
ON BEST QUADRATURE FORMULAS ONHARDY{SOBOLEV CLASSESK. YU. OSIPENKOAbstract. For functions from Hardy{Sobolev classes de�ned asthe set of functions analytic in the unit disk and satisfying thecondition jf (r)(z)j � 1 best quadrature formulas which used val-ues of functions and their derivatives at the �xed system of pointsfrom the interval (�1; 1) are constructed. For the periodic Hardy{Sobolev class Hr1;� which is de�ned as the set of 2�-periodic func-tions analytic in the strip j Imzj < � and satisfying the conditionjf (r)(z)j � 1 it is proved that the rectangle formula is best forthe equidistant system of points and the error of this formula iscalculated. Best quadrature formulas on the class Hp;� which isde�ned in the similar way as the class H1;� but the boundaryvalues of functions are taken in Lp-norm are constructed. An op-timal method of recovery of functions from Hrp using the Taylorinformation f(0); f 0(0); : : : ; f (n+r�1)(0) is obtained, too.IntroductionLet X be a linear space over the �eld K = R or C , W a subset ofX, and L; l1; : : : ; ln linear functionals on X. The problem of optimalrecovery of functional L on the setW from the values of the informationoperator Ix = (l1x; : : : ; lnx), x 2 W , is the problem of �nding the valuee(L;W; I) := infS : Kn!K supx2W jLx� S(Ix)j(1)and a method S for which the in�mum in (1) is attained (if such methodexists) which is called an optimal method of recovery.Optimal recovery problems beginning with the paper [1] are studiedbymany authors (see [2]{[5] and the literature cited there). Wementionhere only one result which was proved in [1] for the real space and in[6] for the complex one: for a convex balanced set W among optimalmethods of recovery there exists a linear method and the equalitye(L;W; I) = supx2WIx=0 jLxj(2)holds. Any element x0 for which the supremum in (2) is attained wecall extremal.This research was carried out with the �nancial support of the Russian Founda-tion for Basic Research (grants Â99-01-01181 and Â00{15{96109).1



2 K. YU. OSIPENKOThe problem (2) often turns out more simple than the problem of�nding an optimal recovery method. In this connection in [7] it wasproposed a method allowing to obtain an optimal method of recovery ifthere exists some parametrization of extremal element in the problem(2). Here this method is used for obtaining best quadrature formulasand an optimal recovery method by Taylor information on the Hardy{Sobolev classes.We shall call the Hardy{Sobolev class Hrp the set of functions fanalytic in the unit disk D := fz 2 C : jzj < 1g and satisfying thecondition sup0<�<1 12� Z 2�0 jf (r)(�ei�)jp d� � 1; 1 � p <1;supz2D jf (r)(z)j � 1; p =1:We call the periodic Hardy{Sobolev class Hrp;� the set of 2�-periodicfunctions f analytic in the strip S� := fz 2 C : j Imzj < �g andsatisfying the conditionsup0��<�� 14� Z 2�0 �jf (r)(t+ i�)jp + jf (r)(t� i�)jp� dt�1=p � 1;supz2S� jf (r)(z)j � 1:For r = 0 we denote the appropriated classes by Hp and Hp;�.In x1 for Hr1 and the information operatorIf = (f(x1); : : : ; f (�1�1)(x1); : : : ; f(xn); : : : ; f (�n�1)(xn));(3)where x1; : : : ; xn are distinct points from the interval (�1; 1) and�1; : : : ; �n are even, a linear optimal method of integration (a bestquadrature formula) for the integralZ 1�1 f(x)p(x) dxin which p(x) is a nonnegative weight function is constructed.In x2 for equidistant system of points a best quadrature formula forthe class Hr1;� is constructed. It is proved that this formula is therectangle formula and its error is found. For r = 0 best quadratureformulas on the classes H1 and H1;� were investigated in [8]{[10].In x3 best quadrature formulas on the class Hp;� by the infor-mation operator (3) in which x1; : : : ; xn are distinct points fromT := [0; 2�) are constructed. The similar problem in the non-periodic case was solved in [11, p. 175]. In x4 an optimal methodof recovery of functions from Hrp by the information operator If =(f(0); f 0(0); : : : ; f (n+r�1)(0)) is constructed. In this problem optimalmethods were previously investigated in [12] (p = 1, r = 0), [2]



ON BEST QUADRATURE FORMULAS 3(p =1, r = 1), [13] (1 � p � 1, r = 0), [14] (p =1, r 2 Z+, many-dimensional case), [11, p. 65] (1 � p � 1, r = 0, many-dimensionalcase).We need the following result from [7].Theorem 1. Let X be a real linear space, W a convex centrally sym-metric set from X, and x0 an extremal element in the problem of op-timal recovery of a linear functional L on the set W by the valuesof linear functionals l1x; : : : ; lnx. Let every M = (t1; : : : ; tn) 2 Rnfrom some neighborhood of M0 2 Rn associates with x(M) 2 W wherex(M0) = x0. Then if the functions '(M) := Lx(M), 'j(M) :=ljx(M), j = 1; : : : ; n, have continuous partial derivatives with respectto all variables in a neighborhood of M0 and the determinant of thematrix J(M) = 0BBB@@'1@t1 : : : @'n@t1: : : : : : : : : : : : : : :@'1@tn : : : @'n@tn 1CCCAdoes not vanish at M0, then the methodLx � nXj=1 Cjljx;where C1; : : : ; Cn are solutions of the systemJ(M0)C = grad'��M0in which C = (C1; : : : ; Cn), is the unique linear optimal method ofrecovery.1. Best quadrature formulas on the class Hr1Consider the problem of optimal recovery (1) for W = Hr1,Lf = Z 1�1 f(x)p(x) dx;(4)where p(x) is a nonnegative weight function, and the information op-erator I de�ned by (3). Put N := nXj=1 �j:(5)First, we prove some auxiliary assertions. Recall that the systemof real functions fuk(t)gmk=0 m times continuously di�erentiable on theinterval (c; d) is called ET -system, if every generalized polynomialP (t) = mXk=0 Ckuk(t); mXk=0 C2k 6= 0;



4 K. YU. OSIPENKOhas at most m zeros on (c; d) with regard to the algebraic multiplicity.The Blaschke product of degree n is a function of the formB(z) = � nYj=1 z � zj1 � zjz ;where j�j = 1,   zj 2 D, j = 1; : : : ; n. For �j 2 N, j = 1; : : : ; n, and�j 2 (�1; 1) setWj(x) := x� �j1� �jx; W (x) := mYj=1� x� �j1 � �jx��j :Lemma 1. The system of functions(6) gjk(x) :=W (x) �W�kj (x)�W kj (x)� ;k = 1; : : : �j ; j = 1; : : : ;m;is a ET -system on (�1; 1).Proof. Consider the generalized polynomialP (x) = mXj=1 �jXk=1 Cjkgjk(x); mXj=1 �jXk=1 C2jk 6= 0:In view of the fact that Wj(�1) = �1 this generalized polynomial maybe written in the formP (x) = a0 (1� x2)xlQsj=1(x� aj)Qmj=1(1 � �jx)2�j ;where a0; a1; : : : ; as 6= 0. Since Wj(x�1) = W�1j (x) we haveP (x�1) = 1W (x) mXj=1 �jXk=1 Cjk �W kj (x)�W�kj (x)� = �W 2(x)P (x):>From the last equality it is easy to obtain that with every zero aj 6= 0of P coincides the zero of this function a�1j with the same multiplicity,and moreover, l+ s=2 =Pmj=1 �j �1. Thus the generalized polynomialP has at mostPmj=1 �j � 1 zeros on the interval (�1; 1) with regard tothe algebraic multiplicity.For functions f analytic in the unit disk set T0f := f and(Trf)(z) := Z z0 (z � �)r�1(r � 1)! f(�) d�; r 2 N:(7)Obviously, (Trf)(r) = f and consequently, Trf 2 Hr1 for all f 2 H1.Let mXj=1 �j + r = N:



ON BEST QUADRATURE FORMULAS 5De�ne the functions !1; : : : ; !N by the equality(8) (!1(z); : : : ; !N (z)) := (1; z; : : : ; zr�1;(Trg11)(z); : : : ; (Trg1�1)(z); : : : ; (Trgm1)(z); : : : ; (Trgm�m )(z)):Set (aj1; : : : ; ajN) := I!j; j = 1; : : : ; N; A := fajkgNj;k=1:(9)Lemma 2. detA 6= 0.Proof. If detA = 0, then there exist C1; : : : ; CN not all equal zero forwhich the function F (z) := NXj=1 Cj!j(z)has at least N zeros on the interval (�1; 1) counting multiplicities. Inthis case by Rolle's theorem F (r) must have at least N � r zeros on thesame interval. SinceF (r)(z) = Cr+1g11(z) + : : :+ CNgm�m(z);by Lemma 1 it follows that Cr+1 = : : : = CN = 0, but then C1 = : : : =Cr = 0. The contradiction so obtained proves that detA 6= 0.Denote by Hr;R1 the set of functions from Hr1 real on the interval(�1; 1).Proposition 1. Let �1 < x1 < x2 < : : : < xn < 1. Then for all even�1; : : : ; �n there exists a function F 2 Hr;R1 of the formF = Pr�1 + TrW;where Pr�1 is a polynomial of degree r�1 and W is a Blaschke productof degree N � rW (z) = mYj=1� z � �j1� �jz��j ; mXj=1 �j = N � r;x1 � �1 < : : : < �m � xn, such that IF = 0 andsupf2Hr;R1If=0 Z 1�1 f(x)p(x) dx = Z 1�1 F (x)p(x) dx:Proof. It follows from [15] that there exists a function F 2 Hr;R1 nor-malized by the condition F (1) > 0 for which IF = 0 and F (r) is aBlaschke product of degree N � r. Moreover, in the same paper it wasproved that for all x 2 (�1; 1) the equalitysupf2Hr;R1If=0 jf(x)j = jF (x)j(10)holds. By Rolle's theorem it follows that F has no other zeros on theinterval (�1; 1) except the zeros at the points x1; : : : ; xn with even



6 K. YU. OSIPENKOmultiplicities �1; : : : ; �n. Thus in view of the normalization F (1) > 0for all x 2 (�1; 1), F (x) � 0. Taking into account (10) we obtain theassertion of the proposition.Theorem 2. Let �1 < x1 < x2 < : : : < xn < 1, �1; : : : ; �n be evennumbers, W a Blaschke product from Proposition 1, and gjk, !j, andthe matrix A be de�ned by (6), (8), and (9), respectively. Then themethod Z 1�1 f(x)p(x) dx � nXj=1 �j�1Xk=0 cjkf (k)(xj);(11)in which cjk are de�ned by the systemAc = d;(12)where c = (c10; : : : ; c1;�1�1; : : : ; cn0; : : : ; cn;�n�1), d = (d1; : : : ; dN ),dj = Z 1�1 !j(x)p(x) dx; j = 1; : : : ; N;is optimal on the class Hr1.Proof. First, we prove that the method (11) is optimal on the classHr;R1 . Put Wj0(z) := 1, j = 1; : : : ;m, andWj;k+1(z) := Wj(z)Wjk(z) + "j;k+11 + "j;k+1Wj(z)Wjk(z) ; j = 1; : : : ;m; k = 0; : : : ; �j�1:For all "j1; : : : ; "j;�j 2 (�1; 1), Wj;�j 2 H1. SetfP (z) := r�1Xj=0 ajzj + (TrWP )(z);where P = (a0; : : : ; ar�1; "11; : : : ; "1;�1; : : : ; "m1; : : : ; "m;�m) 2 RN andWP (z) = mYj=1Wj;�j (z):Let the polynomial Pr�1 from Proposition 1 be of the formPr�1(z) = r�1Xj=0 a0jzj:Then in view of Proposition 1 for P = P0 := (a00; : : : ; a0r�1; 0; : : : ; 0) thefunction fP0 is extremal in the problem of optimal recovery of the inte-gral (4) on the class Hr;R1 by the information (3). De�ne the function'1; : : : ; 'N by the equality('1(P ); : : : ; 'N (P )) := IfP :



ON BEST QUADRATURE FORMULAS 7It is easily seen that at the point P0 we have�@'1@aj ; : : : ; @'N@aj � = I!j+1; 0 � j � r � 1;� @'1@"jk ; : : : ; @'N@"jk� = I(Trgjk); 1 � j � m; 1 � k � �j :Putting '(P ) = Z 1�1 fP (x)p(x) dx;it is easy to verify that at the point P0@'@aj = Z 1�1 xjp(x) dx; 0 � j � r � 1;@'@"jk = Z 1�1(Trgjk)(x)p(x) dx; 1 � j � m; 1 � k � �j:By Theorem 1, taking into account Lemma 2, it follows now that thecoe�cients of optimal method for the class Hr;R1 are de�ned from thesystem (12). Now we prove that the constructed method (we denoteit by S) is also optimal for the class Hr1. Assume that there exists afunction f0 2 Hr1 for whichjLf0 � S(If0)j > e(L;Hr1; I):Then the function f0(z) 2 Hr1 also satis�es this inequality. Since theclass Hr1 is balanced without loss of generality we may assume thatLf0 � S(If0) > 0. Consequently, for the functiong(z) := f0(z) + f0(z)2 2 Hr;R1we have Lg � S(Ig) > e(L;Hr1; I) � e(L;Hr;R1 ; I)which is impossible in view of optimality of the method S on the classHr;R1 . 2. The periodic caseWe construct now an optimal method of integration for the integralLf = ZTf(x) dxon the class Hr1;� by the information operatorIf = �f(0); f �2�n � ; : : : ; f �2(n � 1)�n �� :(13)For su�ciently general conditions on the class of functions it can beproved that the rectangle formula is an optimal method of integrationusing the information operator (13). Let H be a convex and balanced



8 K. YU. OSIPENKOclass of continuous on the whole real axis 2�-periodic functions f suchthat for all real constants C and a, f(x) + C 2 H and f(x+ a) 2 H.Lemma 3. The rectangle formulaZTf(x) dx � 2�n n�1Xj=0 f �2j�n �(14)is an optimal method of integration on the class H and for its error theequality e(L;H; I) = 2� supf2Hn jf(0)jholds where Hn is the set of 2�=n-periodic functions from H for whichZ 2�=n0 f(x) dx = 0:(15)If functions from H are di�erentiable, then the rectangle formula is alsoan optimal method of integration for the information operatorI1f = �f(0); f 0(0); f �2�n � ; f 0�2�n � ;: : : ; f �2(n � 1)�n � f 0�2(n� 1)�n �� :Proof. It was proved in [16] (see also [17, p. 208]) thatsupf2H �����ZTf(x) dx� 2�n n�1Xj=0 f �2j�n ������ = 2� supf2Hn jf(0)j:Thus e(L;H; I) � 2� supf2Hn jf(0)j:On the other hand, for all " > 0 there exists a function g 2 Hn forwhich jg(0)j > supf2Hn jf(0)j � ":In view of the properties of the class Hn we may assume thatg(0) = � maxx2[0;2�=n) jg(x)j:Consider the function f0(x) := g(x)� g(0):Since f0 2 H and If0 = 0, from (2) we havee(L;H; I) � ����ZTf0(x) dx���� = 2�jg(0)j > 2� supf2Hn jf(0)j � 2�":Hence e(L;H; I) = 2� supf2Hn jf(0)j



ON BEST QUADRATURE FORMULAS 9and the rectangle formula is an optimal method of integration for theinformation operator I.In the case when functions from H are di�erentiable for the proofof optimality of rectangle formula for the information operator I1 itsu�ces to note that I1f0 = 0 and in view of (2)e(L;H; I) � e(L;H; I1):Theorem 3. For all r � 1 the rectangle formula (14) is an optimalmethod of integration on the class Hr1;� for the information operatorsI and I1 and for its error the equalitiese(L;Hr1;�; I) = e(L;Hr1;�; I1) = 2�2p��nr� 1Xm=0 (�1)m(r+1)(2m+ 1)r sinh((2m+ 1)2n�) = 4�nr e��n +O�e�5�nnr �hold where � = 4e�2�n� P1m=0 e�4�nm(m+1)1 + 2P1m=1 e�4�nm2�2and � = Z 10 dtp(1 � t2)(1� �2t2)is the complete elliptic integral of the �rst kind for the modulus �.Proof. For the information operators I and I1 the optimality of rectan-gle formula on the class Hr1;� immediately follows from Lemma 3. Itremains to �nd the value supf2Hr1;�;n jf(0)j;where Hr1;�;n is the set of functions f from Hr1;� with the period 2�=nsatisfying the condition (15). Setaj(f) := 1� ZTf(x) cos jx dx; j = 0; 1; : : : ;bj(f) := 1� ZTf(x) sin jx dx; j = 1; 2; : : : :Obviously, supf2Hr1;�;n jf(0)j � supf2Hr1;�a0(f)=a1(f)=b1(f)=:::=an�1(f)=bn�1(f)=0 jf(0)j:(16)



10 K. YU. OSIPENKOThe value in the right hand side of (16) was calculated in [18]. Itattains for the function'�n;r(z) := (��n;r �z + �2n� ; r = 2l;��n;r(z); r = 2l + 1;where��n;r := Dr � �n;0; r � 1; ��n;0(z) := p� sn�2n�� z; �� ;Dr(t) = 2 1Xm=1 cos(mt� �r=2)mr ; r = 1; 2; : : : ;is the Bernoulli kernel, and(f � g)(z) := 12� ZTf(z � t)g(t) dt:It was shown in [19] that��n;r(z) = �p��nr 1Xm=0 sin((2m+ 1)nz � �r=2)(2m+ 1)r sinh((2m+ 1)2n�) :Thus '�n;r 2 Hr1;�;n and consequently,supf2Hr1;�;n jf(0)j � j'�n;r(0)j= �p��nr 1Xm=0 (�1)m(r+1)(2m + 1)r sinh((2m+ 1)2n�) :To obtain the asymptotics of the error it remains to use the well-knownequality (see, for example, [20])� = �2  1 + 2 1Xm=1 e�4�nm2!2 :3. Best quadrature formulas on the classes Hp;�Consider now the problem of constructing of optimal integrationmethod for the integral Lf = ZTf(t)p(t) dt;where p(t) is a nonnegative weight function, for the class Hp;� by theinformation operator (3) in which x1; : : : ; xn are distinct points fromT.



ON BEST QUADRATURE FORMULAS 11Put k = 4e�� � P1m=0 e�2�m(m+1)1 + 2P1m=1 e�2�m2�2 :(17)Denote by K and K 0 the complete elliptic integrals of the �rst kind forthe moduli k and k0 = p1� k2, respectively (the equality (17) is equiv-alent to �K 0=K = 2�). For the strip S� a 2�-periodic Blaschke productwith zeros at the points xj with even multiplicities is the function (see[10]) B(t) = kN=2 nYj=1 sn�j �K� (t� xj); k� ;where N is de�ned by (5).Denote by HRp;� the set of functions from the class Hp;� real on thereal axis.Lemma 4. Let �1; : : : ; �n be even numbers and 1 � p � 1. Then1) there exists the unique function gB;p 2 HRp;� for whiche(L;Hp;�; I) = ZTgB;p(t)B(t)p(t) dt;2) gB;p does not vanish in the strip S� and gB;p(t) > 0 for t 2 T,3) for 1 � p <1 and almost all t 2 T the eqalitye(L;Hp;�; I)jgB;p(t+ i�)jp = ZTgB;p(� )B(� )K�(t� � )p(� ) d�(18) holds, where K�(t) = 2�� dn��� t; ��and � is the complete elliptic integral of the �rst kind for themodulus � which is de�ned by the condition ��0=� = �.Proof. It follows from [21] that in the problemP1 := supf2HRp;� ZTjf(t)jB(t)p(t) dtthere exists the unique function gB;p 2 HRp;� normalized by the conditiongB;p(0) > 0 for which this supremum is attained. Moreover, from thesame paper it follows that this function does not vanish in the strip S�(and consequently, gB;p(t) > 0 for t 2 T) and for all 1 � p <1P1jgB;p(t� i�jp = ZTjgB;p(� )jB(� )K�(t� � )p(� ) d�:Since every function f 2 Hp;� for which If = 0 may be represented inthe form f(z) = B(z)g(z); g 2 Hp;�;



12 K. YU. OSIPENKOin view of (2)e(L;Hp;�; I) = supf2Hp;� ����ZTf(t)B(t)p(t) dt���� =: P2:Similar to the method which was used in the proof of Theorem 2 it iseasy to show that e(L;Hp;�; I) = e(L;HRp;�; I):Since P1 � e(L;HRp;�; I) � ZTgB;p(t)B(t)p(t) dt = P1;we have P1 = e(L;HRp;�; I) = P2:For p =1 and even �1; : : : ; �n it is obvious that gB;p(z) � 1.Let p = 2. The space of 2�-periodic functions H2;� analytic in thestrip S� and satisfying the conditionsup0��<� 14� ZT�jf(t+ i�)j2 + jf(t� i�)j2� dt <1is a Hilbert space with the inner product(f; g)H2;� = 14� Z� f(�)g(�) d�;where � = [i�; 2� + i�] [ [�i�; 2� � i�]. It follows from [18] that forall f 2 H2;� and any t 2 T the equalityf(t) = (f; gt)H2;�holds, where gt(z) = 2K� dn�K� (t� z); k�and K is the complete elliptic integral of the �rst kind for the modulusk de�ned by the condition K 0=K = 2�=�.We havee(L;H2;�; I) = supf2H2;� ����ZTf(t)B(t)p(t) dt����= supf2H2;� ����ZT 14� Z� f(�)gt(�) d�B(t)p(t) dt����= supf2H2;� ���� 14� Z� f(�)ZTgt(�)B(t)p(t) dt d����� = supkfkH2;��1(f;G)H2;� ;where G(�) = 2K� ZTdn�K� (t� �)�B(t)p(t) dt:



ON BEST QUADRATURE FORMULAS 13Hence it follows that gB;2(z) = G(z)kGkH2;� :Theorem 4. Let �1; : : : ; �n be even numbers and 1 � p � 1. Thenthe quadrature formulaZTf(t)p(t) dt � nXj=1 �j�1X�=0 aj�f (�)(xj);(19)where aj� = ZTcj�(t)p(t) dt;cj�(t) = K� B(t)gB;p(t)�!(�j � � � 1)!� limz!xj � (z � xj)�jB(z)gB;p(z) ctn�K� (t� z); k��(�j���1) ;ctn(z; k) = cn(z; k) dn(z; k)sn(z; k) ;is an optimal method of integration on the class Hp;�.Proof. Consider the integralJf := K� B(t)gB;p(t) 12�i Z�" f(z)B(z)gB;p(z) ctn�K� (z � t); k� dz;(20)where �" is the boundary of the rectangle �" � Re z � 2��", j Im zj ��, and " is chosen from the requirement that the points x1; : : : ; xn lieinside this rectangle. In view of the fact that gB;p(z) does not vanishin the strip S� by the residue theorem we haveJf = f(t)� nXj=1 �j�1X�=0 cj�(t)f (�)(xj):It follows from the properties of elliptic functions (see, for example,[20]) thatctn�K� (t� i�); k� = ctn�K� t� iK 02 ; k�= �i(1 + k)1� k sn2�K� t; k�1 + k sn2�K� t; k� = �i�K dn��� t; �� ;



14 K. YU. OSIPENKOwhere � = 2pk=(1+k) and � is the complete elliptic integral of the �rstkind for the modulus � (in other words, � is de�ned by the condition�0=� = K 0=(2K)). Thus the integral (20) may be written in the formJf := B(t)gB;p(t) 14� Z� f(z)B(z)gB;p(z)K�(Re z � t) dz;where � = [i�; 2�+ i�][ [�i�; 2�� i�]. Let 1 � p <1. Then for theerror of the quadrature formula (19) we haveRf := �����ZTf(t)p(t) dt � nXj=1 �j�1X�=0 aj�f (�)(xj)������ ZTB(t)gB;p(t)p(t) 14� Z� jf(z)jjgB;p(z)jK�(Re z � t) dz dt= 14� Z� jf(z)jjgB;p(z)j ZTB(t)gB;p(t)K�(Re z � t)p(t) dt dz:Using (18) we obtainRf � e(L;Hp;�; I) 14� Z� jf(z)jjgB;p(z)jp�1 dz:By the H�older inequalityRf � e(L;Hp;�; I)� 14� Z� jf(z)jp dz�1=p� 14� Z� jgB;p(z)jp dz�(p�1)=p� e(L;Hp;�; I):If p =1, then gB;p(z) � 1 andjJf j � B(t) 14� Z� jf(z)jK�(Re z � t) dz � B(t);because 14� Z�K�(Re z � t) dz � 1:Consequently, Rf � ZTB(t)p(t) dt = e(L;H1;�; I):4. Recovery of functions from Hrp by the TaylorinformationConsider the problem of optimal recovery of the value f(�), � 2 D,on the class Hrp by the values of the information operatorIf = (f(0); f 0(0); : : : ; f (n+r�1)(0)):We denote by e(�;Hrp ; I) the error of optimal recovery method in thiscase.



ON BEST QUADRATURE FORMULAS 15It is easily seen that if f 2 Hrp ¨ If = 0, then f (r)(z) = zn'(z) where' 2 Hp. Consequently, f(z) = Tr(tn'(t))(z) where the operator Tr isde�ned by (7). It is obvious that for all ' 2 Hp, f(z) = Tr(tn'(t))(z) 2Hrp , moreover, If = 0. Thus, taking into account the duality formula(2), e(�;Hrp ; I) = supf2HrpIf=0 jf(�)j = sup'2Hp ����Z �0 (� � t)r�1(r � 1)! tn'(t) dt���� :(21)Let � 2 (0; 1). Then it follows from [11, p. 176] that there exists theunique function '� 2 Hp such that '�(t) > 0 for t 2 (�1; 1) ande(�;Hrp ; I) = Z �0 (� � t)r�1(r � 1)! tn'�(t) dt:(22)Theorem 5. For all � 2 D and 1 � p �1 the methodf(�) � n+r�1Xj=0 aj �jj!f (j)(0);(23)where a0 = : : : = ar�1 = 1,an+r�1 = (n+ r � 1)!(n� 1)!'j�j(0)hn+r�1;ak = k!(k � r)!'j�j(0)  hk � n+r�1Xj=k+1 aj (j � r)!j!(j � k)!j�jj�k'(j�k)j�j (0)! ;k = n + r � 2; : : : ; r;(24) hk = Z 10 (1� � )r�1(r � 1)! � k�r �1 � (j�j� )2(n+r�k)�'j�j(j�j� ) d�;k = r; : : : ; n+ r � 1;is an optimal method of recovery on the class Hrp .Proof. Denote by Hr;Rp the class of all functions from Hrp real on theinterval (�1; 1). First, we shall show that the method (23) is optimalon the class Hr;Rp for � 2 (0; 1). Since '� 2 HRp the equality (22) is alsovalid for the class Hr;Rp , that is the functionf0(z) := Z z0 (z � t)r�1(r � 1)! tn'�(t) dt(25)is extremal in the problem of optimal recovery of the value f(�) on theclass Hr;Rp by the Taylor information If .Set !0(z) := 1,!j(z) := z!j�1(z) + "n+r�j1 + "n+r�jz!j�1(z) ; j = 1; : : : ; n:



16 K. YU. OSIPENKOFor all "r; : : : ; "n+r�1 2 (�1; 1), !n'� 2 HRp . For the points P =("0; "1; : : : ; "n+r�1) 2 Rn+r consider the functionfP (z) := r�1Xj=0 "jzj + Tr(!n'�)(z):For all P 2 (�1; 1)n+r, fP 2 Hrp , and for P = 0 this function coincideswith the extremal function (25). It follows from Theorem 1 that thecoe�cients aj of optimal recovery method on the class Hr;Rp are foundfrom the systemn+r�1Xj=0 aj �jj! @f (j)P (0)@"k ���P=0 = @fP (�)@"k ���P=0; k = 0; 1; : : : ; n+ r � 1:For 0 � k � r � 1 we have@f (j)P (0)@"k ���P=0 = (0; k 6= j;j!; k = j; @fP (�)@"k ���P=0 = �k;and for r � k � n+ r � 1@f (j)P (0)@"k ���P=0 = (0; 0 � j � k � 1;Ck�rj�r (k � r)!'(j�k)� (0); k � j � n+ r � 1;@fP (�)@"k ���P=0 = (Trgk)(�);where gk(z) = zk�r(1� z2(n+r�k))'�(z):Hence a0 = : : : = ar�1 = 1 and for �nding other coe�cients we obtainthe systemn+r�1Xj=k aj �jj!Ck�rj�r (k � r)!'(j�k)� (0) = (Trgk)(�); k = r; : : : ; n+ r � 1:Thus, an+r�1 = (n+ r � 1)!(n� 1)!'�(0) (Trgn+r�1)(�)�n+r�1 ;ak = k!(k � r)!'�(0)  (Trgk)(�)�k � n+r�1Xj=k+1 aj (j � r)!j!(j � k)!�j�k'(j�k)� (0)! ;k = n + r � 2; : : : ; r:Making the substitution t = �� we get that (Trgk)(�) = �khk andconsequently the equalities (24) hold.The optimality of the constructed method on the class Hrp is provedby the method similar to the one used in the proof of Theorem 2.
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