Обозначим через {𝑒𝑗}𝑛𝑗=1 ортонормирован­

ный базис из собственных векторов, соответствующих собственным значениям

𝜇𝑗, 𝑗 = 1,...,𝑛.

Пусть

𝑥0 =
𝑛∑︁
𝑗=1

𝑥𝑗𝑒𝑗.

Тогда решение задачи (4.9) записывается в виде

𝑥(𝑡) =
𝑛∑︁
𝑗=1

𝑒𝜇𝑗𝑡𝑥𝑗𝑒𝑗.

Предположим, что координаты начальной точки 𝑥0 известны со случайной

ошибкой. Пусть, кроме того, известен некоторый эллипсоид, в котором находит­

ся точка 𝑥0. Требуется восстановить решение в момент τ, τ > 0.
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Положим для 𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ R𝑛

𝑊 =

{︂
𝑥 ∈ R𝑛 :

𝑛∑︁
𝑗=1

ν𝑗𝑥
2
𝑗 ⩽ 1

}︂
, 𝑇𝑥 = (𝑒𝜇1τ𝑥1, . . . ,𝑒

𝜇𝑛τ𝑥𝑛), 𝐼𝑥 = (𝑥1, . . . ,𝑥𝑛).

Как и в общей постановке, всякий метод восстановления сопоставляет

случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥) элемент из пространства R𝑛, принимаемый за

приближение к значению 𝑇𝑥. Таким образом, поставленная задача восстанов­

ления сводится к задаче, рассмотренной выше. Применим теорему 4.2.1.

Обозначим

𝛾𝑗 =

√
ν𝑗

𝑒𝜇𝑗τ
, 𝑗 = 1, . . . ,𝑛, 𝜉𝑗 =

(︂ 𝑗∑︁
𝑘=1

ν𝑘

(︂
𝛾𝑗
𝛾𝑘

− 1

)︂)︂1/2

, 𝑗 = 1, . . . ,𝑛.

Следствие 4.3.1. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некоторых 1 ⩽ 𝑠 ⩽ 𝑛 − 1 или

1/𝛿 ∈ (𝜉𝑛,+∞) (в этом случае считаем 𝑠 = 𝑛). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

𝑒2𝜇𝑘τ

(︂
1− 𝛾𝑘(1− 𝑐1)

𝛾1

)︂)︂1/2

,

где

𝑐1 = 1−
𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

, (4.10)

а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︂
1− 𝛾𝑘(1− 𝑐1)

𝛾1

)︂
𝑒𝜇𝑘τ𝑦𝑘𝑒𝑘,

является оптимальным.

Предположим, что матрица 𝐴 является самосопряженной,

𝜆1 > 𝜆2 > . . . > 𝜆𝑚

— собственные числа матрицы 𝐴 и 𝑟𝑘 — кратность собственного числа 𝜆𝑘,

𝑘 = 1, . . . ,𝑚. Обозначим через {𝑒𝑘𝑗}𝑟𝑘𝑗=1 ортонормированную систему векторов,

соответствующую собственному значению 𝜆𝑘. Тогда система векторов

𝑒11, . . . ,𝑒1𝑟1, . . . ,𝑒𝑚1, . . . ,𝑒𝑚𝑟𝑚
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является ортонормированным базисом в R𝑛.

Пусть

𝑥0 =
𝑚∑︁
𝑘=1

𝑟𝑘∑︁
𝑗=1

𝑐𝑘𝑗𝑒𝑘𝑗.

Тогда решение задачи (4.9) записывается в виде

𝑥(𝑡) =
𝑚∑︁
𝑘=1

𝑒𝜆𝑘𝑡
𝑟𝑘∑︁
𝑗=1

𝑐𝑘𝑗𝑒𝑘𝑗.

Теперь предположим, что в начальный момент времени точка 𝑥0 находит­

ся в некотором шаре радиуса 𝑅:

𝑚∑︁
𝑘=1

𝑟𝑘∑︁
𝑗=1

𝑥2𝑘𝑗 ⩽ 𝑅2.

Тогда задача восстановления решения в момент времени τ, τ > 0 сводится

к предыдущей для

𝑊 =

{︂
𝑥 ∈ 𝑙𝑛2 :

𝑚∑︁
𝑘=1

𝑟𝑘∑︁
𝑗=1

𝑅−2𝑥2𝑘𝑗 ⩽ 1

}︂
,

𝑇𝑥 = (𝑒𝜆1τ𝑥11, . . . ,𝑒
𝜆1τ𝑥1𝑟1, . . . ,𝑒

𝜆𝑚τ𝑥𝑚1, . . . ,𝑒
𝜆𝑚τ𝑥𝑚𝑟𝑚),

𝐼𝑥 = (𝑥11, . . . ,𝑥1𝑟1, . . . , 𝑥𝑚1, . . . ,𝑥𝑚𝑟𝑚).

Положим

𝜉𝑘 = 𝑅−1

(︂ 𝑘∑︁
𝑗=1

𝑟𝑗

(︁
𝑒(𝜆𝑗−𝜆𝑘)τ − 1

)︁)︂1/2

, 𝑘 = 1, . . . ,𝑚.

Следствие 4.3.2. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некоторых 1 ⩽ 𝑠 ⩽ 𝑚 − 1 или

1/𝛿 ∈ (𝜉𝑚,+∞) (в этом случае считаем 𝑠 = 𝑚). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

𝑒2𝜆𝑘τ𝑟𝑘

(︁
1− 𝑒(𝜆1−𝜆𝑘)τ(1− 𝑐1)

)︁)︂1/2

,

где

𝑐1 = 1−
𝛿2𝑅−2𝑒−𝜆1τ

𝑠∑︁
𝑘=1

𝑟𝑘𝑒
𝜆𝑘τ

1 + 𝛿2𝑅−2

𝑠∑︁
𝑘=1

𝑟𝑘

, (4.11)
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а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︀
𝑒𝜆𝑘τ − 𝑒𝜆1τ(1− 𝑐1)

)︀ 𝑟𝑘∑︁
𝑗=1

𝑦𝑘𝑗𝑒𝑘𝑗,

является оптимальным.

4.3.2 Восстановление решений линейных дифференциальных

уравнений по исходной информации со случайной ошибкой в

момент времени 𝑇1

Рассмотрим задачу Коши для системы линейных однородных дифферен­

циальных уравнений ⎧⎨⎩
𝑑𝑥

𝑑𝑡
= 𝐴𝑥,

𝑥(0) = 𝑥0,
(4.12)

где 𝑥(𝑡) ∈ R𝑛, 𝑡 ⩾ 0 и 𝐴 = (𝑎𝑖𝑗), 𝑎𝑖𝑗 ∈ R.
Предположим, что матрица 𝐴 является самосопряженной,

𝜆1 > 𝜆2 > . . . > 𝜆𝑛

— собственные числа матрицы 𝐴. Обозначим через {𝑒𝑗}𝑛𝑗=1 ортонормирован­

ный базис из собственных векторов, соответствующих собственным значениям

𝜆𝑗, 𝑗 = 1,...,𝑛.

Пусть

𝑥0 =
𝑛∑︁
𝑗=1

𝑥𝑗𝑒𝑗.

Тогда решение задачи (4.12) записывается в виде

𝑥(𝑡) =
𝑛∑︁
𝑗=1

𝑒𝜆𝑗𝑡𝑥𝑗𝑒𝑗.

Кроме того, считается, что в начальный момент времени 𝑥0 принадлежит неко­

торому эллипсоиду:

𝐵 =

{︂
𝑥 ∈ R𝑛 :

𝑛∑︁
𝑗=1

𝑏𝑗𝑥
2
𝑗 ⩽ 1.

}︂
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Требуется восстановить решение в момент τ, 0 < τ < 𝑇1. Если через 𝑥𝑗 обозна­

чить координаты решения в момент времени 𝑇1, то условие принадлежности

точки 𝑥0 элиипсоиду будет означать, что

𝑛∑︁
𝑗=1

𝑏𝑗𝑒
−2𝜆𝑗𝑇1𝑥2𝑗 ⩽ 1.

Таким образом, поставленная задача восстановления сводится к задаче,

рассмотренной выше, для

𝑊 =

{︂
𝑥 ∈ 𝑙𝑛2 :

𝑛∑︁
𝑗=1

ν𝑗𝑥
2
𝑗 ⩽ 1

}︂
,

где ν𝑗 = 𝑏𝑗𝑒
−2𝜆𝑗𝑇1, 𝑗 = 1,...,𝑛.

Положим для 𝑥 = (𝑥1, . . . ,𝑥𝑛) ∈ R𝑛

𝑇𝑥 = (𝑒𝜆1(𝑇1−τ)𝑥1, . . . ,𝑒
𝜆𝑛(𝑇1−τ)𝑥𝑛),

𝐼𝑥 = (𝑥1, . . . ,𝑥𝑛).

Как и в общей постановке, всякий метод восстановления сопоставляет

случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥) элемент из пространства R𝑛, принимаемый за

приближение к значению 𝑇𝑥. Для решения поставленной задачи восстановле­

ния применим теорему 4.2.1.

Обозначим

𝛾𝑗 =

√
ν𝑗

𝑒−𝜆𝑗(𝑇1−τ)
, 𝜉𝑗 =

(︂ 𝑗∑︁
𝑘=1

ν𝑘

(︂
𝛾𝑗
𝛾𝑘

− 1

)︂)︂1/2

, 𝑗 = 1, . . . ,𝑛.

Будем считать, что 𝛾1 ⩽ . . . ⩽ 𝛾𝑛.

Следствие 4.3.3. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некоторых 1 ⩽ 𝑠 ⩽ 𝑛 − 1 или

1/𝛿 ∈ (𝜉𝑛,+∞) (в этом случае считаем 𝑠 = 𝑛). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

𝑒−2𝜆𝑘(𝑇1−τ)

(︂
1− 𝛾𝑘

𝛾1
(1− 𝑐1)

)︂)︂1/2

,

где

𝑐1 = 1−
𝛿2𝛾1

𝑠∑︁
𝑘=1

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=1

ν𝑘

, (4.13)
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а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︂
(1− 𝛾𝑘

𝛾1
(1− 𝑐1)

)︂
𝑒−𝜆𝑘(𝑇1−τ)𝑦𝑘𝑒𝑘,

является оптимальным.

Рассмотрим задачу Коши для системы линейных однородных дифферен­

циальных уравнений ⎧⎨⎩
𝑑𝑥

𝑑𝑡
= 𝐴𝑥,

𝑥(0) = 𝑥0,
(4.14)

где 𝑥(𝑡) ∈ R𝑛, 𝑡 ⩾ 0 и 𝐴 = (𝑎𝑖𝑗), 𝑎𝑖𝑗 ∈ R.
Предположим, что матрица 𝐴 является самосопряженной,

𝜆1 > 𝜆2 > . . . > 𝜆𝑚

— собственные числа матрицы 𝐴 и 𝑟𝑘 — кратность собственного числа 𝜆𝑘,

𝑘 = 1, . . . ,𝑚. Обозначим через {𝑒𝑘𝑗}𝑟𝑘𝑗=1 ортонормированную систему векторов,

соответствующую собственному значению 𝜆𝑘. Тогда система векторов

𝑒11, . . . ,𝑒1𝑟1, . . . ,𝑒𝑚1, . . . ,𝑒𝑚𝑟𝑚

является ортонормированным базисом в R𝑛.

Пусть

𝑥0 =
𝑚∑︁
𝑘=1

𝑟𝑘∑︁
𝑗=1

𝑐𝑘𝑗𝑒𝑘𝑗.

Тогда решение задачи (4.14) записывается в виде

𝑥(𝑡) =
𝑚∑︁
𝑘=1

𝑒𝜆𝑘𝑡
𝑟𝑘∑︁
𝑗=1

𝑐𝑘𝑗𝑒𝑘𝑗.

Предположим, что решение задачи (4.14) известно с некоторыми случай­

ными погрешностями в момент времени 𝑡 = 𝑇1. Как и в общей постановке,

всякий метод восстановления сопоставляет случайному вектору 𝑦 ∈ 𝑌𝛿(𝑥) эле­

мент из пространства R𝑛, принимаемый за приближение к значению 𝑇𝑥. Кроме

того, считается, что в начальный момент времени ‖𝑥0‖ ⩽ 𝑅 (‖ · ‖ — евклидова

норма в R𝑛). Требуется восстановить решение в момент τ, 0 < τ < 𝑇1. Ес­

ли через 𝑥𝑘𝑗 обозначить координаты решения в момент времени 𝑇 , то условие
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‖𝑥0‖ ⩽ 𝑅 будет означать, что

𝑚∑︁
𝑘=1

𝑒−2𝜆𝑘𝑇1

𝑟𝑘∑︁
𝑗=1

𝑥2𝑘𝑗 ⩽ 𝑅2.

Таким образом, поставленная задача восстановления сводится к задаче,

рассмотренной выше, для

𝑊 =

{︂
𝑥 ∈ 𝑙𝑛2 :

𝑚∑︁
𝑘=1

𝑟𝑘∑︁
𝑗=1

ν𝑘𝑗𝑥
2
𝑘𝑗 ⩽ 1

}︂
,

где ν𝑘 = ν𝑘𝑗 = 𝑅−2𝑒−2𝜆𝑘𝑇1, 𝑘 = 1, . . . ,𝑚,

𝑇𝑥 = (𝑒−𝜆1(𝑇1−τ)𝑥11, . . . ,𝑒
−𝜆1(𝑇1−τ)𝑥1𝑟1, . . . ,𝑒

−𝜆𝑚(𝑇1−τ)𝑥𝑚1, . . . ,𝑒
−𝜆𝑚(𝑇1−τ)𝑥𝑚𝑟𝑚),

𝐼𝑥 = (𝑥11, . . . ,𝑥1𝑟1, . . . , 𝑥𝑚1, . . . ,𝑥𝑚𝑟𝑚).

Положим

𝜉𝑘 = 𝑅−1

(︂ 𝑘∑︁
𝑗=1

𝑟𝑗𝑒
−2𝜆𝑗𝑇1

(︁
𝑒(𝜆𝑗−𝜆𝑘)τ) − 1

)︁)︂1/2

, 𝑘 = 1, . . . ,𝑚.

Следствие 4.3.4. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некоторых 1 ⩽ 𝑠 ⩽ 𝑚 − 1 или

1/𝛿 ∈ (𝜉𝑚,+∞) (в этом случае считаем 𝑠 = 𝑚). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂ 𝑠∑︁
𝑘=1

𝑟𝑘𝑒
−2𝜆𝑘(𝑇1−τ)

(︁
1− 𝑒(𝜆1−𝜆𝑘)τ(1− 𝑐1)

)︁)︂1/2

,

где

𝑐1 = 1−
𝛿2𝑅−2𝑒−𝜆1τ

𝑠∑︁
𝑘=1

𝑟𝑘𝑒
(−2𝑇1+τ)𝜆𝑘

1 + 𝛿2𝑅−2

𝑠∑︁
𝑘=1

𝑟𝑘𝑒
−2𝜆𝑘𝑇1

, (4.15)

а метод

𝜙(𝑦) =
𝑠∑︁

𝑘=1

(︁
𝑒−𝜆𝑘(𝑇1−τ) − 𝑒𝜆1τ−𝜆𝑘𝑇1(1− 𝑐1)

)︁ 𝑟𝑘∑︁
𝑗=1

𝑦𝑘𝑗𝑒𝑘𝑗,

является оптимальным.
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4.4 Восстановление тригонометрических полиномов

Обозначим через 𝒯𝑛 — множество тригонометрических полиномов

𝑝𝑛(𝑡) =
𝑎0
2
+

𝑛∑︁
𝑗=1

(𝑎𝑗 cos 𝑗𝑡+ 𝑏𝑗 sin 𝑗𝑡). (4.16)

Положим

𝒯 𝑟
𝑛 = { 𝑝𝑛(·) ∈ 𝒯𝑛 : ‖𝑝(𝑟)𝑛 (·)‖𝐿2(T) ⩽ 1, 𝑟 ⩾ 1},

где T = [−𝜋,𝜋] с идентифицированными концами, а

‖𝑥(·)‖𝐿2(T) =

(︂
1

𝜋

�

T

|𝑥(𝑡)|2 𝑑𝑡
)︂1/2

.

Рассматривается задача о восстановлении 𝑘-ой производной полинома из

множества 𝒯 𝑟
𝑛 по его коэффициентам, известным со случайной ошибкой, при

0 ⩽ 𝑘 < 𝑟. Сведем эту задачу к общей задаче (4.2). Множество 𝒯 𝑟
𝑛 представляет

из себя множество полиномов (4.16), для которых

𝑛∑︁
𝑗=1

𝑗2𝑟(𝑎2𝑗 + 𝑏2𝑗) ⩽ 1.

Поэтому, положив

𝑥 = (𝑎0,𝑎1,𝑏1, . . . ,𝑎𝑛,𝑏𝑛), 𝑊 =

{︂
𝑥 ∈ R2𝑛+1 :

𝑛∑︁
𝑗=1

𝑗2𝑟(𝑎2𝑗 + 𝑏2𝑗) ⩽ 1

}︂
,

𝐼𝑥 = 𝑥, 𝑇𝑥 =

(︂
𝑎0√
2
χ𝑘,𝑎1,𝑏1, . . . ,𝑛

𝑘𝑎𝑛,𝑛
𝑘𝑏𝑛

)︂
, χ𝑘 =

⎧⎨⎩1, 𝑘 = 0,

0, 𝑘 ⩾ 1,

мы приходим к задаче (4.2). Надо отметить, что значения оператора 𝑇 пред­

ставляют из себя коэффициенты разложения по ортонормированному базису(︂
1√
2
, cos

(︂
𝑡+

𝜋𝑘

2

)︂
, sin

(︂
𝑡+

𝜋𝑘

2

)︂
, . . . , cos

(︂
𝑛𝑡+

𝜋𝑘

2

)︂
, sin

(︂
𝑛𝑡+

𝜋𝑘

2

)︂)︂
.

К поставленной задаче нельзя применить теорему 4.2.1, так как здесь

ν1 = 0. В связи с этим приходится применять модифицированный вариант этой

теоремы. Рассмотрим множество 𝑊 и оператор 𝑇 для случая, когда ν1 = 0, а

𝜇1 ⩾ 0. Введем обозначения

𝛾𝑗 =

√
ν𝑗

|𝜇𝑗|
, 𝑗 = 2, . . . ,𝑛, 𝜉𝑗 =

(︂ 𝑗∑︁
𝑘=2

ν𝑘

(︂
𝛾𝑗
𝛾𝑘

− 1

)︂)︂1/2

, 𝑗 = 2, . . . 𝑛.
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Будем считать, что 𝛾2 ⩽ . . . ⩽ 𝛾𝑛.

Теорема 4.4.1. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некотором 2 ⩽ 𝑠 ⩽ 𝑛 − 1 или

1/𝛿 ∈ (𝜉𝑛,+∞) (в этом случае считаем 𝑠 = 𝑛). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂
|𝜇1|2 +

𝑠∑︁
𝑘=2

|𝜇𝑘|2
(︂
1− 𝛾𝑘(1− 𝑐2)

𝛾2

)︂)︂1/2

,

где

𝑐2 = 1−
𝛿2𝛾2

𝑠∑︁
𝑘=2

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=2

ν𝑘

, (4.17)

а метод

𝜙(𝑦) = 𝜇1𝑦1𝑒1 +
𝑠∑︁

𝑘=2

(︂
1− 𝛾𝑘(1− 𝑐2)

𝛾2

)︂
𝜇𝑘𝑦𝑘𝑒𝑘

является оптимальным.

Доказательство. Те же рассуждения, которые использовались при оценке сни­

зу при доказательстве теоремы 4.2.1, приводят к неравенству (4.6).

При оценке сверху погрешности методов, имеющих вид

𝜙(𝑦) =
𝑛∑︁
𝑗=1

𝛼𝑗𝑦𝑗𝑒𝑗,

снова получаем равенство

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) = sup
𝑥∈𝑊

‖𝑇𝑥− 𝜙(𝐼𝑥)‖2𝑙𝑛2 + 𝛿2
𝑛∑︁
𝑗=1

|𝛼𝑗|2.

Но экстремальная задача

‖𝑇𝑥− 𝜙(𝐼𝑥)‖2𝑙𝑛2 → max , 𝑥 ∈ 𝑊

в силу того, что ν1 = 0 переписывается теперь в виде

𝑛∑︁
𝑗=1

|𝜇𝑗 − 𝛼𝑗|2|𝑥𝑗|2 → max ,
𝑛∑︁
𝑗=2

ν𝑗|𝑥𝑗|2 ⩽ 1.
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При 𝛼1 ̸= 𝜇1 значение задачи равно ∞. Поэтому в дальнейшем считаем, что

𝛼1 = 𝜇1. Из неравенства

𝑛∑︁
𝑗=2

|𝜇𝑗 − 𝛼𝑗|2|𝑥𝑗|2 =
𝑛∑︁
𝑗=2

|𝜇𝑗 − 𝛼𝑗|2

ν𝑗
ν𝑗|𝑥𝑗|2

⩽ max

{︂
|𝜇2 − 𝛼2|2

ν2
, . . . ,

|𝜇𝑛 − 𝛼𝑛|2

ν𝑛

}︂ 𝑛∑︁
𝑗=2

ν𝑗|𝑥𝑗|2

получаем

sup
𝑥∈𝑊

‖𝑇𝑥− 𝜙(𝐼𝑥)‖2𝑙𝑛2 ⩽ max

{︂
|𝜇2 − 𝛼2|2

ν1
, . . . ,

|𝜇𝑛 − 𝛼𝑛|2

ν𝑛

}︂
.

Таким образом,

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ max

{︂
|𝜇2 − 𝛼2|2

ν2
, . . . ,

|𝜇𝑛 − 𝛼𝑛|2

ν𝑛

}︂
+ 𝛿2

𝑛∑︁
𝑗=1

|𝛼𝑗|2.

Положим

𝑐𝑗 =
𝛼𝑗
𝜇𝑗
, 𝑗 = 2, . . . ,𝑛.

Тогда для погрешность метода 𝜙 имеем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ max

{︂
|1− 𝑐2|2

𝛾21
, . . . ,

|1− 𝑐𝑛|2

𝛾2𝑛

}︂
+ 𝛿2|𝜇1|2 + 𝛿2

𝑛∑︁
𝑗=2

|𝜇𝑗|2|𝑐𝑗|2.

Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некотором 2 ⩽ 𝑠 ⩽ 𝑛 − 1. Тогда нетрудно пока­

зать, что выполняются неравенства

1

𝛾𝑠+1
⩽

𝛿2
𝑠∑︁

𝑘=2

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑠∑︁

𝑘=2

ν𝑘

<
1

𝛾𝑠
.

Если определить 𝑐2 равенством (4.17), то

1

𝛾𝑠+1
⩽

1− 𝑐2
𝛾2

<
1

𝛾𝑠
.

Пусть

𝑐𝑘 = 1− 𝛾𝑘
1− 𝑐2
𝛾2

, 𝑘 = 3, . . . ,𝑠, 𝑐𝑘 = 0, 𝑘 = 𝑠+ 1, . . . ,𝑛.
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Имеем
(1− 𝑐𝑘)

2

𝛾2𝑘
=

(1− 𝑐2)
2

𝛾22
, 𝑘 = 3, . . . ,𝑠.

При 𝑘 ⩾ 𝑠+ 1
(1− 𝑐𝑘)

2

𝛾2𝑘
=

1

𝛾2𝑘
⩽

1

𝛾2𝑠+1

⩽
(1− 𝑐2)

2

𝛾22
.

Поэтому

max

{︂
|1− 𝑐2|2

𝛾22
, . . . ,

|1− 𝑐𝑛|2

𝛾2𝑛

}︂
=

(1− 𝑐2)
2

𝛾22
. (4.18)

Следовательно,

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽
(1− 𝑐2)

2

𝛾22
+ 𝛿2|𝜇1|2 + 𝛿2

𝑠∑︁
𝑘=2

|𝜇𝑘|2𝑐2𝑘.

Используя преобразования, аналогичные (4.8), получаем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ 𝛿2|𝜇1|2 + 𝛿2
𝑠∑︁

𝑘=2

|𝜇𝑘|2𝑐𝑘.

Рассмотрим вектор ̂︀τ ∈ 𝑙𝑛2 , имеющий вид

̂︀τ1 = τ1, ̂︀τ2𝑘 = 𝛿2
(︂

𝛾2
(1− 𝑐2)𝛾𝑘

− 1

)︂
, 𝑘 = 2, . . . ,𝑠, ̂︀τ𝑘 = 0, 𝑘 = 𝑠+ 1, . . . ,𝑛.

Имеем

𝑛∑︁
𝑘=2

ν𝑘̂︀τ2𝑘 = 𝛿2
𝑠∑︁

𝑘=2

ν𝑘

(︂
𝛾2

(1− 𝑐2)𝛾𝑘
− 1

)︂
=

𝛿2𝛾2
1− 𝑐2

𝑠∑︁
𝑘=2

ν𝑘

𝛾𝑘
− 𝛿2

𝑠∑︁
𝑘=2

ν𝑘 =

=

(︂
1 + 𝛿2

𝑠∑︁
𝑘=2

ν𝑘

)︂
− 𝛿2

𝑠∑︁
𝑘=2

ν𝑘 = 1.

Таким образом, ̂︀τ ∈ 𝑊 . Подставляя ̂︀τ (при τ1 ⩾ ̂︀τ2) в оценку (4.6), получаем
𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾

𝑠∑︁
𝑘=1

𝛿2|𝜇𝑘|2̂︀τ2𝑘
𝛿2 + ̂︀τ2𝑘 =

𝛿2|𝜇1|2τ21
𝛿2 + τ21

+
𝑠∑︁

𝑘=2

𝛿4|𝜇𝑘|2
(︂

𝛾2
(1− 𝑐2)𝛾𝑘

− 1

)︂
𝛿2

𝛾2
(1− 𝑐2)𝛾𝑘

=

=
𝛿2|𝜇1|2τ21
𝛿2 + τ21

+ 𝛿2
𝑠∑︁

𝑘=2

|𝜇𝑘|2
(︂
1− (1− 𝑐2)𝛾𝑘

𝛾2

)︂
=
𝛿2|𝜇1|2τ21
𝛿2 + τ21

+ 𝛿2
𝑠∑︁

𝑘=1

|𝜇𝑘|2𝑐𝑘.

Устремляя τ1 к бесконечности, получаем

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾ 𝛿2|𝜇1|2 + 𝛿2
𝑠∑︁

𝑘=1

|𝜇𝑘|2𝑐𝑘 ⩾ 𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙).
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Отсюда следует, что метод 𝜙 является оптимальным.

Пусть теперь 1/𝛿 > 𝜉𝑛. Тогда

𝛿2
𝑛∑︁
𝑘=2

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑛∑︁
𝑘=2

ν𝑘

<
1

𝛾𝑛
.

Положим

𝑐2 = 1− 𝛾2

𝛿2
𝑛∑︁
𝑘=2

ν𝑘

𝛾𝑘

1 + 𝛿2
𝑛∑︁
𝑘=2

ν𝑘

.

Тогда
1− 𝑐2
𝛾2

<
1

𝛾𝑛
.

Пусть

𝑐𝑘 = 1− 𝛾𝑘
1− 𝑐2
𝛾2

, 𝑘 = 3, . . . ,𝑛.

Имеем
(1− 𝑐𝑘)

2

𝛾2𝑘
=

(1− 𝑐2)
2

𝛾22
, 𝑘 = 3, . . . ,𝑛.

Тем самым, как и в предыдущем случае, справедливо равенство (4.18). Исполь­

зуя преобразования, аналогичные (4.8) для 𝑠 = 𝑛, получаем

𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙) ⩽ 𝛿2|𝜇1|2 + 𝛿2
𝑛∑︁
𝑘=2

|𝜇𝑘|2𝑐𝑘.

Рассмотрим вектор ̂︀τ ∈ 𝑙𝑛2 , имеющий вид

̂︀τ1 = τ1, ̂︀τ2𝑘 = 𝛿2
(︂

𝛾2
(1− 𝑐2)𝛾𝑘

− 1

)︂
, 𝑘 = 2, . . . ,𝑛.

Имеем

𝑛∑︁
𝑘=2

ν𝑘̂︀τ2𝑘 = 𝛿2
𝑛∑︁
𝑘=2

ν𝑘

(︂
𝛾2

(1− 𝑐2)𝛾𝑘
− 1

)︂
=

𝛿2𝛾2
1− 𝑐2

𝑛∑︁
𝑘=2

ν𝑘

𝛾𝑘
− 𝛿2

𝑛∑︁
𝑘=2

ν𝑘

=

(︂
1 + 𝛿2

𝑛∑︁
𝑘=2

ν𝑘

)︂
− 𝛿2

𝑛∑︁
𝑘=2

ν𝑘 = 1.
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Таким образом, ̂︀τ ∈ 𝑊 . Подставляя ̂︀τ (при τ1 ⩾ ̂︀τ2) в оценку (4.6), получаем
𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾

𝑛∑︁
𝑘=1

𝛿2|𝜇𝑘|2̂︀τ2𝑘
𝛿2 + ̂︀τ2𝑘 =

𝛿2|𝜇1|2τ21
𝛿2 + τ21

+
𝑛∑︁
𝑘=2

𝛿4|𝜇𝑘|2
(︂

𝛾2
(1− 𝑐2)𝛾𝑘

− 1

)︂
𝛿2

𝛾2
(1− 𝑐2)𝛾𝑘

=
𝛿2|𝜇1|2τ21
𝛿2 + τ21

+ 𝛿2
𝑛∑︁
𝑘=2

|𝜇𝑘|2
(︂
1− (1− 𝑐2)𝛾𝑘

𝛾2

)︂
=
𝛿2|𝜇1|2τ21
𝛿2 + τ21

+ 𝛿2
𝑛∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘.

Устремляя τ1 к бесконечности, получаем

𝐸2(𝑇,𝑊,𝐼,𝛿) ⩾ 𝛿2|𝜇1|2 + 𝛿2
𝑛∑︁
𝑘=1

|𝜇𝑘|2𝑐𝑘 ⩾ 𝑒2(𝑇,𝑊,𝐼,𝛿,𝜙).

Отсюда следует, что метод 𝜙 является оптимальным.

Применим полученную теорему для решения поставленной задачи. Обо­

значим

𝜉𝑗 =

(︂
2

𝑗∑︁
𝑙=2

(𝑙 − 1)𝑟+𝑘((𝑗 − 1)𝑟−𝑘 − (𝑙 − 1)𝑟−𝑘)

)︂1/2

, 𝑗 = 2, . . . 𝑛+ 1.

Следствие 4.4.1. Пусть 1/𝛿 ∈ (𝜉𝑠,𝜉𝑠+1] при некотором 2 ⩽ 𝑠 ⩽ 𝑛 или 1/𝛿 ∈
(𝜉𝑛+1,+∞) (в этом случае считаем 𝑠 = 𝑛+ 1). Тогда

𝐸(𝑇,𝑊,𝐼,𝛿) = 𝛿

(︂
χ2
𝑘

2
+ 2

𝑠∑︁
𝑙=2

(︀
(𝑙 − 1)2𝑘 − (𝑙 − 1)𝑟+𝑘(1− 𝑐2)

)︀)︂1/2

,

где

𝑐2 = 1−
2𝛿2

𝑠∑︁
𝑙=2

(𝑙 − 1)𝑟+𝑘

1 + 2𝛿2
𝑠∑︁
𝑙=2

(𝑙 − 1)2𝑟
, (4.19)

а метод

𝜙(𝑦) =
𝑎0√
2
χ𝑘 +

𝑠∑︁
𝑙=2

(︀
1− (𝑙 − 1)𝑟−𝑘(1− 𝑐2)

)︀
×

×
(︂
(𝑙 − 1)𝑘𝑎̃𝑙−1𝑐𝑜𝑠

(︂
(𝑙 − 1)𝑡+

𝜋𝑘

2

)︂
+ (𝑙 − 1)𝑘𝑏̃𝑙−1𝑠𝑖𝑛

(︂
(𝑙 − 1)𝑡+

𝜋𝑘

2

)︂)︂
является оптимальным, где 𝑦 = (𝑎̃0, 𝑎̃1, 𝑏̃1, . . . , 𝑎̃𝑛, 𝑏̃𝑛).
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Заключение

Основные результаты работы заключаются в следующем.

1. Доказано достаточное условие управляемости нелинейных дифферен­

циальных систем треугольного вида в задаче со сменой фазового

пространства.

2. Доказано достаточное условие управляемости системы со сменой фа­

зового пространства в случае, когда правые части дифференциальных

включений являются вогнутыми отображениями.

3. Доказано достаточное условие управляемости задачи со сменой фа­

зового пространства в случае, когда нелинейная система в первом

пространстве является системой треугольного вида, а нелинейная си­

стема во втором пространстве является локально нуль-управляемой.

4. Доказаны теоремы об оптимальном восстановлении линейного опера­

тора и решения линейной системы обыкновенных дифференциальных

уравнений по исходной информации, известной со случайной ошибкой.

В заключение автор выражает глубокую благодарность и большую при­

знательность научному руководителю Осипенко Константину Юрьевичу за

постановку задачи, поддержку и внимание к работе, а также Розовой Валентине

Николаевне за переданное педагогическое мастерство, веру в своего ученика

и поддержку.
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