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Recovery of analytic functions that is
exact on subspaces of entire functions

K. Yu. Osipenko

Abstract. A family of optimal recovery methods is developed for the
recovery of analytic functions in a strip and their derivatives from inac-
curately specified trace of the Fourier transforms of these functions on the
real axis. In addition, the methods must be exact on some subspaces of
entire functions.
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§ 1. Introduction

One popular idea in the development of numerical methods is to look for methods
that are exact on some subspace of functions. This is based on the natural obser-
vation that if the original function can be approximated sufficiently accurately by
elements of this subspace, then the error of the corresponding method (which is
usually a linear functional or an operator of the function) is admissible. A typical
example here is quadrature formulae, which are constructed to be exact on the alge-
braic polynomials of some fixed degree: the most spectacular example is Gauss’s
quadrature formulae (for instance, see [1]).

Another approach to the development of numerical methods, or — in a broader
sense — to approximations as such, is connected with Kolmogorov’s ideas. In this
case one fixes come a priori information —a set (class) of functions — for which one
develops an optimal (best) method based on the condition that this method must
produce the minimum error in this class of functions. A typical example here also
is quadrature formulae; in this setting such formulae were constructed for the first
time by Nikol’skii (see [2]).

In [3] we proposed to combine these two approaches: the one going back to Gauss
and based on developing methods exact on subspaces and the other going back to
Kolmogorov and based on finding methods optimal on the class under consideration.
In other words, we proposed to look for methods optimal on a class which are at
the same time exact on a fixed subspace. In the framework of this approach,
in [4] and [5] we solved several recovery problems for solutions of equations of
mathematical physics.
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In this paper we consider problems of developing optimal methods for the recov-
ery of analytic functions in a strip and their derivatives from inaccurately prescribed
traces of the Fourier transforms of these functions on the real axis. The optimal
methods are additionally required to be exact on subspaces of entire functions.

§ 2. Statement of the problem

Let X be a linear space and Y and Z be two normed linear spaces, and let
A : X → Z and I : X → Y be linear operators. We consider the problem of the
optimal recovery of the values of A on a set W ⊂ X from the inaccurately prescribed
values of I at elements of this set. We assume that for each x ∈ W we know a value
y ∈ Y such that ∥Ix − y∥Y ⩽ δ, where δ is some positive number characterizing
the error of the a priori information about elements of W . The problem consists
in recovering the value of Ax from y. A recovery method is a map m : Y → Z that
assigns to y ∈ Y an element m(y) ∈ Z, which is set to be the approximate value
of Ax.

The error of the method m is the quantity

e(A, W, I, δ, m) = sup
x∈W, y∈Y
∥Ix−y∥Y ⩽δ

∥Ax−m(y)∥Z .

The optimal recovery error is the quantity

E(A, W, I, δ) = inf
m : Y→Z

e(A, W, I, δ, m),

while methods delivering the infimum are called optimal on the set W . The above
problem relates to optimal recovery theory. For more information about this theory
and the problems considered it its framework the reader can consult the survey
paper [6] and the books [7]–[10].

Let L ⊂ X be a linear subspace of X. We say that a method m : Y → Z is
exact on L if Ax = m(Ix) for all x ∈ L. Consider the set EL of linear operators
m : Y → Z that are exact on L. Set

EL(A, W, I, δ) = inf
m∈EL

e(A, W, I, δ, m).

We call methods delivering the infimum in this equality optimal on W among the
exact methods on L.

By the sum of two sets A and B in a linear space we mean the set

A + B = {a + b : a ∈ A, b ∈ B}.

Proposiiton (see [4]). Let L ⊂ X be a linear subspace of X , and let m∗ : Y → Z
be a linear operator presenting an optimal method for the recovery of A on the set
W + L. Then

EL(A, W, I, δ) = E(A, W + L, I, δ).

If EL(A, W + L, I, δ) < ∞, then m∗ is an optimal recovery method on W among
the exact methods on L.
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Thus, to find a linear method optimal on W among the ones exact on L it is
sufficient to find linear methods among the optimal methods on W + L.

In this paper we consider the problem of the optimal recovery of analytic func-
tions in a strip

Sβ = {z ∈ C : |Im z| < β}

and their derivatives under the assumptions that the recovery methods are exact
on the space Bσ,2(R) of entire functions, the subspace of L2(R) formed by the
restrictions to R of entire functions of exponential type σ.

We turn to the precise statement. By the Hardy space Hβ
2 we mean the set of

analytic functions f in the strip Sβ such that

∥f∥Hβ
2

=
(

sup
0⩽η<β

1
2

∫
R
(|f(t + iη)|2 + |f(t− iη)|2) dt

)1/2

< ∞.

We let Hr,β
2 (the Hardy–Sobolev space) denote the set of analytic functions in Sβ

such that f (r) ∈ Hβ
2 .

Let Hr,β
2 denote the set of functions f ∈ Hr,β

2 ∩ L2(R) satisfying ∥f (r)∥Hβ
2

⩽ 1.
If σ > 0, then Bσ,2(R) denotes the subspace of L2(R) formed by the restrictions to R
of entire functions of exponential type σ. It is well known that f ∈ Bσ,2(R) if and
only if the support of the Fourier transform Ff lies on the interval ∆σ = [−σ, σ].
By definition B0,2(R) = {0}.

Consider the problem of the optimal recovery of the kth derivative of f ∈ Hr,β
2 +

Bσ,2(R), k ⩽ r, from the trace on ∆σ1 , σ1 > 0, of its Fourier transform defined
with some error in the metric L2(∆σ1), that is, we assume that in place of the trace
of Ff on ∆σ1 we know a function y ∈ L2(∆σ1) such that

∥Ff − y∥L2(∆σ1 ) ⩽ δ.

From y we must recover the function f (k) on R in the best possible way, that is,
the problem consists in the recovery of

E(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) = inf

m : L2(∆σ1 )→L2(R)
e(Dk, Hr,β

2 + Bσ,2(R), Iσ1 , δ, m),

where Dkf = f (k), Iσ1f = Ff∣∣∆σ1
and

e(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ, m) = sup

f∈Hr,β
2 +Bσ,2(R), y∈L2(∆σ1 )

∥Ff−y∥L2(∆σ1 )⩽δ

∥f (k) −m(y)∥L2(R).

In other words, we are going to find optimal methods for the recovery of the kth
derivative on the class Hr,β

2 among the methods exact on the subspace of entire
functions Bσ,2(R). Without the assumptions that the method is exact on Bσ,2(R)
this problem was considered in [11].



386 K.Yu. Osipenko

§ 3. Main results

Consider the function y = s(x), x ⩾ 0, defined parametrically by{
x = t2r cosh 2βt,

y = t2k,
t ⩾ 0,

k, r ∈ N, r ⩾ k, β > 0. For t > 0 its derivative is positive:

dy

dx
=

kt2(k−r)

r cosh 2βt + tβ sinh 2βt
> 0,

and it is monotonically decreasing, so that s is an increasing concave function.
The straight line connecting a point (x(t), y(t)) with the origin has the form

y = λ2x, where

λ2 =
y(t)
x(t)

=
1

t2(r−k) cosh 2βt
.

Since s is concave, there exists t0 such that the tangent to s at (x(t0), y(t0)) is
parallel to y = λ2x. Thus we can find t0 from the equation

y′(t0)
x′(t0)

= λ2.

This equation can be written as

kt
2(k−r)
0

r cosh 2βt0 + t0β sinh 2βt0
=

1
t2(r−k) cosh 2βt

. (3.1)

The tangent line through (x(t0), y(t0)) has the form y = λ1 + λ2x, where

λ1 = t2k
0

(
1− k

r + t0β tanh 2βt0

)
. (3.2)

Let h(t) denote the point at which y(h(t)) = λ1 (Figure 1). Thus,

h(t) = t0

(
1− k

r + t0β tanh 2βt0

)1/(2k)

.

As the function on the right-hand side of (3.2) is monotonically increasing
in t0 ∈ [0, +∞) from zero to +∞, for each λ1 > 0 there exists t0 > 0 such that
the tangent to s at (x(t0), y(t0)) passes through the point (0, λ1). We denote this
point t0 by h1(λ1).

The function tr
√

cosh 2βt is monotonically increasing from 0 to +∞ for t ∈ R+.
Hence for each x ∈ R+ the equation

tr
√

cosh 2βt = x

has a unique solution on the interval [0, +∞). We denote it by µrβ(x).
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Figure 1

Let σ̂1 denote the value of the parameter t such that t0 = t̂0 = µrβ(
√

2π/δ),
that is, x(t̂0) = 2π/δ2. Set σ̂ = h(σ̂1). The tangent line through (x(t̂0), y(t̂0)) has
an equation y = λ̂1 + λ̂2x, where

λ̂1 = t̂ 2k
0

(
1− k

r + t̂0β tanh 2βt̂0

)
and λ̂2 =

kt̂
2(k−r)
0

r cosh 2βt̂0 + t̂0β sinh 2βt̂0
.

Thus,

σ̂ = λ̂
1/(k)
1 and σ̂1 = µr−k,β

(
1√
λ̂2

)

(Figure 2).

Figure 2
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Figure 3

Consider the following four domains in the plane R2 (Figure 3):

Σ1 =
{
(σ1, σ) ∈ R2 : 0 < h(σ1) ⩽ σ ⩽ σ1

}
,

Σ2 =
{
(σ1, σ) ∈ R2 : 0 ⩽ σ ⩽ h(σ1), 0 < σ1 ⩽ σ̂1

}
,

Σ3 =
{
(σ1, σ) ∈ R2 : σ1 ⩾ σ̂1, 0 ⩽ σ ⩽ σ̂

}
,

Σ4 =
{
(σ1, σ) ∈ R2 : σ̂ ⩽ σ ⩽ h(σ1)

}
.

Set

(λ1, λ2) =



(
σ2k,

1

σ
2(r−k)
1 cosh 2βσ1

)
, (σ1, σ) ∈ Σ1,(

h2k(σ1),
1

σ
2(r−k)
1 cosh 2βσ1

)
, (σ1, σ) ∈ Σ2,(

σ̂2k,
1

σ̂
2(r−k)
1 cosh 2βσ̂1

)
, (σ1, σ) ∈ Σ3,(

σ2k,
h2k

1 (σ2k)− σ2k

h2r
1 (σ2k) cosh(2βh1(σ2k))

)
, (σ1, σ) ∈ Σ4.

(3.3)

We let Θ(σ, σ1) denote the set of measurable functions θ on [−σ1,−σ) ∪ (σ,−σ1]
such that θ(t)| ⩽ 1 for almost all σ < |t| ⩽ σ1.

Theorem. Let k and r be integers satisfying 0 ⩽ k ⩽ r .
(1) If σ > σ1 , then E(Dk, Hr,β

2 + Bσ,2(R), Iσ1 , δ) = ∞.
(2) If k ⩾ 1, then

E(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) =

√
λ1

δ2

2π
+ λ2 (3.4)

for all σ1 > 0 and σ ⩾ 0 such that σ ⩽ σ1 , and for each function θ ∈ Θ(σ, σ1)
the method

m̂θ(y)(x) =
1
2π

∫ σ

−σ

(it)ky(t)eitx dt +
1
2π

∫
σ<|t|⩽σ1

(it)kaθ(t)y(t)eitx dt,
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where

aθ(t) =
λ1 + θ(t)|t|r−k

√
λ1λ2 cosh 2βt

√
−t2k + λ1 + λ2t2r cosh 2βt

λ1 + λ2t2r cosh 2βt
, (3.5)

is an optimal method.
(3) If k = 0, then

E(D0, Hr,β
2 + Bσ,2(R), Iσ1 , δ) =

√
δ2

2π
+

1
σ2r

1 cosh 2βσ1

for all σ1 > 0 and σ ⩾ 0 such that σ ⩽ σ1 , and for each θ ∈ Θ(σ, σ1) the method

m̂θ(y)(x) =
1
2π

∫ σ

−σ

y(t)eitx dt +
1
2π

∫
σ<|t|⩽σ1

aθ(t)y(t)eitx dt,

where

aθ(t) =
σ2r

1 cosh 2βσ1 + θ(t)t2r cosh 2βt

σ2r
1 cosh 2βσ1 + t2r cosh 2βt

, (3.6)

is an optimal method.

Proof. By the main theorem on the representation of analytic functions in tube
domains (see [12]) we have f ∈ Hβ

2 if and only if this function has the form

f(z) =
1
2π

∫
R

g(t)eizt dt, (3.7)

where g is a function such that

sup
|y|<β

∫
R
|g(t)|2e−2yt dt < ∞

(g is the Fourier transform of f(x), x ∈ R). By Plancherel’s theorem

∥f∥2Hβ
2

=
1
2π

sup
0⩽y<β

∫
R
|Ff(t)|2 cosh 2yt dt =

1
2π

∫
R
|Ff(t)|2 cosh 2βt dt. (3.8)

We show that f ∈ Hr,β
2 ∩ L2(R) is in the class Hr,β

2 + Bσ,2(R) if and only if

1
2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt ⩽ 1. (3.9)

In fact, if f ∈ Hr,β
2 +Bσ,2(R), then f = f1 + f2, where f1 ∈ Hr,β

2 and f2 ∈ Bσ,2(R).
Now bearing in mind that Ff2 has support on ∆σ, we have

1
2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt =
1
2π

∫
|t|>σ

t2r|Ff1(t)|2 cosh 2βt dt ⩽ 1.

Conversely, let f ∈ Hr,β
2 ∩ L2(R) be a function such that (3.9) holds. Let

f2 ∈ L2(R) denote the function satisfying Ff2 = χσFf , where χσ is the characteris-
tic function of the interval ∆σ. Then it is clear that f2 ∈ Bσ,2(R). Set f1 = f − f2.
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Then it is obvious that f1 ∈ Hr,β
2 ∩ L2(R), and by (3.8) (since Ff1 = 0 on ∆σ)

we have

∥f (r)
1 ∥2Hβ

2
=

1
2π

∫
|t|>σ

t2r|Ff1(t)|2 cosh 2βt dt =
1
2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt ⩽ 1,

that is, f = f1 + f2 ∈ Hr,β
2 + Bσ,2(R).

Let f ∈ Hr,β
2 ∩ L2(R) be a function such that ∥Ff∥L2(∆σ1 ) ⩽ δ and inequality

(3.9) holds. The for each method m : L2(∆σ1) → L2(R) we have

2∥f (k)∥L2(R) = ∥f (k) −m(0)− (−f (k) −m(0))∥L2(R)

⩽ ∥f (k) −m(0)∥L2(R) + ∥ − f (k) −m(0)∥L2(R)

⩽ 2e(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ, m).

Hence

sup
f∈Hr,β

2 ∩L2(R), ∥Ff∥L2(∆σ1 )⩽δ
1
2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt⩽1

∥f (k)∥L2(R)

⩽ e(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ, m) ⩽ E(Dk, Hr,β

2 + Bσ,2(R), Iσ1 , δ). (3.10)

Consider the extremal problem on the left-hand side of (3.10). Passing to squares
for convenience we can write it as

1
2π

∫
R

t2k|Ff(t)|2 dt → max,∫
|t|⩽σ1

|Ff(t)|2 dt ⩽ δ2,
1
2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt ⩽ 1,

f ∈ Hr,β
2 ∩ L2(R).

(3.11)

(1) Assume that σ > σ1. Let f0 be a function such that

Ff0(t) =

{
c, t ∈ (σ1, σ),
0, t /∈ (σ1, σ),

where c > 0. Then f0 is an admissible function in (3.11) and

∥f (k)
0 ∥2L2(R) =

c2

2π

∫ σ

σ1

t2k dt.

Letting c tend to infinity, from (3.10) we obtain

E(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) = ∞.

(2) Let k ⩾ 1. We show that in each domain Σj , j = 1, 2, 3, 4, we have the
inequality

E(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) ⩾

√
λ1

δ2

2π
+ λ2. (3.12)
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Let (σ1, σ) ∈ Σ1. For each n ∈ N such that 1/n < σ consider the function fn

satisfying

Ffn(t) =


δ
√

n, σ − 1
n

< t < σ,

√
2πn

(
σ1 +

1
n

)−r

cosh−1/2

(
2β

(
σ1 +

1
n

))
, σ1 < t < σ1 +

1
n

,

0 otherwise.
(3.13)

Then we have
∥Ffn∥2L2(∆σ1 ) =

∫ σ

σ−1/n

δ2n dt = δ2

and
1
2π

∫
|t|>σ

t2r|Ffn(t)|2 cosh 2βt dt

=
n

(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))

∫ σ1+1/n

σ1

t2r cosh 2βt dt ⩽ 1.

Hence the functions fn are admissible in problem (3.11). From (3.10) we obtain

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ)

⩾
1
2π

∫
R

t2k|Ffn(t)|2 dt

=
1
2π

∫ σ

σ−1/n

t2kδ2n dt +
n

(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))

∫ σ1+1/n

σ1

t2k dt

=
δ2n(σ2k+1 − (σ − 1/n)2k+1)

2π(2k + 1)

+
n

(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))
(σ1 + 1/n)2k+1 − σ2k+1

1

2k + 1
.

Taking the limit as n →∞ yields

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) ⩾

δ2σ2k

2π
+

1

σ
2(r−k)
1 cosh 2βσ1

= λ1
δ2

2π
+ λ2.

Now let (σ1, σ) ∈ Σ2. The straight line connecting (x(σ1), y(σ1)) with the origin
has the form y = λ2x, where

λ2 =
y(σ1)
x(σ1)

=
1

σ
2(r−k)
1 cosh 2βσ1

.

As mentioned above, since s is concave, there exists a point t0 such that the tan-
gent to s at (x(t0), y(t0)) is parallel to the line y = λ2x. The tangent through
(x(t0), y(t0)) itself has the form y = λ1 + λ2x, where

λ1 = t2k
0 − λ2t

2r
0 cosh 2βt0 = t2k

0

(
1− t

2(r−k)
0 cosh 2βt0

σ
2(r−k)
1 cosh 2βσ1

)
= h2k(σ1).
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Since σ1 ⩽ σ̂1, it follows that t0 ⩽ t̂0. Therefore, t2r
0 cosh 2βt0 ⩽ 2π/δ2. For each

n ∈ N such that h(σ1) < t0 − 1/n consider the function fn such that

Ffn(t) =


δ
√

n, t0 −
1
n

< t < t0,√
n(2π − δ2t2r

0 cosh 2βt0)
(σ1 + 1/n)r

√
cosh(2β(σ1 + 1/n))

, σ1 < t < σ1 +
1
n

,

0 otherwise.

Then we have

∥Ffn∥2L2(∆σ1 ) =
∫ t0

t0−1/n

δ2n dt = δ2

and

1
2π

∫
|t|>σ

t2r|Ffn(t)|2 cosh 2βt dt

=
δ2n

2π

∫ t0

t0−1/n

t2r cosh 2βt dt

+
n(2π − δ2t2r

0 cosh 2βt0)
2π(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))

∫ σ1+1/n

σ1

t2r cosh 2βt dt

⩽
δ2

2π
t2r
0 cosh 2βt0 + 1− δ2

2π
t2r
0 cosh 2βt0 = 1.

Hence the function fn are admissible in problem (3.11). From (3.10) we obtain

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ)

⩾
1
2π

∫
R

t2k|Ffn(t)|2 dt

=
1
2π

∫ t0

t0−1/n

t2kδ2n dt +
n(2π − δ2t2r

0 cosh 2βt0)
2π(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))

∫ σ1+1/n

σ1

t2k dt

=
δ2n(t2k+1

0 − (t0 − 1/n)2k+1)
2π(2k + 1)

+
n(2π − δ2t2r

0 cosh 2βt0)((σ1 + 1/n)2k+1 − σ2k+1
1 )

2π(2k + 1)(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))
.

Taking the limit as n →∞ yields

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ)

⩾
δ2t2k

0

2π
+

2π − δ2t2r
0 cosh 2βt0

2πσ
2(r−k)
1 cosh 2βσ1

=
δ2t2k

0

2π

(
1− t

2(r−k)
0 cosh 2βt0

σ
2(r−k)
1 cosh 2βσ1

)
+

1

σ
2(r−k)
1 cosh 2βσ1

= λ1
δ2

2π
+ λ2.
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Let (σ1, σ) ∈ Σ3. For each n ∈ N such that σ < t̂0−1/n consider the function fn

such that

Ffn(t) =

δ
√

n, t̂0 −
1
n

< t < t̂0,

0 otherwise.

Then we have

∥Ffn∥2L2(∆σ1 ) =
∫ t̂0

t̂0−1/n

δ2n dt = δ2

and

1
2π

∫
|t|>σ

t2r|Ffn(t)|2 cosh 2βt dt =
δ2n

2π

∫ t̂0

t̂0−1/n

t2r cosh 2βt dt

⩽
δ2

2π
t̂ 2r
0 cosh 2βt̂0 = 1.

Thus, the fn are admissible functions in (3.11). From (3.10) we obtain

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ)

⩾
1
2π

∫
R

t2k|Ffn(t)|2 dt =
1
2π

∫ t̂0

t̂0−1/n

t2kδ2n dt

=
δ2n(t̂ 2k+1

0 − (t̂0 − 1/n)2k+1)
2π(2k + 1)

.

Taking the limit as n →∞ yields

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) ⩾

δ2t̂ 2k
0

2π
= λ1

δ2

2π
+ λ2.

Let (σ1, σ) ∈ Σ4, and let t0 be the point defined as for (σ1, σ) ∈ Σ2. Set
ξ = h1(σ2k). Since σ ⩽ h(σ1), we obtain ξ ⩽ t0 < σ1. Moreover, as σ ⩾ σ̂,
it follows that ξ ⩾ t̂0. Hence ξ2r cosh 2βξ ⩾ 2π/δ2. For each n ∈ N satisfying
1/n < σ and ξ − 1/n > σ consider the function fn such that

Ffn(t) =



√
n

√
δ2 − 2π

ξ2r cosh 2βξ
, σ − 1

n
< t < σ,

√
2πn

ξr
√

cosh 2βξ
, ξ − 1

n
< t < ξ,

0 otherwise.

Then we have

∥Ffn∥2L2(∆σ1 ) =
∫ σ

σ−1/n

n

(
δ2 − 2π

ξ2r cosh 2βξ

)
dt +

∫ ξ

ξ−1/n

2πn

ξ2r cosh 2βξ
dt = δ2,

1
2π

∫
|t|>σ

t2r|Ffn(t)|2 cosh 2βt dt =
n

ξ2r cosh 2βξ

∫ ξ

ξ−1/n

t2r|Ffn(t)|2 cosh 2βt dt ⩽ 1.
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Thus the functions fn are admissible in problem (3.11). By (3.10) we have

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ)

⩾
1
2π

∫
R

t2k|Ffn(t)|2 dt

=
n

2π

(
δ2 − 2π

ξ2r cosh 2βξ

) ∫ σ

σ−1/n

t2k dt +
n

ξ2r cosh 2βξ

∫ ξ

ξ−1/n

t2k dt

=
n

2π

(
δ2 − 2π

ξ2r cosh 2βξ

)
σ2k+1 − (σ − 1/n)2k+1

2k + 1

+
n

ξ2r cosh 2βξ

ξ2k+1 − (ξ − 1/n)2k+1

2k + 1
.

Taking the limit as n →∞ yields

E2(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) ⩾

σ2k

2π

(
δ2 − 2π

ξ2r cosh 2βξ

)
+

ξ2k

ξ2r cosh 2βξ

= λ1
δ2

2π
+ λ2.

We look for optimal recovery methods ma : L2(∆σ1) → L2(R) in the class of
maps with the following representation in terms of Fourier transforms:

Fma(y)(t) =

{
(it)ka(t)y(t), t ∈ ∆σ1 ,

0, t /∈ ∆σ1 .
(3.14)

For an estimate of the error of such a method we must estimate the value of the
extremal problem

∥f (k) −ma(y)∥L2(R) → max,

∥Ff − y∥L2(∆σ1 ) ⩽ δ, f ∈ Hr,β
2 + Bσ,2(R).

(3.15)

Considering Fourier images in the functional to be maximized, from Plancherel’s
theorem we obtain that the square of the value of problem (3.15) is the value of the
following problem:

1
2π

∫ σ1

−σ1

t2k|Ff(t)− a(t)y(t)|2 dt +
1
2π

∫
|t|>σ1

t2k|Ff(t)|2 dt → max,∫ σ1

−σ1

|Ff(t)− y(t)|2 dt ⩽ δ2,
1
2π

∫
|t|⩾σ

t2r|Ff(t)|2 cosh 2βt dt ⩽ 1.

(3.16)

Note that on pairs (f, y) admissible for this problem, where f ∈ Bσ,2(R) and
y = Ff , the functional to be maximized takes the form

1
2π

∫ σ

−σ

t2k|Ff(t)|2|1− a(t)|2 dt.

Hence, if the function a is not almost everywhere equal to one on ∆σ, then, as
Bσ,2(R) is a linear space, the value of problem (3.16) (and therefore of (3.15))
is infinite, that is, the method with this a has an infinitely large error.
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Let a ≡ 1 on ∆σ. We estimate the functional maximized in (3.16) from above
by representing it as a sum of three terms,

I1 =
1
2π

∫ σ

−σ

t2k|Ff(t)− y(t)|2 dt,

I2 =
1
2π

∫
σ<|t|⩽σ1

t2k|Ff(t)− a(t)y(t)|2 dt

and
I3 =

1
2π

∫
|t|>σ1

t2k|Ff(t)|2 dt.

We show that
I1 ⩽

λ1

2π

∫ σ

−σ

|Ff(t)− y(t)|2 dt (3.17)

in all domains Σj , j = 1, 2, 3, 4. In fact, the inequality

I1 ⩽
σ2k

2π

∫ σ

−σ

|Ff(t)− y(t)|2 dt

is obvious. Since σ2k = λ1 in Σ1 and Σ4, (3.17) holds for these domains. If
(σ1, σ) ∈ Σ2, then

λ1 = h2k(σ1) ⩾ σ2k,

while if (σ1, σ) ∈ Σ3, then
λ1 = σ̂2k ⩾ σ2k,

so that (3.17) holds for all domains.
Next we estimate I2. Using the Cauchy–Schwarz–Bunyakovsky inequality we

obtain

t2k|Ff(t)− a(t)y(t)|2

= t2k|(1− a(t))Ff(t) + a(t)(Ff(t)− y(t))|2

⩽ t2k

(
|1− a(t)|2

λ2t2r cosh 2βt
+
|a(t)|2

λ1

)
(λ2t

2r|Ff(t)|2 cosh 2βt + λ1|Ff(t)− y(t)|2).

(3.18)

Set

Sa = ess max
σ<|t|⩽σ1

t2k

(
|1− a(t)|2

λ2t2r cosh 2βt
+
|a(t)|2

λ1

)
.

Then integrating (3.18) we arrive at the following bound for I2:

I2 ⩽
Sa

2π

∫
σ<|t|⩽σ1

(λ2t
2r|Ff(t)|2 cosh 2βt + λ1|Ff(t)− y(t)|2) dt. (3.19)

Now we show that

I3 ⩽
λ2

2π

∫
|t|>σ1

t2r|Ff(t)|2 cosh 2βt dt (3.20)
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in all domains Σj , j = 1, 2, 3, 4. We have

I3 =
1
2π

∫
|t|>σ1

t2(k−r)t2r|Ff(t)|2 dt ⩽
σ

2(k−r)
1

2π cosh 2βσ1

∫
|t|>σ1

t2r|Ff(t)|2 cosh 2βt dt.

Since in Σ1 and Σ2 we have

λ2 =
σ

2(k−r)
1

cosh 2βσ1
,

inequality (3.20) holds in these domains. If (σ1, σ) ∈ Σ3, then σ1 ⩾ σ̂1. Therefore,

λ2 =
1

σ̂
2(r−k)
1 cosh 2βσ̂1

⩾
σ

2(k−r)
1

cosh 2βσ1
.

Let (σ1, σ) ∈ Σ4. Then λ2 is the slope of the tangent to s at (x(ξ), y(ξ)), and
σ

2(k−r)
1 cosh−1 2βσ1 is the slope of the tangent to s at (x(t0), y(t0)) (we defined t0

when we considered the lower bound in the case (σ1, σ) ∈ Σ2). Since ξ ⩽ t0 and s
is a concave function, it follows that

λ2 ⩾
σ

2(k−r)
1

cosh 2βσ1
.

Thus, (3.20) holds in all domains.
Assuming that a is a function such that Sa ⩽ 1, adding (3.17), (3.19) and (3.20)

we obtain the following estimate for the functional in (3.16):

λ1

2π

∫ σ

−σ

|Ff(t)− y(t)|2 dt

+
1
2π

∫
σ<|t|⩽σ1

(λ2t
2r|Ff(t)|2 cosh 2βt + λ1|Ff(t)− y(t)|2) dt

+
λ2

2π

∫
|t|>σ1

t2r|Ff(t)|2 cosh 2βt dt

=
λ1

2π

∫ σ1

−σ1

|Ff(t)− y(t)|2 dt +
λ2

2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt

⩽ λ1
δ2

2π
+ λ2.

Hence

e(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ, ma) ⩽

√
λ1

δ2

2π
+ λ2.

Taking (3.12) into account we obtain

E(Dk, Hr,β
2 + Bσ,2(R), Iσ1 , δ) =

√
λ1

δ2

2π
+ λ2,

and the methods ma are optimal.
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We show that there exist functions a such that Sa ⩽ 1. Note (by extracting
a ‘full square’) that the condition Sa ⩽ 1 is equivalent to the following one: for
almost all σ < |t| ⩽ σ1 we have∣∣∣∣a(t)− λ1

λ1 + λ2t2r cosh 2βt

∣∣∣∣2 ⩽
λ1λ2t

2(r−k) cosh 2βt(−t2k + λ1 + λ2t
2r cosh 2βt)

(λ1 + λ2t2r cosh 2βt)2
.

If
− t2k + λ1 + λ2t

2r cosh 2βt ⩾ 0 (3.21)

for σ < |t| ⩽ σ1, then it is obvious that such functions a exist and can be described
by equality (3.5).

If (σ1, σ) ∈ Σ1, then the straight line y = λ1 +λ2x is parallel to the tangent to s
at the point (x(t0), y(t0)), where t0 is defined by the equality

kt
2(k−r)
0

r cosh 2βt0 + t0β sinh 2βt0
=

1

σ
2(r−k)
1 cosh 2βσ1

(see (3.1)), and since σ ⩾ h(σ1), it does not lie below the tangent. Hence, as s
is concave, for all x ⩾ 0 we have the inequality λ1 + λ2x ⩾ s(x). This yields
condition (3.21). In the other three cases the lines y = λ1 + λ2x are tangent to s,
and condition (3.21) holds for the same reasons.

(3) Let k = 0, σ1 > 0, σ ⩾ 0 and σ ⩽ σ1. As shown above, the functions fn

defined by (3.13) are admissible in problem (3.11). Hence

E2(D0, Hr,β
2 + Bσ,2(R), Iσ1 , δ)

⩾
1
2π

∫
R
|Ffn(t)|2 dt

=
1
2π

∫ σ

σ−1/n

δ2n dt +
n

(σ1 + 1/n)2r cosh(2β(σ1 + 1/n))

∫ σ1+1/n

σ1

dt

=
δ2

2π
+

1
(σ1 + 1/n)2r cosh 2β(σ1 + 1/n)

.

Taking the limit as n →∞ we obtain

E2(D0, Hr,β
2 + Bσ,2(R), Iσ1 , δ) ⩾

δ2

2π
+ λ̃, λ̃ =

1
σ2r

1 cosh 2βσ1
. (3.22)

We look for optimal recovery methods ma : L2(∆σ1) → L2(R) among the maps
with representation (3.14) for k = 0 in terms of Fourier transforms. Following the
above scheme we assume that a ≡ 1 on ∆σ and estimate the functional maximized
in (3.16) (for k = 0) by representing it as a sum of three terms:

I1 =
1
2π

∫ σ

−σ

|Ff(t)− y(t)|2 dt,

I2 =
1
2π

∫
σ<|t|⩽σ1

|Ff(t)− a(t)y(t)|2 dt,

I3 =
1
2π

∫
|t|>σ1

|Ff(t)|2 dt.
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We estimate I2. Using the Cauchy–Schwarz–Bunyakovsky inequality we obtain

|Ff(t)− a(t)y(t)|2

= |(1− a(t))Ff(t) + a(t)(Ff(t)− y(t))|2

⩽

(
|1− a(t)|2

λ̃t2r cosh 2βt
+ |a(t)|2

)(
λ̃t2r|Ff(t)|2 cosh 2βt + |Ff(t)− y(t)|2

)
. (3.23)

Set

S̃a = ess max
σ<|t|⩽σ1

(
|1− a(t)|2

λ̃t2r cosh 2βt
+ |a(t)|2

)
.

Then integrating (3.23) we arrive at the following estimate for I2:

I2 ⩽
S̃a

2π

∫
σ<|t|⩽σ1

(λ̃t2r|Ff(t)|2 cosh 2βt + |Ff(t)− y(t)|2) dt.

For I3 we have

I3 ⩽
λ̃

2π

∫
|t|>σ1

t2r|Ff(t)|2 cosh 2βt dt.

Assume that for the function a we have S̃a ⩽ 1. Then taking the estimates for
I2 and I3 into account we obtain the following estimate for the functional in (3.16)
(for k = 0):

1
2π

∫ σ

−σ

|Ff(t)− y(t)|2 dt +
1
2π

∫
σ<|t|⩽σ1

(λ̃t2r|Ff(t)|2 cosh 2βt + |Ff(t)− y(t)|2) dt

+
λ̃

2π

∫
|t|>σ1

t2r|Ff(t)|2 cosh 2βt dt

=
1
2π

∫ σ1

−σ1

|Ff(t)− y(t)|2 dt +
λ̃

2π

∫
|t|>σ

t2r|Ff(t)|2 cosh 2βt dt

⩽
δ2

2π
+ λ̃.

Hence

e(D0, Hr,β
2 + Bσ,2(R), Iσ1 , δ, ma) ⩽

√
δ2

2π
+ λ̃.

Taking (3.22) into account we obtain

E(D0, Hr,β
2 + Bσ,2(R), Iσ1 , δ) =

√
δ2

2π
+ λ̃,

and the methods ma are optimal.
The condition S̃a ⩽ 1 is equivalent to the following one: for almost all σ < |t|⩽ σ1

we have the inequality∣∣∣∣a(t)− 1

1 + λ̃t2r cosh 2βt

∣∣∣∣ ⩽
λ̃t2r cosh 2βt

1 + λ̃t2r cosh 2βt
.

It is obvious that such a exist and are described by (3.6).
The proof is complete.
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§ 4. Discussion of optimal methods

When we recover f (k) on the class Hr,β
2 + Bσ,2(R) from an inaccurately given

Fourier transform of the function f on the interval [−σ1, σ1], the following two
questions arise:

• can we reduce the interval [−σ1, σ1] on which the a priori information
about f is set without increasing the optimal recovery error?

• can we also extend the subspace Bσ,2(R) on which the optimal method is
exact without increasing the optimal recovery error?

In other words, the question is whether part of the information on the function f
that we obtain is excessive and among the family of optimal methods we can find
one that is exact on a wider subspace and does not increase the optimal recovery
error. We look at the case k ⩾ 1. The answers to the above questions depend on
the domain Σj , j = 1, 2, 3, 4, in which the point (σ1, σ) occurs.

When (σ1, σ) ∈ Σ1, it is clear from (3.4) that, as σ1 decreases or σ increases
the optimal recovery error grows. Thus, the answers to the questions are in the
negative in this case.

If (σ1, σ) ∈ Σ2, then the optimal recovery error does not change for the
point (σ1, h(σ1). This means that we can extend the original subspace Bσ,2(R)
to Bh(σ1),2(R) without increasing the optimal recovery error.

For (σ1, σ) ∈ Σ4 we can reduce the interval on which the information about f is
set to the interval [−σ′1, σ

′
1], where σ′1 is such that h(σ′1) = σ.

Finally, if (σ1, σ) ∈ Σ3, then we can both reduce the interval on which the
information on f is prescribed to [−σ̂1, σ̂1] and extend the subspace to Bσ̂,2(R).

We show these transitions schematically in Figure 4.

Figure 4
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