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GIVEN WITH AN ERROR

G. G. MAGARIL-IL’YAEV, K. YU. OSIPENKO

ABSTRACT. In the paper the problems of optimal recovery of func-
tions and their derivatives from inaccurate values of Fourier coeffi-
cients are considered. The explicit expressions of optimal recovery
methods for classes of smooth and analytic functions defined on
varies compact manifolds are given.

1. STATEMENT OF THE PROBLEM

We begin with the general statement of the optimal recovery prob-
lem. Let X be a linear space, Z a normed space, and T: X — Z a
linear operator. It is required to recover values of T on the set (class)
W C X from some information about elements from this class. More
precisely, for every element @ € W we have the information [(x) where
I is some mapping (which is called information) from W to a linear
space Y. An information about elements from W may be given inac-
curately and therefore I, in general, is a multi-valued mapping.

Every mapping ¢: Y — Z is admitted as a recovery method. The
quantity

e(T,W,1,0)= sup [T —o(y)llz

zeW
yel(x)
is called the error of such method. The quantity
0 BLW, D= b o(T,W,1,9)
p: Y27

is called the error of optimal recovery and a method for which the
infimum is attained is said to be an optimal method of recovery (of the
operator 1" on the class W from the information I).

In the paper we study the situation when X is some subspace of
functions from Ly(M) where M is a compact manifold (for example, a
circle, d-dimensional sphere, disk in the complex plane), W C X is a
class of functions such that in particular cases it coincides with several
classes of smooth and analytic functions (for example, the Sobolev,
Hardy—Sobolev, Bergman—Sobolev classes), T: X — M is a multipli-
cator type operator which, in particular, is a differential operator, and
the information about x(-) € W is in the fact that we know all or a

This research was carried out with the financial support of the Russian Founda-
tion for Basic Research (grant nos. 99-01-01181 and 00-15-96109).
1



2 G. G. MAGARIL-I’YAEV, K. YU. OSIPENKO

finite number of Fourier coefficients of the function x(-) with some error
(in one or another metric).

When [ is a linear operator (that is, the information is given ex-
plicitly) the problem of optimal recovery of linear operator in Hilbert
spaces was studied in [1]. In the case when the information mapping
I with range of values in a Hilbert space is the sum of linear opera-
tor and a ball with some radius (defined an error) the corresponding
problem was considered in [2] (see also [3]-[5]). In [2] it is proved, in
particular, that there exists a linear method among optimal methods of
recovery and some algorithm for its finding was proposed. We do not
use this result. Our approach is based on standard principles of convex
optimization which are a natural tool for solving of such kind problems
(see [6]-[8] for solving of recovery problems of linear functionals from
general positions of extremum theory). Such approach allows to obtain
explicit expressions for optimal methods of recovery also for those cases
when the error of information operator is given in the uniform metric.

In this paper, first, the recovery problems for classes of functions
defined on a circle are considered in detail. We prove results of rather
general type and derive corollaries from them for various classes of
smooth and analytic functions. An insignificant modification of these
results allows to obtain analogous assertions for classes of functions
defined on other manifolds which is illustrated for classes of functions
defined on the d-dimensional sphere and unit disk of the complex plane.
The list of similar examples may be continued.

We go on to the explicit description of the class W, operator T', and
information mappings [ in the case when M = T. Let x(-) be from the
space Lo(T) with the norm

HII?(-)HLQ(T) = (%/Tw(mzdt)l/z

1

and

x(tye N dt, j e,

Ly

are the Fourier coefficients of x(-). Let v = {v;};ez be a sequence of
nonnegative numbers. We associate with v the following subspace in

Ly(T)
X =X"(T)= {:1;() € Ly(T): Zl/]‘|$]‘|2 < oo}
JEL
and the corresponding class
W = W*(T) = {x(-) eX:Y ylef <1 }
JEL

Let us give the examples of such type classes. First of all it is the

Sobolev class W (T) consisting of 2r-periodic functions x(-) for which
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the (r — 1)-st derivative is absolutely continuous and H:I;(”)(-)HLZ)(T) <1.
Putting

X = {x(-) € Lo(T): Y 7o) < oo}
JEL
by Plancherel’s theorem we get the equivalent definition of the Sobolev
class

Wi ={a()e X3 ¥l <1},
JEL
Thus, W5 (T) = W¥(T) where v = {j*" }ez.
Denote by H@(T) the Hardy space of 2m-periodic functions z(-) ana-

lytically extended in the strip Sz = {z € C: Imz| < 8} and satisfying
the condition

1 . . 1/2
(o, = sup (4— [ (eta i)+ 1ot — i) dt> .
2 T T

0<p<f

The Bergman space Ag(T) is the set of 2m-periodic functions x(-)
analytically extended in the strip Sz and satisfying the condition

1 8 1/2
x(- =|-— dt/ x(t+1p 2d,o) < 0.
ez = (325 [t [ttt o

The Hardy-Sobolev classes H;’ﬁ(T) and Bergman-Sobolev classes

A;’ﬁ(T) are defined as the sets of 2r-periodic functions x(-) analytically
extended in the strip Sz and satisfying the condition HJ?(T)(')H%/B(T) <1
2

and H:I;(T)(-)HAés(T) < 1, respectively.

Functions from the Hardy space Hg(T) have boundary values almost
everywhere and the space H@(T) is a Hilbert space with the inner
product

GOt = g [ (ol + 0T T 4 (e = it =737 .

The Bergman space Ag(T) is also a Hilbert space with the inner prod-
uct

g
LD = g5 [ [+ o) dp

The system of functions {¢""},c7 forms an orthogonal basis in the
spaces H5(T) and AJ(T), moreover

cosh2j5, W :H§(T),
HGZJH%V = 13 Lo ﬁ W= Ag(T)v .] = 07
sin
: = AJ(T), j #0

28
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Thus, 2(-) € W = W;(T),H;’ﬁ(T),A;’ﬁ(T) if and only if

x(t) = Z :L'jeiﬁ

JEL
and
D (W) < 1,
JEL
where
3, W =Ww3(T),
_ ) j*cosh2j3, W = Hy"(T),
vi(W) = J,zrsinhQJJg 2 (T)

_ AP

In this case the spaces X are considered as the spaces
X = X" = {x(.) € Lo(T): Y vy(W)la, [ < o }
JEL

The multiplicator type operators T: X — Ly(T) which we study
here are defined as follows: if y(-) = Tx(-) and {x;};ez, {y;}jez are the
Fourier coefficients of #(-) and y(-), respectively, then y; = v;z;, 7 € Z,
where {7, };ez is some sequence of numbers. For example, it is clear
that the sequence v; = (ij)", j € Z, corresponds to the differential
operator of order k > 0.

Finally let us describe information mappings which will be consider.

1. The information [x(-) = Isx(-) about a function z(-) € W is in
the fact that we have available the numbers {y; };cz such that

> ey —y* <8

J€Z
where {x,};ez are the Fourier coefficients of z(-) and 6 > 0. Formally
it means that if

Y=1l= {Z = {z}iez: Iz}, = D 1) < o0 }7
JEL
F: X — Y is a linear operator such that Fu(-) = {x;};ez, and BY is
the unit ball of YV, then Isx(-) = Fua(-) + dBY.

2. The information [z(-) = I[N T2 (-) about a function x(-) € W is
in the fact that we have available the numbers {y;};<n such that

Z |$]‘ - yj|2 < 527
l71<N

where {z;}|;<nv are the first 2NV 4 1 Fourier coefficients of () and
6 > 0. In this case [§N+1x(-) = Fua(-) + 0BY, where

Y = l%N-I-l = {Z = {ZJ}MSN : HZH%NH = Z |Z]‘|2 }7

iI<N
Fa() = {z}j<n-



OPTIMAL RECOVERY OF FUNCTIONS AND DERIVATIVES 5

3. The information [x(-) = [;N-Hl'(') about a function () € W
is in the fact that we have available the numbers {y;}j<n such that
lz; — y;| < 6;, |7] < N, where {z;}j<n are the first 2N 4 1 Fourier
coeflicients of x(-), § = {;}jj<n, and §; > 0, [j| < N. If

Y =12 = {Z = {2 }jj1<n ¢ 2]l 2 = sup [2] }7
iI<N

Fa(-) = {x;}<n, and
2) BO) = {=={=hien : J5| 85, il < N |,
then [;N-Hl'(') = Fua(-) + B(X)

With some assumptions about the sequence v = {v;};ez defined the
class W and the sequence v = {~,},cz defined the operator T" we find
the error of optimal recovery and optimal recovery method for T on the
class W for the all enumerated information mappings. As corollaries
we formulate the corresponding assertions for a number of concrete
classes of smooth and analytic functions.

2. STATEMENT OF MAIN RESULTS

Let there be given the sequences v = {v;};ez and v = {~,};ez. Set
w; = |v; %, 7 € Z. We shall assume the following conditions are fulfilled:
1) {pj}jez and {v;}jez are even sequences (that is, p; = p—; and
vi=v_j, ] €7Z)and puy =1y = 0;
2) {u;}ien, {l/j/,cj_l}jeN are positive increasing sequences and v; — oo
as j — oo;
3) for all Ay, Az > 0 the sequence {—y; + Ay + Ay }jez, has at most
two sign changes (with changing of zero terms by arbitrary values

+1).

2.1. Recovery from inaccurate information of Fourier coeffi-
cients in /;-metric. The problem (1) in this case is written as follows

3)  E(T,W,I5) = inf sup  [[T2(+) — o))l o),
@: lo—Lo(T) o()EW, yel
(1F%(-) =yl <6

where Fa(-) = {x;};ez are the Fourier coefficients of x(-).

Theorem 1. Let {y;};ez and {v;};ez be sequences satisfying the con-
ditions 1)-3) and T with W are the corresponding operator and class.
Then

m §> v\

) - )
141

E(T, W, I5) = —— )
( ) \/52M5+(1—52VS)M, v <8<t
Vsy1 — Vs

s > 1.
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Moreover, the method

1
~ ,us - ,us 77
P => v (1 +vj v ) yje”

,usVs—I—l - ,us—l—lys

is oplimal Zfl/s__l_ll/2 <o < 1/5_1/2, s>1,and if 6 > 1/1_1/2, then ¢(y)(+) =
0 is an optimal method.

Let us apply Theorem 1 to the optimal recovery problem of the k-th
derivative (the corresponding operator we denote by D*) of a function
from the class W = W, (T), H;’ﬁ(T), A;’ﬁ(T) by the information [s. It
is easy to verify that in this case the conditions 1)-3) are fulfilled for
v; = vj(W) and u; = j* (the last of these conditions follows from
the fact that for all Ay, Ay > 0 the sequence {(A; + )\QI/j(W))ILLj_l}]’GN is

convex, that is, its second difference is nonnegative). Thus we have

Corollary 1. For the optimal recovery error of the k-th derivative of
a function from the class W = W;(T),H;’ﬁ(T),A;’ﬁ(T) by the infor-
mation Is the following equality holds:

B(D* W, Is) = v /2(W)

for o > VI_I/Z(W) and

(S + 1)2k o 82k
Vs (W) — v5(W)

E(D* W, I5) = \/525% + (1 — 820, (W)

for l/s__l_ll/z(W) <o < 1/5_1/2(W), s > 1. Moreover, the method

~ N i k U (S+1)2k—82k - 462']‘.
P = i) (1) S )

. S Vs—l—l
l71>1

is optimal if l/s__l_ll/z(W) <4< I/S_I/Z(W), s>1, and if § > VI_I/Z(W),
then @(y)(-) = 0 is an optimal method.

For recovery of functions themselves (k = 0) from classes W =

Wi (T), Hy"(T), A°(T) the following result holds:
(4) E(d, W, I5) =4,

where Id is the identity operator, and
(5) P)() = ye
JEL

is an optimal method.
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2.2. Recovery from inaccurate information of Fourier coeffi-
cients in [V "'-metric. In this case the problem (1) has the form:

BTW, N = sip T () = () oy
@il T =La(T) p()ew, yel2Vt!
||Fl’(')—l/||l§N+1 <6

where Fa(-) = {x;}jj<n are the first 2N 41 Fourier coefficients of z(-).
Theorem 2. Let the conditions of Theorem 1 be fulfilled. Set

(6) SOZSO(N):miH{SEN:MS-H_MS</“LN+1}‘

Vsy1 — Vs~ UNt1
Then for 6 > 1/5_01/2
E(T, W, ENYY = B(T, W, 1)
and the method

1
o~ ,us _,us 7.
P = > (1 +v; = ) yj€e”

|]|<N ,usVs—I—l - ,us—l—lys

is optimal Zfl/s__l_ll/2 <0< 1/5_1/2, 1 <s<sg—1, and if 6 > 1/1_1/2, then
P(y)(+) = 0 is an optimal method. For 0 < < 1/5_01/2

E(T, W, 3N = \/ 82ty + (1 — 620, ) ENEL

VN1

and

P =Y v (1 + vj HN+1 >_1 gy

|]|SN MSOVN+1 - MN+1VSO
is an optimal method.
It is easy to see that for M > N
E(Tv W7 [(?N-H) > E(Tv W7 [(?M-H) > E(Tv W7 [5)

Therefore it follows from Theorem 2 that for 6 > oy = 1/5_01/ ? the
extension of number of Fourier coefficients knowing with the same error
0 does not lead to decrease of optimal recovery error.

Thus for a fixed level of error 4 the minimal number of the first
Fourier coefficients (without taking into account the zero coefficient
since in view of the condition pg = 0 it is not used in the optimal
method) which we have to know for maximal precise recovery of the
operator T equals 2Ny where

No=min{ N e N: oy <4 }.

By the obvious way the analogue of Corollary 1 for the problem
of recovery of the k-th derivative of a function from the class W =
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Wi(T), H;’ﬁ(T), A;’ﬁ(T) by the information 7Y™ may be formulated.

As to recovery of functions themselves the following result is valid:
E(1d, W, [N = /82 + vk (W)

and

is an optimal method.

2.3. Recovery from inaccurate information of Fourier coeffi-
cients in the uniform metric. In this case the problem (1) is written
as follows:

E(TW, ¥ = uf wp T = o)l
@ M 2 Lo (T) () ew, yei2+!
Fa(-)-yeB(9)

where F'z(-) = {x;};<n are the first 2N + 1 Fourier coefficients of x(-)
and B(9) is the parallelepiped defined by (2).

Theorem 3. Let pj,v; > 0, 5 € N, {z/j/,cj_l}jeN be an increasing se-
quence, vg =0, {p;}jez and {v;}jez be even sequences, and T with W
be the corresponding operator and class. Set

pozpo(g):maX{p€Z+:ZV]‘(S]Z<1, nggN}.

l71<p
Then
E T W [2N+1 _ /’Lp0+1 Mpo-l—l 52
( 2 9 5 ) I/p +1 —I_ Z I/p +1 7
0 l71<po 0

moreover, the method

o+1V, i-
P =m0+ Y %( M“”)yﬂ]

Vpo+1
1<il<po Po+1fh
is optimal.

This theorem is also applied to the problem of optimal recovery of
functions and their derivatives from the classes W = W3 (T), Hy"(T),
A;’ﬁ(T) by the information [;N'H. As previously in this case for the

statement of the corresponding result one must put in Theorem 3 p; =
jzkv vy = V](W)v JEZL.
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3. PROOFS

Before the direct proof of the formulated above theorems we note
two assertions of general nature and then describe the scheme by which
these theorems will be proved.

Lemma 1. Let in the problem (1)
grl={(z,y) e X xY:zeW, yel(z)}
be a convex centrally symmetric set. Then

E(T,W,[)Z sup HTtzv
zeW
xeI~1(0)
where [7H0)={x e W:0€ I(x)}.
Proof. For any method ¢ for all # € W such that x € I7!(0) we have
20Tz < ITx = (0)]lz + T (=) = p(0)][z < 2e(T, W, [, ).
Consequently, for any method ¢

e(T,W.1,0)> sup |Tz|z
zeW
zel~1(0)

from which the estimate being proved immediately follows. O
Lemma 2. Let X, Y, Z, W, T, and [ be the same as in the prob-
lem (1), Yo be a linear space with the semi-inner product (-,-)y, and
corresponding semi-norm || - ||yv,, lo: X — Yo, S:Y — Yy be linear
operators, and

grl C{(x,y) € X xY :|[lox — Sy|ly, < 1}.

Let 0. Y — X be the mapping which associates with y € Y a solution
of the extremal problem

(7) || lox — SyH%O — min, x € X.
Then for the error of the method @ = T o 1) the following estimate
e(T,W.1,2) < sup [Tz

[[Hoz|ly, <1
holds

Proof. 1t is easy to verify that in order that @ € X be a solution of (7)
it is necessary and sufficient that the relation

(8) ([03/'\ — Sy, ]0$)YO =0 Vz € X

holds. Let (x,y) € gr[l (that is, x € W and y € I(x)), then by the
assumption || lox — Sy|ly, < 1. Since t(y) is a solution of (7), (8) is
fulfilled (changing = by ¢ (y)) and therefore

1oz = Sylly, = oz — Lo(())l3, + o((y)) = Sylly;.-
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Consequently,
[ o(x = & (y))llv, < [[Lox = Sylly, <1
and hence
[Te=2W)llz = Tz=TW W)z = [T(x=dW)llz < sup |[Th]z.

[[Zoh|]v, <1

O

The further scheme of the proof of theorems is the following. The
lower bound (Lemma 1) and upper bound (Lemma 2) for the error
of optimal recovery are values of extremal problems. In view of defi-
nitions of the class W and operator T' these problems are reduced to
convex programming problems. Using standard methods of convex op-
timization we find the value of the problem corresponding to the lower
estimate and show that it coincides with the value of the problem cor-
responding to the upper bound for some Yy, Iy, and S. In view of
Lemmas 1 and 2 it means that this value is the error of optimal recov-
ery and the method from Lemma 2 is an optimal method of recovery
(in addition it appears that it is linear).

Proof of Theorem 1. 1. The lower bound. According to Lemma 1 and
(3) we have to find a solution of the following problem

(9) 172 (Vs = max, [Fe()ll, <3, () € W.

Going over to Fourier transforms by virtue of Parseval equality and
definitions of operator T and class W we obtain that this problem
(changing || T2 (-)|| z,(r) by ||T=(-) ]\%2@)) may be written in the following
way

(10) Y pylalP = max, D |aP <67 ) wlat <L

JEL JEL JEZ
Setting u; = |z;|*, j € Z, we rewrite the problem (10) in the form
(11) Z/,Ljuj — max, Zuj <42, Zl/]‘u]‘ <1, u; >0.

JEL JEL JEZ
It is a problem of convex (even linear) programming. Associate with it
the Lagrange function (u = {u;};ez)

L= ’C(uv )‘07 )‘17 )‘2) = Z()‘O/“L] + A+ )‘QV])ujv
JEL

where A\g < 0, Ay, Ay > 0 are Lagrange multipliers. According to Kuhn-
Tucker’s theorem if & = {u, } ez is a solution of the problem (11), then

there exist such Lagrange multipliers A\g < 0, A, Ay > 0, not all equal
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zero that the conditions

(a)  min£(u, Xos Ay Az) = L(T, Aoy A,y Aa)s

(Zu]—52> =0, (Zl/]u] ) =0
€L
hold. If for an admissible sequence in (11) w = {u;};ez the conditions

(a) and (b) are fulfilled with Xo < 0, then @ is a solution of the problem
(11).

The last assertion may be easily verified. Indeed, let v = {u;};ez is
an admissible sequence in (11). Then taking into account (a) and (b)
we have

Ao Z/“‘fuf > Xo Zﬂjuj + X (Z wj — 52) + X (Z Vit = 1)

JEL JEL JEL JEL
(a) b) > ~
23 Z,,L]u]Hl(Zu]_(s ) m(z%_l) O3, 3 i,
JEZL JEZL JEZL JEZ

that is, & = {u;};ez is a solution of the problem (11).
Now we present such Ay, A, > 0 and an admissible sequence u =

{u;};ez for which the conditions (a) and (b) are fulfilled with Xo = —1.
Then by proved above @ is a solution of the problem (11). The form of
)\1, )\2, and u follows from the analys1s of relations («a) and (b). Indeed,
the sequence f; = —p;+ )\1 + )\21/], J € Z, have to be nonnegative and a
solution have to be concentrated at the zeros of { f;},;cz. In view of the
condition on sign changes of this sequence (the condition 3)) positive
zeros of { f;},ez may be followed only in succession. These observations

make possible to present corresponding 3\\1, 3\\2, and .

First let 0 < & < v; /*. Since v; — 00 as j — oo there exists s > 1
for which 1/5__|_11/2 <éd<wvs 12 . Let us find A; and A, from the condition

fs = fsx1 = 0. Then we obtam
(12) /)\\1 _ HsVst1 — Hs+1Vs /)\\2 _ Hst1 — [s

9
Vs—l—l — Vs Vs—l—l — Vs

From assumptions about sequences {M] tiez and {v;};ez it follows that

)\1,)\2 > (0. With obtained )\1 and )\2 the sequence {f;};ez is non-
negative by virtue of the condition on sign changes of this sequence.
Now we find the sequence u from the condition that it concentrates
at the points s and s + 1 and the conditions (b) are fulfilled, that is,
Us + Usyr = 6% and vyu, + Vo 1usr; = 1. Hence we obtain that
N Py —1 1 — 8%,
(13) U, = —+ Uy = —————
Vgy1 — Vs Vsy1 — Vs
(us > 0, Usy1 > 0 by virtue of the condition on §). Set u; = 0 for
J # 8,8+ 1. Thus u is an admissible sequence. The conditions (@) and
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(b) are fulfilled with the obtained 5\\1,/):2, u for /)\\0 = —1 and therefore u
is a solution of the problem (11).

Now let 6 > 1/1_1/2. Set A; = 0, Ay = pavyt. Then f; = 0 for 5] <1
and f; > 0 for |j| > 2. Set @y = v;' and W; = 0 for j # 1. Since
uy = vy < 6% Uis an admissible sequence. The conditions (a) and (b)
are obviously fulfilled with /)\\0 = —1 and consequently, @ is a solution
of the problem (11).

Thus a solution of the problem (11) is found for all § > 0, and
that means that we found a solution of the problems (10) and (9).
Substituting @ in the maximizing functional in (11) and extracting
square root, we obtain the value of the problem (9) which gives the
lower bound for the error of optimal recovery

s 5> vy,

141

Sy + (1 — St e ol 5 o T2
Vs—l—l — Vs

E(T,W, 1) > \/

s > 1.

2. The upper bound. For the obtained above /)\\1 and 3\\2 put N =
A6% 4 Ay and @ = A\y(A6% 4 A2)7t. For the obtained solution @ of (11)

the condition (a) may be rewritten in the form (with Do = —1)
@) i3+ @),
je

= (—p + ML= )62 + Gy) ).

JEL
Furthermore, it is easy to verify that the relation
(b)) (1—@) ) @ +a) v =1
JEL JEL

holds. By the same arguments as above these conditions are sufficient
for u to be a solution of the problem

(14) Z/,Ljuj — max, (1-— &)5_22uj + &Zl/juj <1, wu; >0.
JEL JEL JEZL

Thus the values of the problems (11) and (14) coincide.
We show that the problem from Lemma 2 may be reduced to the
problem (14). Indeed, let Yy =[5 x [¥ where

V= {z ={z;}ien: ZV]‘|Z]‘|2 < 00 }

JEZ
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Define the semi-inner product on Y;
((2,2), (@, vy = (1= Q)52 @+ 0y 127,
JEL JEL
Let the operator [o: X — Yy be defined by the equality lpz(-) =

(Fa(-), Fa(-)) and S: ly — Yy be defined by the equality Sy = (y,0).
If (-) € W and || Fa(-) — yl|li, <4, that is,

D owilelP <1, ) g < 8
Je€Z JEL
then obviously
oz (-) = Sylly, = (1= @)D faj—yP+a ) vl < 1.
JEZ JEZ
According to Lemma 2 the squared value of the optimal recovery error
does not exceed the value of the problem

T2 ( |7, (ry — max, [ Lox()]3, <1

which becomes exactly the problem (14) after transition to Fourier
coefficients (by the Parseval equality) in the maximizing functional
and changing |z;|* by u; .

3. Optimal method. It follows from Lemma 2 that an optimal
method has the form @ = T o1 where Fourier coefficients {¢;};ez
of the function ¢ = ¥(y) are solutions of the extremal problem

(L=a)6 ) | —yl*+a@ ) wjlajl” = min, () € X.
JEZ JEZ
It is easy to see that
(1—a)s?
(l—a)i—2+4+a

= ., ) EL.
¢J ijjv J

Substituting the expression for @ we obtain the required result. O

The lower bound in (4) follows immediately from Lemma 1 and the
optimality of the method (5) is verified directly.

Proof of Theorem 2. First of all, we note that the definition of the num-
ber s by the equality (6) is well-defined since from the increase of the
sequence {l/j/,cj_l}jeN follows the inequality

MUN+1 — UN < MN+1
UNy1 —UN ~ UN41

Thus 1 <sg < N.
We turn our attention only to the solution of the extremal problem

(15) T2 ()lzary = max,  [[Fa()][gver <6, w() € W,
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because all other arguments largely repeat the proof of Theorem 1. Go-
ing over to Fourier coefficients and denoting the square of their moduli
by u; we arrive at the equivalent problem

(16) Z/,Ljuj — max, Z u; < 8% Zl/]‘u]‘ <1, wu; >0.
JEL l7|1<N JEL

To solve this problem (just as to solve the problem (11)) it suffices to

present such )\1, )\2 > 0 and an admissible sequence {u;};ez for which
for all u; >0, j € Z,

(a2) 3 (= + MG+ devi)u; = (=g + Mixg + Aoy ).

JEZ JEZ

where
o fuuew
P00, il >N,

and moreover,
x(Z aj_52> 0, g(zwaj_l) 0.
l71<N JEZ
1/2

Let v, " <4< 1/5_1/2 and 1 < s < 35 — 1. Define 3\\1 and /)\\2 from
the conditions

— s + }\\1 + }\\21/5 = 07
—fsy1 + /)\\1 + 3\\21/54-1 = 0.

Then for /)\\1 n /)\\2 the equalities (12) are fulfilled from which it follows
that Ay, A2 > 0. In view of the fact that the sequence {—p; + A +
A2Vj}ien, has at most two sign changes we obtain

—i 4 A+ A >0, JjI <N

From the increase of the sequence {l/j/,cj_l}jeN and the fact that s < s
for j > N 4+ 1 we have

j N+1 1 — N
Hy < HN+ < Hs+ Hs — X,
Vj UN41 Vsy1 — Vs

Hence —pu; + /)\\21/]‘ > 0 for |j| > N 4 1. Defining u, and us1; by the
equalities (13) and putting u; = 0, j # s,s+ 1, we obtain that {u;};ez
is an admissible sequence for which the conditions (az) and (by) are
fulfilled. Consequently, {u;};ez is a solution of the problem (16).

Now let 0 < 6 < 1/5_01/2. Set

> HN+1 ~ HN+1
)\1 — so 509 )\2 — .
VN1 VN1
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From the definition of sy we have

Hsqg — Hsg—1 > /“LN-I-I‘

VSO_VSO—I I/N-I—l

Thus, M]+)\1+)\2V] > 0for 7 =0,50—1 and ILLSO‘I‘)\l‘I‘)\QVSO =0.

From the condition on sign changes we obtain that —p; + )\1 + )\21/] >0
for all |j| < sp. If sp < N, then by virtue of the definition of sq

Hso+1 — Hsg < HN+1

g b
I/So-l—l_VO I/N-I—l

that is, —pisy+1 —|— )\1 —|— )\21/50+1 > 0. Then from the condition on sign
changes —p; + A+ )\21/] >0 for all [j| < N. If |j| > N, then

~ V; 14
—pj + Doy = <_] - ﬂ) z 0.
UN+1 \Hj  HN41

Thus it is proved that for all j € Z
—p15 A + ey > 0.
Putting

~ 2 ~ 1_521/50 ~ .
Us, = 07, UN+1:T, u; =0, g #so, N+1,
+1

it is easy to verify that {u,};ez is an admissible sequence for which the

conditions (ay) and (by) are fulfilled.

The case § > 1/1_1/2 is considered in the same way as in the proof of
Theorem 1. O

For recovery of function itself from the class W = WJ(T), H;’ﬁ(T),

A;’ﬁ(T) we cannot apply formally Theorem 2 (y; = 1, j € Z, and
hence the conditions of the theorem with respect to this sequence are
not fulfilled). Nevertheless the scheme itself of the proof remains the
same.

Proof of Theorem 3. 1. The lower bound. From Lemma 1 we obtain
that the error of optimal recovery estimates from below by the value
of the problem

[T ()[pomy = max, ;| < 65, 7] < N, () € W,
where {z; }|;j<n are the first 2N 41 of Fourier coeflicients of the function
z(+). Putting u; = |z;|?, j € Z, we arrive at the equivalent problem
(17) Z/,Ljuj—>max, Zl/jujgl, 0<wu; <&, [j| <N

JEZ JEZ

To find a solution of this problem it suffices to find such hy >0, }\\j >0,
|7] < N, and an admissible sequence {u;};cz for which for all w; > 0,
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JEL,

(as) > (=i + Ay 4+ Xx)u > > (—p; + Ay + )i,

JEZ JEZ
and
(bs) X(Z Vit — 1) =0, N(@;—8) =0, |j| <N
JETL

Put ) = Hpot1
Vpo+1

Y

Hpo+1 :
~ pj — v, |jl < po,
)\]‘ = Vpo+1

0, po+1<]j| <N

Define the sequence {u;};ez by the equality

5]2'7 |]| < po,
0= {52 L= E|k|§po v 0} il = po + 1
! ! (51304-1 + 53p0—1)yp0+1 7 7
0, |]| > po + 1.

It follows from the definition of py that the sequence © = {u;};ez is
admissible. Moreover, —u; + }\\I/]‘ + /)\\j = 0 for |7] < po. By virtue of
increase of the sequence {v;u " }jen for || > po+1 we have —/,L]‘—I-}\\I/]‘ >
0. Thus the condition (as) is fulfilled. It is easily verified that the
condition (bs) is also fulfilled. Thus, u is a solution of the problem
(17). Substituting @ into the maximizing functional and extracting the
square root we obtain

E(T, WU,[§N+1) 2 M T Z <M] . leup0+1> 5]2

Vpo+1 Vpo+1

l71<po

2. The upper bound. For the obtained above X and /)\\j, l7] < N, set

- ~ ) 2,482
A=A+ ) NG a=1, o= ]

| < N.
)\7|.]|_

Then the condition (a3) may be rewritten in the form
(@) Y (=i + Mav; + a;67°x;) )y
JEL

> (—py + Mawv; + a;677x,));.

JEZ
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Since v + Y «; =1 it is easy to verify that the condition

l71<N
(64) OzZ I/jﬁj + Z ozjéj_%j =1
J€D l71<N

holds. The conditions (a4) and (bs) are sufficient in order that @ be a

solution of the problem
(18) Z/,Ljuj — max, ozZz/juj + Z Ozj(sj_zuj <1, u; >0.
JET €T lj|<N

Consequently, the values of the problems (17) and (18) coincide.
Let us use now Lemma 2. Let Yy = 2V T! /v,
product on Yj

(2. 2), (2 )y = Y ;67227 +a Y w27

7N JEL

Define the semi-inner

Define the operator Iy: X — Yy by the equality

lox(+) = ({a; hji<n, Fa ()

and define S: 2N+1 — Y{ by the equality Sy = (y,0). If z(-) € W and
lz; — yi| < 6;, 7] < N, then

o (-) = Sylls, = a Y wjlail* + ) 0672 a; -y < 1.
JEL lil<N
According to Lemma 2 the squared value of the optimal recovery error
does not exceed the value of the problem

T2 ( |7, (ry — max, [ Lox()]3, <1

which coincides with the problem (18) after going over to Fourier co-
efficients and changing |z;|* by u;. It remains to write out the optimal
method of recovery which has the form @ = T o+ where the Fourier
coefficients {1, },ez of the function 1» = ¢(y) are the solution of the
extremal problem

Z ;0% — y;lt 4 ozZz/j|:1;j|2 — min, z(-) € X.
l7I<N JEL

It is easy to see that

Yo, j:()v

v I 1<l <

J av; +aj5;2y]7 > |71 = Po,
07 |.]| > po-

Carrying out simple calculations related to substitution of expressions
for o and a; we obtain the required result. O
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4. SOME FURTHER RESULTS

4.1. Recovery of functions defined on a sphere. Let
d+1

Sd:{{E:({Eh...,$d+1)€Rd+1:Z$§:1}

=1
be the unit d-dimensional sphere. It is known (see [9]) that Lg(Sd) _
ZZOZO Hj, where dim Hy = ng = 1,

27 4+d—1(j4+4d-2
dimHj:nj:ch ) =12
J J—1
(H; is the set of spherical harmonic of order j). For the Laplace oper-
ator A and any x(-) € H; the equlity

Aa() = =)

holds, where A; = j(j +d —1). Let {Yk]}zjzl is an orthonormal basis
in H;. For 3 > 0 the operator (—A)?/? is defined by the equality

(=AY 2() = ZA]@/z Z 2iY (),
7JEN k=1

where x;, = (2(-), ij(-))L,Z(Sd) are the Fourier coefficients of the func-
tion ().

Set

Wy (8%) = {2(-) € La(8%) : (=2)" ()| Lysey < 1.

Consider the problem of optimal recovery of the operator T = (—A)"/?
on the class Wzﬁ(Sd) by the following information mappings:

1) the information [z () = I542(-) about a function z(-) € Wzﬁ(Sd) is
given as numbers y;; such that

Z i: |2k — yiel® < 6%

JEZ4 k=1
2) the information Iz(-) = IN"2() about a function x(-) € W} (S%)
is given as numbers y;,, 7 = 0,1,... .,m, k =1,... ,n;, such that
m Ty
YO e —ypl* <8
j=0 k=1

(here N, = >0 n;);

7=0
3) the information [x(-) = ]gmx(-) is such that there are known y;p,
J=0,1,....m, k=1,... nj, such that

|$]‘k—y]‘k|§(s]‘k, j:(),l,...,m,kzl,...,nj.
In the paper [6] it is shown that for all A\j, Ay > 0 the function
ft) = =(tt+d = 1)) + M+ Xo(t(t +d = 1))°
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vanishes at most at two points on the set [0,+00). Hence it follows
that for 3 > v > 0 for y; = A7 and v; = Af the conditions 1)-3) from
section 2 are fulfilled.

Using the same scheme of the proof as in Theorems 1-3 we obtain
their analogs for the considered problems. We turn our attention only
to the statements of the corresponding results. In what follows we
always assume that 3 > v > 0.

Theorem 4. The eqality

A7 AY
E((=A) W (S?), Isa) = 4 [62A7 + (1 — $2A) =H—=
As—l—l_AS

holds if AJ0* <8 < A", s> 1, and

E((=A)2,Wy(8%), Isq) = d0=9P2
if & > Al_ﬁﬂ. Moreover, the method

-1 5
A =AY d :
=S (1+ NP T e ) Sy ()
J¢] J¢] Itk
jEN ! AWAs-I—l o AZ—I—IA k=1

is optimal if/\sfl/2 <5< AP s> 1, and if § > /\1_5/2

Y

P(y)(-) = 0 is an optimal method.

then

Y

Put
: AZ—I-l A =8
SOZSO(m):mIH{SEN W Am—l—l .
Theorem 5. for § > /\S_Oﬁ/2
BE((=A)Y WIS, Im) = E(=A)*, W (SY), Isa)
and the method

-1 5
AT, —AY ’ :
ZW (1+ N ) >y )
J¢] J¢] Itk
! AWAS-I—I o AZ-HA k=1

is oplimal zf/\sfl/2 <d < A or2 L1 <s<so—1, and if § > Al_ﬁﬂ, then
P(y)(-) =0 is an optimal method For 0 < 6 < Ag, 5/2

BI(=AP WP (S, M) = /8207, + (1 — 2A5)AL)

and

-1 5
m A'y 7
ZE:AW(HM mt ) Ejka
B B 7
j=1 ! ! AZ0Am+1 o Ajn-|—1A50

is an optimal method.
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Put

P Ty
pozpo(g):max{p€Z+:1—ZAfZ5?k>0, nggm}.

7=0 k=1
Theorem 6. The equality
po y
E((=A)2 WIS, L) = [ A5+ ) (A = ATALT) Y 6%
/ k=1

holds, moreover, the method

Po ~y=0 ny

R Apy 4

B =Y A" (1 - (P5) ) S i)
7=1 J k=1

is optimal.

4.2. The Hardy—Sobolev and Bergman—Sobolev classes on the

unit disk. Denote by Hz(D) the space of functions x(-) analytic in
the unit disk D = {z € C: |z| < 1} and satisfying the condition

1 ' 1/2
el = s (5 [letpePar) <o
0<p<1t \ 27T Jr

The Hardy—Sobolev class H3 (D) is the set of functions x(-) analytic in
D for which Hfl?(r)(‘)HHQ(D) < 1.

Denote by Ay(D) the space of functions x(+) analytic in the unit disk
D and satisfying the condition

2
()l (/| () dor(2) ) < oo,

where o is the plane Lebesgue measure. The Bergman—Sobolev
class AL(D) is the set of functions x(-) analytic in D for which

12 () la oy < 1.

Consider the problem of optimal recovery of the k-th derivative on
the classes W = HJ and A} by the information about coefficients of
function power series given with the error ¢ in the norm of the space
l3. In other words, we assume that for every function x(-) € W such

that
x(z) = Z ajzj

JE€EZ 4
the numbers {y;};ez, are known such that

D a;—yilF <8

JE€EZ 4
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We denote by I the corresponding information mapping. The studied
problem of optimal recovery is written in the form

E(D*, W, Iff) = inf sup [l () — o (y)()llw
0= W p()ew, yely
(1F*a()—yll, <6

where W = Hy(D), A2(D) and Fta(-) = {a;};ez, are the coefficients
of the power series of the function x(-).

We formulate the analogue of Theorem 1 which may be obtained by
the scheme described above. Set for a fixed k& and r (1 <k <r)

! 2 .
(.J ) ik W= Hy(D),

(i (W) = ((.ﬂ >k, W= AyD),

J <k,

. 2
7! ) .
. ; Jzr, W=H(D),
(]—T)! 2( )
) j>r, W=AyD),

vi(W) = E !
0

g <r.

Theorem 7. For W = H} or Ay and all 1 < k <r ford > I/,TI/Q(W)
the equality

W) — (1)
v (W)

E(D* W, I}) = \/52ur_1(W) + prl

holds and for l/s__l_ll/z(W) <o < I/S_I/Z(W), s > r, the equality

Ms+1(W) - MS(W)
Vert (W) — vs(W)

E(D* W, 1}) = \/52,,LS(W) + (1 = 82u,(W))

holds. Moreover, the method

~ _ S ” por1t (W) — pus (W) - ik
P = X (10 )

i=k

is optimal if I/S__I_ll/z(W) <6< I/S_I/Z(W), s>rand if & > V,,_I/Z(W),
then @(y)(z) =0 is an optimal method.

The cases when only a finite number of coefficients of power series
is known with an error in the mean square or uniform metric may be
considered just in the same way as it was done for the periodic case.
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