OPTIMAL RECOVERY OF THE WAVE EQUATION
SOLUTION BY INACCURATE INPUT DATA

K. YU. OSIPENKO, N. D. VYSK

ABSTRACT. In this paper the problem of optimal recovery of the
wave equation solution by inaccurate values of Fourier coefficients
of a function defined the initial form of the string is considered. A
solution of more general problem of recovery of operator defined
on a weighted space of vectors from Il by inaccurate values of its
coordinates is given.

1. STATEMENT OF THE PROBLEM

Consider the wave equation with zero boundary conditions and the
initial velocity equals zero

u(0,t) = u(m,t) =0,
Y e, 0) = (2),
u(z,0) = 0.

It is known that the precise solution of this problem has the following
form

(2) u(z,t) = Z a;(f)cosjtsin jz,

=1

<

where _
a;(f) = g/0 f(x)sin jz dz

are the Fourier coefficients of f(x).
Assume that f(-) € W3'([0, 7]), where

Wa([0,7]) = { f(-) € Ly([0,x]) : f™V(-) abs. cont. on [0, 7],
IF Ol ooy < 13
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2 ™
o) a0 = \/ 2 [ s
0

We assume that we know inaccurate values of the first N Fourier coef-
ficients of f(-), v1,...,Yyn, moreover

and

N
(3) D lai(f) —yl? <6% >0,
j=1

We state the problem of finding of an optimal recovery method for the
solution of problem (1) at the time 7" on the class W3 ([0, 7]) by the
information operator F}¥ which associates with every function f(-) €
W3 ([0, 7]) a vector y = (y1, ..., yn) satisfying condition (3).

Any operators ¢: RY — Ly([0, 7]) are admitted as recovery methods.
The quantity

e(T, W3 ([0,7]), F}, ¢)

= sup [u(-,T) = o(y) ()l 20,7
FOEWR([0,x]), y=(y1,-...y) RV
SN lay(f)—ys]2<8?

is called the error of the method . The quantity
E(T,W3([0, 7)), ) = inf )€(T> W3 ([0, 7)), F5", )

¢: RN —Ly([0,7]
is called the error of optimal recovery, and a method delivering the
lower bound is called optimal recovery method.

The idea of solution of the stated problem is based on the method
of optimal recovery of linear operators developed in the papers [1] and
[2] (see also [3]). The essential part of this method is reduction of
the original problem to a minimization problem with constraints which
in the present case is reducing to a problem of linear programming
which can be exactly solved by the Lagrange principle of constraints
removing.

Now consider a more general problem of optimal recovery to which
the stated problem can be reduced. Let the operator ): X — [y be
defined by the equality

Qr = (mxy,n222,...), J €N,

where x = (z1,22,...) € X, and

00 1/2
X:{x:(xl,xg,...):HxHX: (Zl/j|l'j|2> <oo},

j=1
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vi > 0,5 € N. Set y; = 77]2- and assume that p;/v; — 0 as j — oo.
Then for all z € X, Qx € l,. We are interested in the problem of
optimal recovery of the operator () by inaccurate values of the first N
components xy,...,TN.

A series problems of optimal recovery of derivatives [1| and solutions
of partial differential equations [4], [5] are reduced to the problems of
such kind. In the cited papers the sequence {y;};ey Was monotonic
which made significantly easy to obtain an optimal recovery method.
In this paper we consider the case when the sequence {1} ey has less
restrictive conditions.

We now proceed to the accurate statement of the problem. Put

W={zeX:|z|x<1}.

We assume that for every x € W we know a vector y = (y1,...,yn)
such that
N 1/2
e = ally = (Sl - ul) - <0
j=1
(here Iyz = (x1,...,2x)). Any map ¢: [ — I, is admitted as a

recovery method. For a given method ¢ the error of recovery is defined
by the equlity

e(Q W, In,0,0) =  sup  [|Qz —o(y)|s-
zeW, yelly
”INl"*y”lé\’ <é

The quantity
E(Qam[]\/a(s) = inf G(Q,W, IN757 ()0)

©: lévalg

is called the error of optimal recovery, and a method delivering the
lower bound is called optimal recovery method of the operator () on
the class W by the information Iy given with the error in the I3 norm.

2. MAIN RESULTS

Assume that vy < ... < vy, Uni1 < VUnye < ... and
lim;_, o pj/v; = 0. Denote by e;, j = 1,2,..., the standard basis
in lg

1, k=
(e =14 Pok=1,2,... .
0, k#J,
We introduce the following notation
A = max &, B =max ™.

1<GEN v >N v;
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Let 1 <p<N,q>N,and p<r <N be such that

Pp _ 4 Ha_p — By, = - _ By,
Vp ) Vq ) :U’T Vp prgng%}%\/('u] V] )

(for uniqueness we assume that p is maximum and ¢ with r are min-
imum of such numbers). Moreover, let s;,1 be the maximal number

such that s < sx1 <7 and
Hsppr — sy Hj — sy, L

= max ——,
— Vg sk<J<r Vj — Vs

=0,1,....m—1,

V8k+1

where sg = p, s, = r. Set

k k

Hi o Fsien = P

Vj Vsip1 = Vsy

Jk:{jGNﬂ[l,N]: }, k=0,...,m—1,

Vj

%:{jGNNLM:&>B}.

If we plot the points (v, f1;) on the plane then the geometrical mean-
ing of the introduced quantities can be seen from Fig. 1, where m = 3
and D is the region where points from J; are lying.

1

_ : o —(vj,u;), j<N
. : o — (vj,p5), >N
Dl ) :

FIGURE 1.

Theorem 1. If B > A then for all 6 > 0

E(QaVV)INa(S): &a
Yq
and the method p(y) = 0 is optimal. If B < A then
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1

1) for 6 > ——
(4) [ 2

E(Q)W]N75): @a

Vp

and the method p(y) = 0 is optimal;

(17) for << ,k=0,1,...,m—1,
Vi1 v/ Vs,
vs, 02 —1 1—42%p
E(Q,W,Iy,0) = [ prgy—— + g, , ——=,
g spp1 — Vsy, . Vspr1 = Vsy

and the method

1
~ ,Us - ,Us
Py)=> (1 + e Vj> yie;

jedy HspVsppr — Mgy Vsy,

18 optimal;

(7ii) for d < N

1 — 6%y,
. )

E(Q)WINa(S) = \/Mr62+,ulq

and the method
" -1
o) = Sm (1) e
j;n Jj L1 Vg — gl J 3C3
18 optimal.

It should be noted that for all § > 0 except the points 1/, /vy,
k=0,1,...,m, the optimal recovery method does not change for suf-
ficiently small variation of §, thus it is stable with respect to the error
of input data.

We return to the problem of optimal recovery of the wave equation
solution. If f(-) € W3([0,7]) then

flz) = Zaj(f) sin jz,

where

o ira(f) <1,
j=1
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that is v; = j2*. It follows from (2) that p; = cos? jT. In accordance
with our notation

cos® jT B cos? pT

cos?jT  cos?qT
, B = max =

1<j<N j2n p2n >N j2n q2n ’

r is defined from the condition

cos?rT — Br®™ = max (0052 JT — Bj2n)’
p<j<N

the sequence sy is defined by equalities

cos? s 1T — cos? s, T cos? jT — cos? s, T
g g2n - srgai(r j2n _ g2n ’
k+1 k KIS J k

k=0,1,...,m—1,

where sg = p, s, = r, and

Ji = {j enn, N OISt s - oS5 T } :

12n 2n  _ o2n
J Sk11 — Sk
k=0,....,m—1,

2'T
Jm:{jeNﬂ[l,N]:COSj >B}.

an
It follows from Theorem 1
Corollary 1. If B> A for all § > 0 the method
u(z, T) =~ 0

18 an optimal recovery method for the wave equation and for its error
the equality

. | cosqT|
E(T,W3([0,7]), F}) = o
holds. If B < A then
(1) foro >p™
n Ny _ | cospT|
E(T, Wy ([0, 7)), F5') = o

and the method u(x,T) =~ 0 is optimal;
(ii) for s,y <0 <s.", k=0,1,...,m—1,

2n 2n

S2n 52 -1 1— 52 2n
E(T, W3[0, 7)), FN) = \/skﬂi_szn cos? s T + % cos? sp 1T
k1~ Sk k+1 7~ Sk
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and the method

u(z,T)

~1
N cos? sp1 T — cos? s, T 9 e
2 E I+ —- T T 2 o2 Tj y; cos 31 sin jx
= Sy, COS? 5, 53" €os? Sp41

18 optimal;
(13i) for 6 <r—™

1 — 52702”

E(T,W3([0, 7)), FN) = \/52 cos? rT + — cos? qT
and the method

2 T -1
u(z,T) ~ Z (1 + . o8 4 j2") yjcos jT sin jx

, 2n cos? rT — r2m cos? ¢T
j€Im

18 optimal.

3. PROOFS

We begin with a preliminary result which describes properties of the
sequences {5, } and {v;, }.

Lemma 1. The sequences

o K e
Vsy, Vsip1 = Vsy

are strictly monotone decreasing and for all 1 < j < si

(4) Hs,, — My > My, — luskfl.

Vs, = Vj N Vs, = Vsp_y

Proof. We prove that the sequence {us, /v, } is strictly monotone de-
creasing. It follows from the definition of p that for all + > 1

Mo _ s o Bs

Vp Vs Vg,

Assuming that for all 7+ > k

(5) Puct > Bu

VSk_l VS

we prove that for all i > k+ 1
(6) Bo o B

s, Vs,
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It follows from the definition of s, that for all ¢ > k + 1

sy — Hsp_q > Hs; — IU/skfl.

Vs, = Vsj_q Vsi = Vsj_1

Hence,

M Vs; — Moy Vs — Msy_Vs; = s Vs — sy Vs, — Fs;Vsy -

Consequently,
s s, Hspy M
VepVsi ( - > Vs;Vs_y -
sy, Vs; Vs Vs

_ Hsp o Py
Vs, Vs, )
Vsi_1 Vs,

In view of (5) and the fact that vy, > v, we have

Vs Vs, (uSk - &) > Vs Vsp 4 (ILLSkl - & - M8k7_1 + &)

Sk Vs, Ver_1 Vsi Vi1 Vsy,

_ Hsi _ Hsi
= Vs, Vs, _, (Vsk Vsi) :
Consequently, (6) holds.

It follows from the choice of the sequence s, that

sy — Hsp_y sy, — Hsj_y

<
Vsip1 = Vspq Vs, = Vsj_q

Hence

Vspoy — Vs

+1 k—1
Hspir — Hsp_y < (/‘LSk - :U’Sk—1) .

Vs, = Vsp_y

Then

Hsppr — Hsp = (:U’Sk-u - :U’Sk—1) - (:U’Sk - /‘l’sk—l)
Vg — Vg, Vg — Vs
< (/‘LSk - /‘LSk—l) ( o - 1) - (/'LSk - :U’Sk—1) e -

Vs, = Vsj_q sk Vsip_1

Consequently,

s = Hsy < sy — Hsj_q
Vspi1 = Vsy Vs, = Vs

To prove (4), first, we show that for s, 1 < j < s

(7) Hs, — My > My, — luskfl.

Vs, = Vj N Vs, = Vsp_y
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It follows from the definition of s; that
K — Hsp_y < sy, — /'Lsk—l'

Vi = Vsp_y Vs, = Vs
Cosequently;,
vV, — UV
J Sk—1
Hj < Moy T (Iusk - IU/Skfl)
Vs, = Vsp_y
Thus,
V; — U
J Sk—1
Moy = My = fs, = Hsy — (fhsy — fhoy ) —————
Vs, = Vs
Vs, = Vj
= (/‘Lsk - :U’Sk—1) .
Vs, = Vsj_q

Hence (7) holds. Let j < sp_1. First, we note that the sequence {us, }
is monotone increasing. Indeed, if for any k, p,,_, > ps,, then

sy, — Hsj_y

Vs, = Vsj_q

< 0,

and in view of monotone decreasing we have

/’Lsm - /’Lsm—l
Vsm - I/sm—l

<0,

that is ps,_, > s, = fr- Then
/'Lsmfl - Bl/sm71 Z /‘L8m71 - BVT > /"LT - Bl/r7

which contradicts the definition of . We show now that for all i < sy,
i < ps,. Let I < Kk and s;—; <4 < s Then p; < py,, since otherwise
we have
Hi — ,usl,l ,usl - ,Usl,
Vi_l/sll Vi_ysll _I/s_

which contradicts the definition of s;. Thus, p; < ps, < pis,. In view of
J < sk—1, by the fact proved above it follows that p; < p,, ,. We have

Vs, — Vs,
sy, — My < sy, — M < (MSk - Mj)yk%i_:jla
which yields (7). O
Proof of Theorem 1. Consider the extremal problem

o0

00 N
> wlal - max, Y|P < 6% Y wla <L
j=1

J=1 J=1
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Put u; = |2;]%, j € N, and rewrite this problem in the following form:

oo N oo
(8) Zujuj — max, Zuj < 62, Zujuj <1, wu;>0.
j=1 j=1 j=1

We define the Lagrange function for this problem
N

Llu A, As) = Y (=pih + dovy)us + Y (—py+ dawy ),

j=1 j=N+1
where u = {u;}jen, and A1, g are the Lagrange multipliers.

It follows from [2] (see also [3]) that if there exist such A, Ay > 0
that for the sequence u = {4, } jen admissible in (8) the conditions

(a) mi>r(1] ﬁ(UaXbXQ) = L(u, /)\\17/)‘\2)7

N 00
(b) /)\\1 (Z ilj — (52> = O, /)\\2 (Z I/jaj — 1) = O,
i=1 j=1

hold, then  is the solution of the problem (8) and its value is equal to

//\\152 + /):2. Moreover, if for all y € lév there exists a solution z, of the
extremal problem

(9) Mlve = yliy + Xollz)k — min, 2 € X,
then

(10) E(Q) VVa INa(s) = \/ /):152 +//\\27

and the method
P(y) = Qu,
is optimal.
Problem (9) can be written in the form

N 00
Z </):1(33'j - yj)2 + Xzyj.f?) + /):2 Z le'? — min, reX.
j=1 j=N+1

It is easy to verify that for fixed Xl and /)\\2 its solution is

N ~
A
Ty = ~——=—1Yj€
Y N}
jfl )\1 + )\21/]'

Therefore it is sufficient to find :\\1, :\\2 > 0 and a sequence U = {U;}jen
admissible in (8) for which conditions (a) and (b) hold. In this case the
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method
al h)
(1) B =Sy,
Z ])\1 e, §€i
is optimal.
Let B> A. Put A\ =0,
~ N 1 N ]
N = B ug=—, u;=0,j#q
Vq Vq

It is easy to verify that the sequence {u;} is admissible and conditions

(b) hold. We have

u)\l,/\g Z( i+ > :Zl/j(@—&>u]20,
=1 j=1 Vq V]
since
B =t > max 2 — A,

Vq JEN Vj

In view of the fact that L(u, A1, /)\\2) = 0, condition (a) holds.
Let B < A. We start with the case (7). Put A\ =0,

—~ 1 . 1 — .
)\2:_17’ Up = —, UJ:O,j#p
Vp Vp

In this situation it is also easy to verify that the sequence {4} is
admissible and conditions (b) hold. Since

&—maxu— A>B= max'u—

Vp JEN Vj >N Vj

in this case

L(u, M, Ag) = i( i+ > Z (“p—’“>u]zo.

7=1
Since L(u, Xl,XQ) = 0, condition (a) holds.
We proceed to the case (7). Let

1 1
<J§ <

VVspi1 Vsy, '

Put u; = 0if j # sy, sp11, and U, with u, , we find from the condition

(12)

(13) Us, + Uy, =67,

(14) Vs Us, + Vg1 Uspin = L.
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Then
o~ I/Sk+152 - 1 o~ 1 - V3k52
U“Sk — — u5k+l = —
Vspi1 = Vsy Vspi1 = Vsy,
In view of (12) and (13) the sequence {u;} is admissible in (8). Put
M= gy — e Ty, R o P 7 e
Vsk_;,_l - Vsk V8k+1 - Vsk

First, we show that /)\\1,//\\2 > (0. Since by Lemma 1 the sequence
{s, /vs, } is monotone decreasing, we have

T MspVspyr = HsppaVsi,  VspVspy sy, Hspiq
Al = = — ——=1]>0.
- VS - Vsk VS

V5k+1 k V5k+1 k I/sk+1

It follows from the definition of r that u, — By, > ps, , — By, .
Thus, since s,, =,
Hsm ™ Mspm_1
Vsm - Vsm,1

It follows from monotone decreasing of the sequence
{M8k+1 — Hsy, }
Vsip1 = Vsy,
that

(15) X2 > B > 0.

It follows from (13) that condition (b) holds. We prove that condition
(a) also holds. We show that for all u; > 0

(16) L(u, A\, As) > 0.
If j > N, then taking into account (15),
— I +:\\21/j =V (/):2 — /Ij—j) > vj (B— 'Z—j) > 0.

If s, < j < N, then in view of the definition of s
e T usk>

— Vs, Vi — Vs

> B.

> 0.

—1 A+ Aoy = () = v, (

VSIH—I k

For 1 < j < sy, taking into account (4), we have
Hs =y Hspq — M8k>

Ve —Vj Vspir — Vs

v

0.

—p1j + A1+ Ay = (v, — 1) (

k

Hence the inequality (16) is proved, and since L(u, Xl,XQ) =0, it is
proved that condition (a) holds. Thus, substituting A; and A, in (10)
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and (11), we obtain the error of optimal recovery and optimality of the
method

HospVsppr — MspyqVsy

N —1
Ms — Ms
py) => m <1+ = : Vj) yje;-
=1

We show that the method in which the summation is taken over not
all 1 < 7 < N but only over the set J; is also optimal. Let

Je={t1,... iz}
Consider the same optimal recovery problem but with the information
operator
Lo = (i, .., mi ).
It follows from Lemma 1 that for all 7 =0,1,...,k
Py Py = Hsii _ Powes = P

VSj I/Sj - Vsj;l V‘Sk+1 — Vs

k

Therefore for the new information operator I, the sequence s;, j =
0,1,...,m, m > k, will not change. Further, the following two cases
may occur: m > k and m = k. Consider the first case (the second one
will follow by similar assertions from the case (i7i)). By proved above

for the case when

1 1
<<

V% Vs

the error of optimal recovery depends only on two points (s, , s, ) and
(Mbsp 1> Vsyyr)- Therefore,

E(Q)W-[Jkaé) = E(Q)W]Na6)7

and the method

N -1

~ ,Us - ,Us

P(y) = Z’?ij (1 + . : Vz'j> Yi;€ij,
j=1

s Vsypr = MspyqVsy,

y= (yh?“‘?yiﬁ)’

is optimal. We estimate this method for the information operator Iy .
Let 2 € W,y € 1y, and |[Iyz —ylly < 0. Then [|[I;z — g,z < 9.

2
Thus,

HQ - ()/o\(y)”b = HQ - ()/0\(@/)"12 < E(Q7 VVa [Jkaé) = E(Qa W7 [Na(s)'

It means that the method (¢ is optimal for the information operator
Iy.
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For the case (iii) we put

~ N N 1 — 6%y,
)\1 oy — &Vr, A2 = &, Uy = (52, Uy = ——),
Vq Vg Vq
aj = 07 j # 4.

It follows from the definition r that
A\ > p, — By, = v,(A — B) > 0.

It is easy to verify that the sequence {u;} is admissible and condition (b)
holds. Since in this case again £(, /):1, /):2) = 0, to prove the realization
of condition (a) it remains to prove that for all u; > 0 the inequality
(16) holds. In the present case the Lagrange function has the following
form

Eu}\l,)\Q Z( /L]—FMT—M—VT‘F%VJ')UJ'

— q

£ (et B (-5 -2

Every term in the first sum is nonnegative in the view of the definition
of r, and every term of the second sum is nonnegative in the view of
the definition of ¢. Substituting A\; and A, in (10) and (11), we obtain
the error of optimal recovery and optimality of the method

—1
g
(17) E n; (1+ o j> Yj€;-
q T

HrVq —

The arguments similar to those which where used in the proof of the
case (it) show that in the method (17) the points (v;, i1;) ¢ J,, may be
discarded. In this case the obtained method will be also optimal but
the number of input data which are used in general will be reduced. [J
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