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Abstract. In this paper the problem of optimal recovery of the
wave equation solution by inaccurate values of Fourier coefficients
of a function defined the initial form of the string is considered. A
solution of more general problem of recovery of operator defined
on a weighted space of vectors from l2 by inaccurate values of its
coordinates is given.

1. Statement of the problem

Consider the wave equation with zero boundary conditions and the
initial velocity equals zero

(1)

utt = uxx,

u(0, t) = u(π, t) = 0,

u(x, 0) = f(x),

ut(x, 0) = 0.

It is known that the precise solution of this problem has the following
form

(2) u(x, t) =

∞∑

j=1

aj(f) cos jt sin jx,

where

aj(f) =
2

π

∫ π

0

f(x) sin jx dx

are the Fourier coefficients of f(x).
Assume that f(·) ∈ W n

2 ([0, π]), where

W n
2 ([0, π]) = { f(·) ∈ L2([0, π]) : f (n−1)(·) abs. cont. on [0, π],

‖f (n)(·)‖L2([0,π]) ≤ 1 },

The research was carried out with the financial support of the Russian Foun-
dation for Basic Research (grant nos. 05-01-00275, 06-01-81004, 05-01-00261, and
06-01-81004).
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and

‖g(·)‖L2([0,π]) =

√
2

π

∫ π

0

|g(x)|2 dx.

We assume that we know inaccurate values of the first N Fourier coef-
ficients of f(·), y1, . . . , yN , moreover

(3)

N∑

j=1

|aj(f) − yj|2 ≤ δ2, δ > 0.

We state the problem of finding of an optimal recovery method for the
solution of problem (1) at the time T on the class W n

2 ([0, π]) by the
information operator F N

δ which associates with every function f(·) ∈
W n

2 ([0, π]) a vector y = (y1, . . . , yN) satisfying condition (3).
Any operators ϕ : R

N → L2([0, π]) are admitted as recovery methods.
The quantity

e(T, W n
2 ([0, π]), F N

δ , ϕ)

= sup
f(·)∈W n

2
([0,π]), y=(y1,...,y)∈R

N

PN
j=1

|aj(f)−yj |
2≤δ2

‖u(·, T ) − ϕ(y)(·)‖L2([0,π])

is called the error of the method ϕ. The quantity

E(T, W n
2 ([0, π]), F N

δ ) = inf
ϕ : RN→L2([0,π])

e(T, W n
2 ([0, π]), F N

δ , ϕ)

is called the error of optimal recovery, and a method delivering the
lower bound is called optimal recovery method.

The idea of solution of the stated problem is based on the method
of optimal recovery of linear operators developed in the papers [1] and
[2] (see also [3]). The essential part of this method is reduction of
the original problem to a minimization problem with constraints which
in the present case is reducing to a problem of linear programming
which can be exactly solved by the Lagrange principle of constraints
removing.

Now consider a more general problem of optimal recovery to which
the stated problem can be reduced. Let the operator Q : X → l2 be
defined by the equality

Qx = (η1x1, η2x2, . . .), j ∈ N,

where x = (x1, x2, . . .) ∈ X, and

X =

{
x = (x1, x2, . . .) : ‖x‖X =

( ∞∑

j=1

νj|xj |2
)1/2

< ∞
}

,
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νj > 0, j ∈ N. Set µj = η2
j and assume that µj/νj → 0 as j → ∞.

Then for all x ∈ X, Qx ∈ l2. We are interested in the problem of
optimal recovery of the operator Q by inaccurate values of the first N
components x1, . . . , xN .

A series problems of optimal recovery of derivatives [1] and solutions
of partial differential equations [4], [5] are reduced to the problems of
such kind. In the cited papers the sequence {µj}j∈N was monotonic
which made significantly easy to obtain an optimal recovery method.
In this paper we consider the case when the sequence {µj}j∈N has less
restrictive conditions.

We now proceed to the accurate statement of the problem. Put

W = { x ∈ X : ‖x‖X ≤ 1 }.
We assume that for every x ∈ W we know a vector y = (y1, . . . , yN)
such that

‖INx − y‖lN
2

=

( N∑

j=1

|xj − yj|2
)1/2

≤ δ

(here INx = (x1, . . . , xN)). Any map ϕ : lN2 → l2 is admitted as a
recovery method. For a given method ϕ the error of recovery is defined
by the equlity

e(Q, W, IN , δ, ϕ) = sup
x∈W, y∈lN

2

‖INx−y‖
lN
2

≤δ

‖Qx − ϕ(y)‖l2.

The quantity

E(Q, W, IN , δ) = inf
ϕ : lN

2
→l2

e(Q, W, IN , δ, ϕ)

is called the error of optimal recovery, and a method delivering the
lower bound is called optimal recovery method of the operator Q on
the class W by the information IN given with the error in the lN2 norm.

2. Main results

Assume that ν1 < . . . < νN , νN+1 < νN+2 < . . ., and
limj→+∞ µj/νj = 0. Denote by ej , j = 1, 2, . . ., the standard basis
in l2

(ej)k =

{
1, k = j,

0, k 6= j,
k = 1, 2, . . . .

We introduce the following notation

A = max
1≤j≤N

µj

νj
, B = max

j>N

µj

νj
.
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Let 1 ≤ p ≤ N , q > N , and p ≤ r ≤ N be such that
µp

νp
= A,

µq

νq
= B, µr − Bνr = max

p≤j≤N
(µj − Bνj)

(for uniqueness we assume that p is maximum and q with r are min-
imum of such numbers). Moreover, let sk+1 be the maximal number
such that sk < sk+1 ≤ r and

µsk+1
− µsk

νsk+1
− νsk

= max
sk<j≤r

µj − µsk

νj − νsk

, k = 0, 1, . . . , m − 1,

where s0 = p, sm = r. Set

Jk =

{
j ∈ N ∩ [1, N ] :

µj

νj
>

µsk+1
− µsk

νsk+1
− νsk

}
, k = 0, . . . , m − 1,

Jm =

{
j ∈ N ∩ [1, N ] :

µj

νj
> B

}
.

If we plot the points (νj, µj) on the plane then the geometrical mean-
ing of the introduced quantities can be seen from Fig. 1, where m = 3
and D1 is the region where points from J1 are lying.
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Figure 1.

Theorem 1. If B ≥ A then for all δ > 0

E(Q, W, IN , δ) =

√
µq

νq
,

and the method ϕ̂(y) = 0 is optimal. If B < A then
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(i) for δ ≥ 1
√

νp

E(Q, W, IN , δ) =

√
µp

νp
,

and the method ϕ̂(y) = 0 is optimal;

(ii) for
1

√
νsk+1

≤ δ <
1

√
νsk

, k = 0, 1, . . . , m − 1,

E(Q, W, IN , δ) =

√
µsk

νsk+1
δ2 − 1

νsk+1
− νsk

+ µsk+1

1 − δ2νsk

νsk+1
− νsk

,

and the method

ϕ̂(y) =
∑

j∈Jk

ηj

(
1 +

µsk+1
− µsk

µsk
νsk+1

− µsk+1
νsk

νj

)−1

yjej

is optimal;

(iii) for δ <
1√
νr

E(Q, W, IN , δ) =

√
µrδ2 + µq

1 − δ2νr

νq

,

and the method

ϕ̂(y) =
∑

j∈Jm

ηj

(
1 +

µq

µrνq − µqνr
νj

)−1

yjej

is optimal.

It should be noted that for all δ > 0 except the points 1/
√

νsk
,

k = 0, 1, . . . , m, the optimal recovery method does not change for suf-
ficiently small variation of δ, thus it is stable with respect to the error
of input data.

We return to the problem of optimal recovery of the wave equation
solution. If f(·) ∈ W n

2 ([0, π]) then

f(x) =

∞∑

j=1

aj(f) sin jx,

where
∞∑

j=1

j2na2
j (f) ≤ 1,
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that is νj = j2n. It follows from (2) that µj = cos2 jT . In accordance
with our notation

A = max
1≤j≤N

cos2 jT

j2n
=

cos2 pT

p2n
, B = max

j>N

cos2 jT

j2n
=

cos2 qT

q2n
,

r is defined from the condition

cos2 rT − Br2n = max
p≤j≤N

(cos2 jT − Bj2n),

the sequence sk+1 is defined by equalities

cos2 sk+1T − cos2 skT

s2n
k+1 − s2n

k

= max
sk<j≤r

cos2 jT − cos2 skT

j2n − s2n
k

,

k = 0, 1, . . . , m − 1,

where s0 = p, sm = r, and

Jk =

{
j ∈ N ∩ [1, N ] :

cos2 jT

j2n
>

cos2 sk+1T − cos2 skT

s2n
k+1 − s2n

k

}
,

k = 0, . . . , m − 1,

Jm =

{
j ∈ N ∩ [1, N ] :

cos2 jT

j2n
> B

}
.

It follows from Theorem 1

Corollary 1. If B ≥ A for all δ > 0 the method

u(x, T ) ≈ 0

is an optimal recovery method for the wave equation and for its error

the equality

E(T, W n
2 ([0, π]), F N

δ ) =
| cos qT |

qn

holds. If B < A then

(i) for δ ≥ p−n

E(T, W n
2 ([0, π]), F N

δ ) =
| cos pT |

pn

and the method u(x, T ) ≈ 0 is optimal;

(ii) for s−n
k+1 ≤ δ < s−n

k , k = 0, 1, . . . , m − 1,

E(T, W n
2 ([0, π]), F N

δ ) =

√
s2n

k+1δ
2 − 1

s2n
k+1 − s2n

k

cos2 skT +
1 − δ2s2n

k

s2n
k+1 − s2n

k

cos2 sk+1T
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and the method

u(x, T )

≈
∑

j∈Jk

(
1 +

cos2 sk+1T − cos2 skT

s2n
k+1 cos2 skT − s2n

k cos2 sk+1T
j2n

)−1

yj cos jT sin jx

is optimal;

(iii) for δ < r−n

E(T, W n
2 ([0, π]), F N

δ ) =

√

δ2 cos2 rT +
1 − δ2r2n

q2n
cos2 qT

and the method

u(x, T ) ≈
∑

j∈Jm

(
1 +

cos2 qT

q2n cos2 rT − r2n cos2 qT
j2n

)−1

yj cos jT sin jx

is optimal.

3. Proofs

We begin with a preliminary result which describes properties of the
sequences {µsk

} and {νsk
}.

Lemma 1. The sequences
{

µsk

νsk

}
and

{
µsk+1

− µsk

νsk+1
− νsk

}

are strictly monotone decreasing and for all 1 ≤ j < sk

(4)
µsk

− µj

νsk
− νj

≥ µsk
− µsk−1

νsk
− νsk−1

.

Proof. We prove that the sequence {µsk
/νsk

} is strictly monotone de-
creasing. It follows from the definition of p that for all i ≥ 1

µp

νp
=

µs0

νs0

>
µsi

νsi

.

Assuming that for all i ≥ k

(5)
µsk−1

νsk−1

>
µsi

νsi

,

we prove that for all i ≥ k + 1

(6)
µsk

νsk

>
µsi

νsi

.
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It follows from the definition of sk that for all i ≥ k + 1

µsk
− µsk−1

νsk
− νsk−1

>
µsi

− µsk−1

νsi
− νsk−1

.

Hence,

µsk
νsi

− µsk
νsk−1

− µsk−1
νsi

> µsi
νsk

− µsk−1
νsk

− µsi
νsk−1

.

Consequently,

νsk
νsi

(
µsk

νsk

− µsi

νsi

)
> νsi

νsk−1

(
µsk−1

νsk−1

− µsi

νsi

)

− νsk−1
νsk

(
µsk−1

νsk−1

− µsk

νsk

)
.

In view of (5) and the fact that νsi
> νsk

we have

νsk
νsi

(
µsk

νsk

− µsi

νsi

)
> νsk

νsk−1

(
µsk−1

νsk−1

− µsi

νsi

− µsk−1

νsk−1

+
µsk

νsk

)

= νsk
νsk−1

(
µsk

νsk

− µsi

νsi

)
.

Consequently, (6) holds.
It follows from the choice of the sequence sk that

µsk+1
− µsk−1

νsk+1
− νsk−1

<
µsk

− µsk−1

νsk
− νsk−1

.

Hence

µsk+1
− µsk−1

< (µsk
− µsk−1

)
νsk+1

− νsk−1

νsk
− νsk−1

.

Then

µsk+1
− µsk

= (µsk+1
− µsk−1

) − (µsk
− µsk−1

)

< (µsk
− µsk−1

)

(
νsk+1

− νsk−1

νsk
− νsk−1

− 1

)
= (µsk

− µsk−1
)
νsk+1

− νsk

νsk
− νsk−1

.

Consequently,
µsk+1

− µsk

νsk+1
− νsk

<
µsk

− µsk−1

νsk
− νsk−1

.

To prove (4), first, we show that for sk−1 ≤ j < sk

(7)
µsk

− µj

νsk
− νj

≥ µsk
− µsk−1

νsk
− νsk−1

.
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It follows from the definition of sk that

µj − µsk−1

νj − νsk−1

≤ µsk
− µsk−1

νsk
− νsk−1

.

Cosequently,

µj ≤ µsk−1
+ (µsk

− µsk−1
)

νj − νsk−1

νsk
− νsk−1

.

Thus,

µsk
− µj ≥ µsk

− µsk−1
− (µsk

− µsk−1
)

νj − νsk−1

νsk
− νsk−1

= (µsk
− µsk−1

)
νsk

− νj

νsk
− νsk−1

.

Hence (7) holds. Let j < sk−1. First, we note that the sequence {µsk
}

is monotone increasing. Indeed, if for any k, µsk−1
> µsk

, then

µsk
− µsk−1

νsk
− νsk−1

< 0,

and in view of monotone decreasing we have

µsm
− µsm−1

νsm
− νsm−1

< 0,

that is µsm−1
> µsm

= µr. Then

µsm−1
− Bνsm−1

≥ µsm−1
− Bνr > µr − Bνr,

which contradicts the definition of r. We show now that for all i < sk,
µi ≤ µsk

. Let l ≤ k and sl−1 < i < sl. Then µi ≤ µsl
, since otherwise

we have
µi − µsl−1

νi − νsl−1

>
µsl

− µsl−1

νi − νsl−1

≥ µsl
− µsl−1

νsl
− νsl−1

,

which contradicts the definition of sl. Thus, µi ≤ µsl
≤ µsk

. In view of
j < sk−1, by the fact proved above it follows that µj ≤ µsk−1

. We have

µsk
− µsk−1

≤ µsk
− µj ≤ (µsk

− µj)
νsk

− νsk−1

νsk
− νj

,

which yields (7). �

Proof of Theorem 1. Consider the extremal problem

∞∑

j=1

µj|xj |2 → max,

N∑

j=1

|xj |2 ≤ δ2,

∞∑

j=1

νj |xj|2 ≤ 1.
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Put uj = |xj|2, j ∈ N, and rewrite this problem in the following form:

(8)

∞∑

j=1

µjuj → max,

N∑

j=1

uj ≤ δ2,

∞∑

j=1

νjuj ≤ 1, uj ≥ 0.

We define the Lagrange function for this problem

L(u, λ1, λ2) =

N∑

j=1

(−µjλ1 + λ2νj)uj +

∞∑

j=N+1

(−µj + λ2νj)uj,

where u = {uj}j∈N, and λ1, λ2 are the Lagrange multipliers.

It follows from [2] (see also [3]) that if there exist such λ̂1, λ̂2 ≥ 0
that for the sequence û = {ûj}j∈N admissible in (8) the conditions

(a) min
uj≥0

L(u, λ̂1, λ̂2) = L(û, λ̂1, λ̂2),

(b) λ̂1

( N∑

j=1

ûj − δ2

)
= 0, λ̂2

( ∞∑

j=1

νj ûj − 1

)
= 0,

hold, then û is the solution of the problem (8) and its value is equal to

λ̂1δ
2 + λ̂2. Moreover, if for all y ∈ lN2 there exists a solution xy of the

extremal problem

(9) λ̂1‖INx − y‖2
lN
2

+ λ̂2‖x‖2
X → min, x ∈ X,

then

(10) E(Q, W, IN , δ) =

√
λ̂1δ2 + λ̂2,

and the method

ϕ̂(y) = Qxy

is optimal.
Problem (9) can be written in the form

N∑

j=1

(
λ̂1(xj − yj)

2 + λ̂2νjx
2
j

)
+ λ̂2

∞∑

j=N+1

νjx
2
j → min, x ∈ X.

It is easy to verify that for fixed λ̂1 and λ̂2 its solution is

xy =
N∑

j=1

λ̂1

λ̂1 + λ̂2νj

yjej.

Therefore it is sufficient to find λ̂1, λ̂2 ≥ 0 and a sequence û = {ûj}j∈N

admissible in (8) for which conditions (a) and (b) hold. In this case the
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method

(11) ϕ̂(y) =
N∑

j=1

ηj
λ̂1

λ̂1 + λ̂2νj

yjej

is optimal.

Let B ≥ A. Put λ̂1 = 0,

λ̂2 =
µq

νq

, ûq =
1

νq

, ûj = 0, j 6= q.

It is easy to verify that the sequence {ûj} is admissible and conditions
(b) hold. We have

L(u, λ̂1, λ̂2) =

∞∑

j=1

(
−µj +

µq

νq
νj

)
uj =

∞∑

j=1

νj

(
µq

νq
− µj

νj

)
uj ≥ 0,

since

B =
µq

νq

≥ max
j∈N

µj

νj

= A.

In view of the fact that L(û, λ̂1, λ̂2) = 0, condition (a) holds.

Let B < A. We start with the case (i). Put λ̂1 = 0,

λ̂2 =
µp

νp
, ûp =

1

νp
, ûj = 0, j 6= p.

In this situation it is also easy to verify that the sequence {ûj} is
admissible and conditions (b) hold. Since

µp

νp
= max

j∈N

µj

νj
= A > B = max

j>N

µj

νj
,

in this case

L(u, λ̂1, λ̂2) =

∞∑

j=1

(
−µj +

µp

νp
νj

)
uj =

∞∑

j=1

νj

(
µp

νp
− µj

νj

)
uj ≥ 0.

Since L(û, λ̂1, λ̂2) = 0, condition (a) holds.
We proceed to the case (ii). Let

(12)
1

√
νsk+1

≤ δ <
1

√
νsk

.

Put ûj = 0 if j 6= sk, sk+1, and ûsk
with ûsk+1

we find from the condition

ûsk
+ ûsk+1

= δ2,(13)

νsk
ûsk

+ νsk+1
ûsk+1

= 1.(14)
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Then

ûsk
=

νsk+1
δ2 − 1

νsk+1
− νsk

, ûsk+1
=

1 − νsk
δ2

νsk+1
− νsk

.

In view of (12) and (13) the sequence {ûj} is admissible in (8). Put

λ̂1 = µsk
− µsk+1

− µsk

νsk+1
− νsk

νsk
, λ̂2 =

µsk+1
− µsk

νsk+1
− νsk

.

First, we show that λ̂1, λ̂2 > 0. Since by Lemma 1 the sequence
{µsk

/νsk
} is monotone decreasing, we have

λ̂1 =
µsk

νsk+1
− µsk+1

νsk

νsk+1
− νsk

=
νsk

νsk+1

νsk+1
− νsk

(
µsk

νsk

− µsk+1

νsk+1

)
> 0.

It follows from the definition of r that µr − Bνr > µsm−1
− Bνsm−1

.
Thus, since sm = r,

µsm
− µsm−1

νsm
− νsm−1

> B.

It follows from monotone decreasing of the sequence
{

µsk+1
− µsk

νsk+1
− νsk

}

that

(15) λ̂2 > B ≥ 0.

It follows from (13) that condition (b) holds. We prove that condition
(a) also holds. We show that for all uj ≥ 0

(16) L(u, λ̂1, λ̂2) ≥ 0.

If j > N , then taking into account (15),

−µj + λ̂2νj = νj

(
λ̂2 −

µj

νj

)
> νj

(
B − µj

νj

)
≥ 0.

If sk ≤ j ≤ N , then in view of the definition of sk

−µj + λ̂1 + λ̂2νj = (νj − νsk
)

(
µsk+1

− µsk

νsk+1
− νsk

− µj − µsk

νj − νsk

)
≥ 0.

For 1 ≤ j < sk, taking into account (4), we have

−µj + λ̂1 + λ̂2νj = (νsk
− νj)

(
µsk

− µj

νsk
− νj

− µsk+1
− µsk

νsk+1
− νsk

)
≥ 0.

Hence the inequality (16) is proved, and since L(û, λ̂1, λ̂2) = 0, it is

proved that condition (a) holds. Thus, substituting λ̂1 and λ̂2 in (10)
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and (11), we obtain the error of optimal recovery and optimality of the
method

ϕ(y) =

N∑

j=1

ηj

(
1 +

µsk+1
− µsk

µsk
νsk+1

− µsk+1
νsk

νj

)−1

yjej.

We show that the method in which the summation is taken over not
all 1 ≤ j ≤ N but only over the set Jk is also optimal. Let

Jk = {i1, . . . , i eN}.
Consider the same optimal recovery problem but with the information
operator

IJk
x = (xi1 , . . . , xi eN

).

It follows from Lemma 1 that for all j = 0, 1, . . . , k

µsj

νsj

>
µsj

− µsj−1

νsj
− νsj−1

>
µsk+1

− µsk

νsk+1
− νsk

.

Therefore for the new information operator IJk
the sequence sj, j =

0, 1, . . . , m̃, m̃ ≥ k, will not change. Further, the following two cases
may occur: m̃ > k and m̃ = k. Consider the first case (the second one
will follow by similar assertions from the case (iii)). By proved above
for the case when

1
√

νsk+1

≤ δ <
1

√
νsk

,

the error of optimal recovery depends only on two points (µsk
, νsk

) and
(µsk+1

, νsk+1
). Therefore,

E(Q, W, IJk
, δ) = E(Q, W, IN , δ),

and the method

ϕ̂(ỹ) =

eN∑

j=1

ηij

(
1 +

µsk+1
− µsk

µsk
νsk+1

− µsk+1
νsk

νij

)−1

yijeij ,

ỹ = (yi1, . . . , yi eN
),

is optimal. We estimate this method for the information operator IN .
Let x ∈ W , y ∈ lN2 , and ‖INx − y‖lN

2
≤ δ. Then ‖IJk

x − ỹ‖
l

eN
2

≤ δ.

Thus,

‖Q − ϕ̂(y)‖l2 = ‖Q − ϕ̂(ỹ)‖l2 ≤ E(Q, W, IJk
, δ) = E(Q, W, IN , δ).

It means that the method ϕ̂ is optimal for the information operator
IN .
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For the case (iii) we put

λ̂1 = µr −
µq

νq
νr, λ̂2 =

µq

νq
, ûr = δ2, ûq =

1 − δ2νr

νq
,

ûj = 0, j 6= r, q.

It follows from the definition r that

λ̂1 > µp − Bνp = νp(A − B) > 0.

It is easy to verify that the sequence {ûj} is admissible and condition (b)

holds. Since in this case again L(û, λ̂1, λ̂2) = 0, to prove the realization
of condition (a) it remains to prove that for all uj ≥ 0 the inequality
(16) holds. In the present case the Lagrange function has the following
form

L(u, λ̂1, λ̂2) =
N∑

j=1

(
−µj + µr −

µq

νq
νr +

µq

νq
νj

)
uj

+

∞∑

j=N+1

(
−µj +

µq

νq
νj

)
uj =

N∑

j=1

((
µr −

µq

νq
νr

)
−

(
µj −

µq

νq
νj

))
uj

+

∞∑

j=N+1

νj

(
µq

νq
− µj

νj

)
uj.

Every term in the first sum is nonnegative in the view of the definition
of r, and every term of the second sum is nonnegative in the view of

the definition of q. Substituting λ̂1 and λ̂2 in (10) and (11), we obtain
the error of optimal recovery and optimality of the method

(17) ϕ(y) =

N∑

j=1

ηj

(
1 +

µq

µrνq − µqνr
νj

)−1

yjej .

The arguments similar to those which where used in the proof of the
case (ii) show that in the method (17) the points (νj , µj) /∈ Jm may be
discarded. In this case the obtained method will be also optimal but
the number of input data which are used in general will be reduced. �
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