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We consider some extremal problems for the solution of the generalized heat equation similar
to the well-known Hadamard three-circle theorem. These problems are connected with optimal
recovery problems. We construct a family of optimal recovery methods for the solution of the
generalized heat equation using the information about inaccurate data.
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1. Introduction

We begin with one extremal problem which is known as the Hadamard three-circle
theorem (see, for example, [8]). Let f(z) be a holomorphic function on the annulus

r1 ≤ |z| ≤ r2.

Put

M(r) = max
|z|=r

|f(z)|.

Then log M(r) is a convex function of the log r. The conclusion of the theorem can
be restated as

M(r) ≤ M(r1)
log r2/r

log r2/r1 M(r2)
log r/r1
log r2/r1 .

for any three concentric circles of radii r1 < r < r2.
The history of this theorem is the following. A statement and proof for the

theorem was given by J.E. Littlewood in 1912, but he attributes it to no one in
particular, stating it as a known theorem. H. Bohr and E. Landau claim the theorem
was first given by J. Hadamard in 1896, although Hadamard had published no
proof.
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The Hadamard three-circle theorem gives an estimate in the following extremal
problem

M(r) → max, M(r1) ≤ δ1, M(r2) ≤ δ2.

The exact solution of this problem which is expressed in terms of elliptic functions
was given by R. M. Robinson in 1943 [6].

In 1913 E. Landau [3] considered a very similar problem. He took derivatives
instead of circles. He proved that for all functions x ∈ L∞(R+) with the first
derivative locally absolutely continuous on R+ and x′′ ∈ L∞(R+) the following
exact inequality

‖x′‖L∞(R+) ≤ 2‖x‖1/2
L∞(R+)‖x′′‖

1/2
L∞(R+)

holds (the exactness means that the constant 2 could not be replaced by some
other constant which is less than 2). That is he found the exact solution of the
extremal problem

‖x′‖L∞(R+) → max, ‖x‖L∞(R+) ≤ δ1, ‖x′′‖L∞(R+) ≤ δ2.

Then in 1914 Hadamard [1] solved the analogous problem for R.
In 1939 A. N. Kolmogorov [2] obtained the general result in this field. He found

the exact solution of the problem

‖x(k)‖L∞(R) → max, ‖x‖L∞(R) ≤ δ1, ‖x(r)‖L∞(R) ≤ δ2.

The value of this problem is

Kr−k

K
1− k

r
r

δ
1−k/r
1 δ

k/r
2 ,

where

Km =
4
π

∞∑

s=0

(−1)s(m+1)

(2s + 1)m+1

are the Favard constants.
These types of extremal problems are known as Landau–Kolmogorov inequalities

for derivatives and they all are similar to the initial extremal problem formulated
by Hadamard.

2. Analog of the Hadamard theorem for the heat equation

We will consider the problem which is analogous to the Hadamard three-circle
theorem but the role of circles will play the time.

Let u be the solution of the generalized heat equation in Rd

ut + (−∆)α/2u = 0,

u∣∣t=0
= f(x), f ∈ L2(Rd).

(1)



July 29, 2010 16:35 Optimization paper2

Extremal Problems for the Heat Equation 3

The operator (−∆)α/2 is defined as

(−∆)α/2g(x) = F−1(|ξ|αFg(ξ))(x),

where F is the Fourier transform in L2(Rd) and F−1 is the inverse Fourier trans-
form, and the boundary condition means that ‖u(t, x)− f(x)‖L2(Rd) → 0 as t → 0.

It is easy to show that the unique solution of (1) is the function

u(t, x) = F−1(e−|ξ|
αtFf(ξ))(x), (2)

Theorem 2.1 : For any solution of the generalized heat equation (1)
log ‖u(t, ·)‖L2(Rd) is a convex function of t.

Proof : By Plancherel’s theorem it follows from (2) that

‖u(t, x)‖2
L2(Rd) =

1
(2π)d

∫

Rd

e−2|ξ|αt|Ff(ξ)|2 dξ.

Let 0 ≤ t1 < τ < t2. Put

p =
t2 − t1
t2 − τ

, q =
t2 − t1
τ − t1

, dµ(ξ) =
1

(2π)d
|Ff(ξ)|2 dξ.

Then using the fact that τ = t1/p + t2/q and Hölder’s inequality we obtain

‖u(τ, x)‖2
L2(Rd) =

∫

Rd

e−2|ξ|α(t1/p+t2/q) dµ(ξ)

≤
(∫

Rd

e−2|ξ|αt1 dµ(ξ)
)1/p (∫

Rd

e−2|ξ|αt2 dµ(ξ)
)1/q

= ‖u(t1, x)‖2
t2−τ

t2−t1

L2(Rd)‖u(t2, x)‖2
τ−t1
t2−t1

L2(Rd).

Thus we proved that

‖u(τ, x)‖L2(Rd) ≤ ‖u(t1, x)‖
t2−τ

t2−t1

L2(Rd)‖u(t2, x)‖
τ−t1
t2−t1

L2(Rd).

It means that log ‖u(t, ·)‖L2(Rd) is a convex function of t. ¤

Now we consider the similar problem with n + 1 “circles”. Namely, we want to
solve the following extremal problem

‖u(τ, x)‖L2(Rd) → max, ‖u(tj , x)‖L2(Rd) ≤ δj , j = 1, 2, . . . , n,

f ∈ L2(Rd),

where 0 ≤ t1 < . . . < tn and δj > 0, j = 1, 2, . . . , n.
To formulate the result we consider the set

M = co{ (tj , ln(1/δj)), 1 ≤ j ≤ n }+ { (t, 0) | t ≥ 0 },
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where coA is a convex hull of A. Define the function θ(t), t ∈ [t1,∞) as follows

θ(t) = max{ s | (t, s) ∈ M }.

It is clear that θ is a polygonal line on [t1,∞).

Theorem 2.2 : For all τ ≥ t1

sup
f∈L2(Rd)

‖u(tj ,x)‖L2(Rd)≤δj , j=1,2,...,n

‖u(τ, x)‖L2(Rd) = e−θ(τ).

The proof of this theorem may be obtained by the same scheme as in [4] (where
the case α = 2 was considered).

3. Optimal recovery of the solution of the heat equation

This extremal problem is closely connected with the problem of optimal recovery
of the solution of the heat equation at the instant of time τ knowing inaccurate
observations of the solution at the instants t1, . . . , tn. Let us formulate this recovery
problem more precisely.

Assume that we know functions yj ∈ L2(Rd), j = 1, . . . , n, such that

‖u(tj , x)− yj(x)‖L2(Rd) ≤ δj , j = 1, . . . , n.

What is the best way to use this information to recover the temperature distri-
bution at the time τ 6= tj , 1 ≤ j ≤ n, that is to recover the function u(τ, x)?

We admit as recovery methods arbitrary maps m : (L2(Rd))n → L2(Rd). For a
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fixed method m the quantity

eτ (L2(Rd), δ,m)

= sup
f,y1,...,yn∈L2(Rd)

‖u(tj ,x)−yj(x)‖L2(Rd)≤δj , j=1,...,n

‖u(τ, x)−m(y)(x)‖L2(Rd),

where u is the solution of (1), δ = (δ1, . . . , δn), and y = (y1, . . . , yn), is called the
error of the method m.

We are interested in the value

Eτ (L2(Rd), δ) = inf
m : (L2(Rd))n→L2(Rd)

eτ (L2(Rd), δ,m),

which is called the error of optimal recovery and in the method m̂, for which the
infinum is attained that is in the method m̂ for which

Eτ (L2(Rd), δ) = eτ (L2(Rd), δ, m̂).

We call this method the optimal recovery method.

Theorem 3.1 : For all τ ≥ t1

Eτ (L2(Rd), δ) = e−θ(τ).

If ts1 < . . . < tsk
are the points of break of polygonal line θ and tsj

< τ < tsj+1,
then the method

m̂(y) = Ksj
∗ ysj

+ Ksj+1 ∗ ysj+1

is optimal; here

FKsj
(ξ) =

(tsj+1 − τ)δ2
sj+1

e|ξ|
α(tsj+1−τ)

(tsj+1 − τ)δ2
sj+1

e|ξ|
α(tsj+1−tsj

) + (τ − tsj
)δ2

sj
e−|ξ|

α(tsj+1−tsj
)
,

FKsj+1(ξ) =
(τ − tsj

)δ2
sj

e−|ξ|
α(τ−tsj

)

(tsj+1 − τ)δ2
sj+1

e|ξ|
α(tsj+1−tsj

) + (τ − tsj
)δ2

sj
e−|ξ|

α(tsj+1−tsj
)
.

If τ > tsk
, then the method which is solution of the heat equation with the initial

condition

u∣∣t=tsk

= ysk
(x)

at the instant of time τ is optimal.

The proof of this theorem for α = 2 may be found in [4].
Note that the optimal method of recovery m̂ uses not more than two observations.

To find these observations we have to construct the set M and the polygonal line
θ. Then we have to find the nearest points of break of θ to the point τ . The
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observations at these points are those that are used in the optimal method of
recovery m̂.

Note also that we can make more precise points of observation which are not on
the polygonal line. Suppose that for some tm, tsj

< tm < tsj+1 and

log
1

δm
< θ(tm).

Then optimal recovery method gives the error less than δm. Indeed

‖u(tm, x)− m̂(y)(x)‖L2(Rd) ≤ e−θ(tm) < δm.

Further investigations discovered a surprising fact. It was found that parallel
with the optimal method from the previous theorem there are a lot of optimal
recovery methods. To discuss this situation we consider the recovery problem for
two instant of times t1 and t2. Without loss of generality we assume that t1 = 0
and t2 = T .

The scheme of obtaining of the optimal recovery method m̂ is the following. First,
we consider the extremal problem

‖u(τ, x)‖2
L2(Rd) → max, ‖u(0, x)‖2

L2(Rd) = ‖f‖2
L2(Rd) ≤ δ2

0 ,

‖u(T, x)‖2
L2(Rd) ≤ δ2

T , f ∈ L2(Rd).

Passing to the Fourier transform and using the Plancherel theorem we obtain
the following problem

1
(2π)d

∫

Rd

e−2|ξ|ατ |Ff(ξ)|2 dξ → max,
1

(2π)d

∫

Rd

|Ff(ξ)|2 dξ ≤ δ2
0 ,

1
(2π)d

∫

Rd

e−2|ξ|αT |Ff(ξ)|2 dξ ≤ δ2
T , f ∈ L2(Rd).
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There is no existence in this problem. We consider the following extension of this
problem (changing (2π)−d|Ff(ξ)|2 dξ by a positive measure dµ(ξ)):

∫

Rd

e−2|ξ|ατ dµ(ξ) → max,

∫

Rd

dµ(ξ) ≤ δ2
0 ,

∫

Rd

e−2|ξ|αT dµ(ξ) ≤ δ2
T , dµ(ξ) ≥ 0. (3)

To solve this extremal problem we consider the Lagrange function of this problem

L(dµ, λ0, λT ) =
∫

Rd

(
−e−2|ξ|ατ + λ0 + λT e−2|ξ|αT

)
dµ(ξ).

Then we find an extremal measure dµ̂(ξ) and the Lagrange multipliers λ̂0, λ̂T such
that

(a) min
dµ(ξ)≥0

L(dµ, λ̂0, λ̂T ) = L(dµ̂, λ̂0, λ̂T ),

(b) λ̂0

(∫

Rd

dµ̂(ξ)− δ2
0

)
+ λ̂T

(∫

Rd

e−2|ξ|αT dµ̂(ξ)− δ2
T

)
= 0.

Then for arbitrary y0, yT ∈ L2(Rd) we consider the extremal problem

λ̂0‖f(x)− y0(x)‖2
L2(Rd) + λ̂T ‖u(T, x)− yT (x)‖2

L2(Rd) → min, f ∈ L2(Rd),

where u is the solution of the generalized heat equation (1) with the initial tem-
perature distribution f . If f̂ is the solution of this problem, then the method

m̂(y0, yT )(x) = û(τ, x),

where û is the solution of (1) with the initial temperature distribution f̂ , is an
optimal method of recovery (see [4] for details).

Let us consider more explicitly extremal problem (3). For any σ0, σT > 0 the
value of the extended problem

∫

Rd

e−2|ξ|ατ dµ(ξ) → max,

∫

|ξ|≥σ0

dµ(ξ) ≤ δ2
0,

∫

|ξ|≤σT

e−2|ξ|αT dµ(ξ) ≤ δ2
T , dµ(ξ) ≥ 0 (4)

is not less than the value of (3).
The reason of the existence of a collection of optimal recovery methods is in the

fact that there is a set of σ0, σT > 0 for which the values of these extremal problems
are the same.
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Assume that δT < δ0. Set

σ̂0 =





(
1

2T
log

(( τ

T

) T

T−τ δ2
0

δ2
T

))1/α

,
δ2
T

δ2
0

<
( τ

T

) T

T−τ

,

0,
δ2
T

δ2
0

≥
( τ

T

) T

T−τ

,

σ̂T =

(
1

2T
log

((
T

T − τ

)T

τ δ2
0

δ2
T

))1/α

.

Theorem 3.2 : If δT < δ0, then for all 0 ≤ σ0 ≤ σ̂0 and σT ≥ σ̂T the values of
problems (3) and (4) are the same.

Proof : Put dµ̂(ξ) = δ2
0δ(ξ − ξ0), where ξ0 such that

|ξ0|α =
1
T

log
δ0

δT

and δ(ξ − ξ0) is the delta-function at the point ξ0. Then it is easy to verify that
condition (b) is fulfilled.

The Lagrange function of problem (3) may be written in the form

L(dµ, λ0, λT ) =
∫

Rd

e−2|ξ|ατf(|ξ|α) dµ(ξ),

where

g(v) = −1 + λ0e
2vτ + λT e−2v(T−τ).

The function g is convex. So if g(v0) = g′(v0) = 0, then g(v) ≥ 0 for all v. Put
v0 = |ξ0|α and chose λ̂0, λ̂T from the condition g(v0) = g′(v0) = 0. It is easy to
obtain that

λ̂0 =
T − τ

T

(
δT

δ0

) 2τ

T

, λ̂T =
τ

T

(
δ0

δT

) 2(T−τ)
T

.

Consequently, we have

−e−2|ξ|ατ + λ0 + λT e−2|ξ|αT ≥ 0

for all ξ ∈ Rd. Thus L(dµ, λ̂0, λ̂T ) ≥ 0 for all dµ(ξ) ≥ 0 and L(dµ̂, λ̂0, λ̂T ) = 0.
It means that condition (a) is also fulfilled and dµ̂(ξ) is the extremal measure in
problem (3).

Consider the Lagrange function of problem (4)

L̃(dµ, λ0, λT ) =
∫

Rd

−e−2|ξ|ατ dµ(ξ) + λ0

∫

|ξ|≥σ0

dµ(ξ)

+ λT

∫

|ξ|≤σT

e−2|ξ|αT dµ(ξ).
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It remains to show that for the same λ̂0, λ̂T as above conditions

(a′) min
dµ(ξ)≥0

L̃(dµ, λ̂0, λ̂T ) = L̃(dµ̂, λ̂0, λ̂T ),

(b′) λ̂0

(∫

|ξ|≥σ0

dµ̂(ξ)− δ2
0

)
+ λ̂T

(∫

|ξ|≤σT

e−2|ξ|αT dµ̂(ξ)− δ2
T

)
= 0

are fulfilled. Indeed,

L̃(dµ, λ̂0, λ̂T ) =
∫

|ξ|<σ0

(−e−2|ξ|ατ + λT e−2|ξ|αT ) dµ(ξ)

+
∫

σ0≤|ξ|≤σT

e−2|ξ|ατf(|ξ|α) dµ(ξ) +
∫

|ξ|>σT

(−e−2|ξ|ατ + λ̂0) dµ(ξ).

If σ̂0 > 0, then for all σ0 ≤ σ̂0 and all ξ such that |ξ| < σ0

−e−2|ξ|ατ + λT e−2|ξ|αT ≥ 0.

Moreover, for all σT ≥ σ̂T and all ξ such that |ξ| > σT

−e−2|ξ|ατ + λ̂0 ≥ 0.

Thus L̃(dµ, λ̂0, λ̂T ) ≥ 0 for all dµ(ξ) ≥ 0. Since L̃(dµ̂, λ̂0, λ̂T ) = 0 condition (a′)
holds. It is easy to check that condition (b′) is fulfilled. Consequently, dµ̂(ξ) is
extremal measure for problem (4). ¤

Using Theorem 3.2 we obtain the following result

Theorem 3.3 : For all 0 ≤ σ0 ≤ σ̂0 and σT ≥ σ̂T the methods

m̂σ0,σT
(y0, yT ) = K0 ∗ y0 + KT ∗ yT

are optimal; here

FK0(ξ) =





0, 0 ≤ |ξ| ≤ σ0,

(T − τ)δ2
T e|ξ|α(T−τ)

(T − τ)δ2
T e|ξ|αT + τδ2

0e
−|ξ|αT

, σ0 < |ξ| < σT ,

e−|ξ|ατ , |ξ| ≥ σT ,

FKT (ξ) =





e|ξ|α(T−τ), 0 ≤ |ξ| ≤ σ0,

τδ2
0e
−|ξ|ατ

(T − τ)δ2
T e|ξ|αT + τδ2

0e
−|ξ|αT

, σ0 < |ξ| < σT ,

0, |ξ| ≥ σT ,

Theorem 3.3 gives a family of optimal recovery methods depending on two pa-
rameters σ0 and σT .
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4. Optimal recovery for the heat equation in the d-dimensional ball

Now we consider the analogous problems for the unit d-dimensional ball.
Set

Bd =
{

x = (x1, . . . , xd) : |x|2 =
d∑

j=1

x2
j < 1

}
,

Sd−1 = {x ∈ Rd : |x| = 1 }.

Let u be the solution of the generalized heat equation in Bd:

ut + (−∆)α/2u = 0, α > 0,

u|t=0 = f(x), f ∈ L2(Bd)

u|x∈Sd−1 = 0.

(5)

We would like to consider the following extremal problem

‖u(τ, x)‖L2(Bd) → max, ‖u(tj , x)‖L2(Bd) ≤ δj , j = 1, 2,

f ∈ L2(Bd), (6)

where u is the solution of problem (5).
This extremal problem is closely connected with the problem of optimal recovery

of the solution at the instant of time τ knowing inaccurate observations of the
solution at the instants t1 and t2. Let us formulate this recovery problem more
precisely.

Suppose that we know two functions y1, y2 ∈ L2(Bd) such that

‖u(tj , x)− yj(x)‖L2(Bd) ≤ δj , j = 1, 2.

We want to recover the solution at the instant τ using inaccurate observations y1

and y2.
We admit as recovery methods any maps m : L2(Bd) × L2(Bd) → L2(Bd). For a

fixed method m the quantity

eτ (L2(Bd), δ1, δ2,m)

= sup
f,y1,y2∈L2(Bd)

‖u(tj ,x)−yj(x)‖L2(Bd)≤δj , j=1,2

‖u(τ, x)−m(y1, y2)(x)‖L2(Bd),

where u is the solution of (5), is called the error of the method m.
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The quantity

Eτ (L2(Bd), δ1, δ2) = inf
m : L2(Bd)×L2(Bd)→L2(Bd)

eτ (L2(Bd), δ1, δ2,m)

is called the error of optimal recovery and a method delivering the lower bound is
called an optimal recovery method.

It appears that the error of optimal recovery equals the value of extremal problem
(6). That is,

Eτ (L2(Bd), δ1, δ2) = sup
f∈L2(Bd)

‖u(tj ,x)‖L2(Bd)≤δj , j=1,2

‖u(τ, x)‖L2(Bd).

To formulate the result recall some facts about the eigenfunctions of the Laplace
operator. We consider the case d > 1. Let Hk denote the set of spherical harmonics
of order k. It is known (see [7]) that dimH0 = a0 = 1,

dimHk = ak = (d + 2k − 2)
(d + k − 3)!
(d− 2)!k!

, k = 1, 2, . . . ,

and

L2(Sd−1) =
∞∑

k=0

Hk.

Let {Y (k)
j }ak

j=1 denote an orthonormal basis in Hk. Let Jp be the Bessel function

of the first kind of order p and µ
(p)
s , s = 1, 2, . . . , be the zeros of Jp.

The functions

Zskj(x) =
Jp(µ

(p)
s r)

rd/2−1
Y

(k)
j (x′),

where r = |x|, x′ = x/r, and p = k+(d−2)/2, form an orthogonal basis in L2(Bd).
Moreover,

∆Zskj = −(µ(p)
s )2Zskj .

We will use the orthonormal basis in L2(Bd)

Yskj =
Zskj

‖Zskj‖L2(Bd)
.

We recall that the operator (−∆)α/2 is defined as follows

(−∆)α/2f =
∞∑

s=1

∞∑

k=0

(µ(p)
s )α

ak∑

j=1

cskjYskj ,

where

f =
∞∑

s=1

∞∑

k=0

ak∑

j=1

cskjYskj . (7)
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The solution of (5) can be easily found by the Fourier method of separation of
variables. It has the form

u(t, x) =
∞∑

s=1

∞∑

k=0

e−(µ
(p)
s )αt

ak∑

j=1

cskjYskj(x),

where cskj are the Fourier coefficients of the initial function.
Set

ask = e−2(µ
(p)
s )

α

.

The zeros of the Bessel functions µ
(p)
s , s = 1, 2, . . ., p = k + (d− 2)/2, k = 0, 1, . . . ,

can be arranged in ascending order

µ(p1)
s1

< µ(p2)
s2

< . . . < µ(pn)
sn

< . . . .

Put βm = asmkm
. Then

β1 > β2 > . . . > βn > . . . .

We introduce the following notation

∆m =
[
βt2−t1

m+1 , βt2−t1
m

]
, ∆0 =

[
βt2−t1

1 , +∞)
,

λ̂1 =





βτ−t2
m+1 − βm

τ−t2

βt1−t2
m+1 − βt1−t2

m
,

δ2
2

δ2
1

∈ ∆m, m ≥ 1,

βτ−t1
1 ,

δ2
2

δ2
1

∈ ∆0,

λ̂2 =





βτ−t1
m − βτ−t1

m+1

βt2−t1
m − βt2−t1

m+1

δ2
2

δ2
1

∈ ∆m, m ≥ 1,

0,
δ2
2

δ2
1

∈ ∆0.

Theorem 4.1 [5]: For all δ1, δ2 > 0 the following equality

Eτ (L2(Bd), δ1, δ2) =
√

λ̂1δ2
1 + λ̂2δ2

2

holds. Moreover, the method

m̂(y1, y2) =
∞∑

s=1

∞∑

k=0

a
τ/2
sk

ak∑

j=1

λ̂1a
t1/2
sk y1skj + λ̂2a

t2/2
sk y2skj

λ̂1a
t1
sk + λ̂2a

t2
sk

Yskj ,

where y1skj , y2skj are the Fourier coefficients of y1 and y2, is optimal.

It appears that in this case we also have a family of optimal recovery methods
depending on two parameters.
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Put

N̂1 = N̂1(δ1, δ2) =

{
max{k : βt2−τ

k ≤ λ̂2, k ∈ N}, βt2−τ
1 ≤ λ̂2,

0, βt2−τ
1 > λ̂2,

N̂2 = N̂2(δ1, δ2) = min{k : βτ−t1
k ≤ λ̂1, k ∈ N}.

Theorem 4.2 : For all 1 ≤ N1 ≤ N̂1 and N̂2 ≤ N2 the methods

m̂N1,N2(y1, y2) =
N1∑

m=1

β(τ−t2)/2
m

akm∑

j=1

y2mjXmj

+
N2−1∑

m=N1+1

βτ/2
m

akm∑

j=1

λ̂1β
t1/2
m y1mj + λ̂2β

t2/2
m y2mj

λ̂1β
t1
m + λ̂2β

t2
m

Xmj

+
∞∑

m=N2

β(τ−t1)/2
m

akm∑

j=1

y1mjXmj ,

where Xmj = Ysmkmj and y1mj, y2mj are the Fourier coefficients of y1, y2 for the
orthonormal basis {Xmj}, are optimal.

We give the scheme of proof of this theorem. First, we consider the extremal
problem

‖u(τ, x)‖2
L2(Bd) → max, ‖u(tj , x)‖2

L2(Bd) ≤ δ2
j , j = 1, 2, f ∈ L2(Bd). (8)

We have

‖u(τ, x)‖2
L2(Bd) =

∞∑

s=1

∞∑

k=0

e−2(µ(p)
s )αt

ak∑

j=1

c2
skj ,

where cskj are Fourier coefficients of f . Put

αm =
akm∑

j=1

c2
smkmj .

Then problem (8) we can be rewritten in the form

∞∑

m=1

βτ
mαm → max,

∞∑

m=1

βtj
mαm ≤ δ2

j , j = 1, 2, αm ≥ 0.

Next, we show that for all 1 ≤ N1 ≤ N̂1 and N̂2 ≤ N2 the value of this problem
coincides with the value of the extremal problem

∞∑

m=1

βτ
mαm → max,

∞∑

m=N1+1

βt1
mαm ≤ δ2

1,

N2−1∑

m=1

βt2
mαm ≤ δ2

2 αm ≥ 0.
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